Skip to main content

The Caries Lesion: Diagnosis, Decision-Making, and Recommendations for Lesion Management

  • Chapter
  • First Online:
Contemporary Endodontics for Children and Adolescents

Abstract

The word diagnosis (plural, diagnoses) is derived from the Greek words dia meaning “through” and gnosis meaning “knowledge.” Thus, “to diagnose” implies that it is only through knowledge about the disease that a diagnosis can be established. The assessment of etiologic factors, together with caries lesion detection and activity status evaluation, is essential for arriving at the caries disease diagnosis and the appropriate treatment decision. After a brief overview on caries disease development and control strategies, as well as accurate diagnosis, this chapter discusses and summarizes the literature on the recommendations for management of initial, moderate, and extensive caries lesions reaching the outer half of dentin in primary and permanent teeth. Recommendations are based on the principles of minimally invasive dentistry as follows: (1) noninvasive interventions that do not involve the removal of hard teeth tissue; (2) micro-invasive interventions, when mineral removal of teeth structure is involved; (3) invasive interventions that include mechanical removal of teeth tissue; and (4) mixed interventions, involving different approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pitts NB, Zero DT, Marsh PD, Ekstrand K, Weintraub JA, Ramos-Gomez F, et al. Dental caries. Nat Rev Dis Prim. 2017;3:17030. https://doi.org/10.1038/nrdp.2017.30.

    Article  PubMed  Google Scholar 

  2. Nyvad B. Diagnosis versus detection of caries. Caries Res. 2004;38:192–8. https://doi.org/10.1159/000077754.

    Article  PubMed  Google Scholar 

  3. Machiulskiene V, Campus G, Carvalho JC, Dige I, Ekstrand KR, Jablonski-Momeni A, et al. Terminology of dental caries and dental caries management: consensus report of a workshop organized by ORCA and cariology research group of IADR. Caries Res. 2020;54:7–14. https://doi.org/10.1159/000503309.

    Article  PubMed  Google Scholar 

  4. Tyas MJ, Anusavice KJ, Frencken JE, Mount GJ. Minimal intervention dentistry—a review. FDI Commission Project 1–97. Int Dent J. 2000;50:1–12. https://doi.org/10.1111/j.1875-595x.2000.tb00540.x.

    Article  PubMed  Google Scholar 

  5. Holmen L, Thylstrup A, Ogaard B, Kragh F. A scanning electron microscopic study of progressive stages of enamel caries in vivo. Caries Res. 1985;19:355–67. https://doi.org/10.1159/000260867.

    Article  PubMed  Google Scholar 

  6. Silverstone LM. Structure of carious enamel, including the early lesion. Oral Sci Rev. 1973;3:100–60.

    PubMed  Google Scholar 

  7. Haikel Y, Frank RM, Voegel JC. Scanning electron microscopy of the human enamel surface layer of incipient carious lesions. Caries Res. 1983;17:1–13. https://doi.org/10.1159/000260643.

    Article  PubMed  Google Scholar 

  8. Guedes RS, Piovesan C, Floriano I, Emmanuelli B, Braga MM, Ekstrand KR, et al. Risk of initial and moderate caries lesions in primary teeth to progress to dentine cavitation: a 2-year cohort study. Int J Paediatr Dent. 2016;26:116–24. https://doi.org/10.1111/ipd.12166.

    Article  PubMed  Google Scholar 

  9. Nyvad B, Fejerskov O. The caries control concept. In: Fejerskov O, Nyvad B, Kidd E, editors. Dental caries: the disease and its clinical management. 3rd ed. Oxford: Wiley Black- well; 2015. p. 235–43.

    Google Scholar 

  10. Bernabe E, Marcenes W, Hernandez CR, Bailey J, Abreu LG, Alipour V, et al. Global, Regional, and National Levels and Trends in Burden of Oral Conditions from 1990 to 2017: A Systematic Analysis for the Global Burden of Disease 2017 Study. J Dent Res. 2020;99:362–73. https://doi.org/10.1177/0022034520908533.

    Article  PubMed  Google Scholar 

  11. Gimenez T, Tedesco TK, Janoian F, Braga MM, Raggio DP, Deery C, et al. What is the most accurate method for detecting caries lesions? A systematic review. Community Dent Oral Epidemiol. 2021;49:216–24. https://doi.org/10.1111/cdoe.12641.

    Article  PubMed  Google Scholar 

  12. Ekstrand KR, Gimenez T, Ferreira FR, Mendes FM, Braga MM. The international caries detection and assessment system - ICDAS: a systematic review. Caries Res. 2018;52:406–19. https://doi.org/10.1159/000486429.

    Article  PubMed  Google Scholar 

  13. Wenzel A. Bitewing and digital bitewing radiography for detection of caries lesions. J Dent Res. 2004;83:C72–5. https://doi.org/10.1177/154405910408301s14.

    Article  PubMed  Google Scholar 

  14. Braga MM, Mendes FM, Ekstrand KR. Detection activity assessment and diagnosis of dental caries lesions. Dent Clin N Am. 2010;54:479–93. https://doi.org/10.1016/j.cden.2010.03.006.

    Article  PubMed  Google Scholar 

  15. Thylstrup A, Bruun C, Holmen L. In vivo caries models--mechanisms for caries initiation and arrestment. Adv Dent Res. 1994;8:144–57. https://doi.org/10.1177/08959374940080020401.

    Article  PubMed  Google Scholar 

  16. Ekstrand KR, Martignon S, Ricketts DJN, Qvist V. Detection and activity assessment of primary coronal caries lesions: a methodologic study. Oper Dent. 2007;32:225–35. https://doi.org/10.2341/06-63.

    Article  PubMed  Google Scholar 

  17. Carvalho JC, Mestrinho HD, Oliveira LS, Varjão MM, Aimée N, Qvist V. Validation of the visible occlusal plaque index (VOPI) in estimating caries lesion activity. J Dent. 2017;64:37–44. https://doi.org/10.1016/j.jdent.2017.06.003.

    Article  PubMed  Google Scholar 

  18. Nyvad B, Baelum V. Nyvad criteria for caries lesion activity and severity assessment: a validated approach for clinical management and research. Caries Res. 2018;52:397–405. https://doi.org/10.1159/000480522.

    Article  PubMed  Google Scholar 

  19. Ismail AI, Sohn W, Tellez M, Amaya A, Sen A, Hasson H, et al. The international caries detection and assessment system (ICDAS): an integrated system for measuring dental caries. Community Dent Oral Epidemiol. 2007;35:170–8. https://doi.org/10.1111/j.1600-0528.2007.00347.x.

    Article  PubMed  Google Scholar 

  20. Bertella N, Moura DS, Alves LS, Damé-Teixeira N, Fontanella V, Maltz M. Clinical and radiographic diagnosis of underlying dark shadow from dentin (ICDAS 4) in permanent molars. Caries Res. 2013;47:429–32. https://doi.org/10.1159/000350924.

    Article  PubMed  Google Scholar 

  21. Marquezan PK, Alves LS, Dalla Nora A, Maltz M, do Amaral Zenkner JE. Radiographic pattern of underlying dentin lesions (ICDAS 4) in permanent teeth. Clin Oral Investig. 2019;23:3879–83. https://doi.org/10.1007/s00784-019-02818-y.

    Article  PubMed  Google Scholar 

  22. Ferreira Zandoná A, Santiago E, Eckert GJ, Katz BP, Pereira de Oliveira S, Capin OR, et al. The natural history of dental caries lesions: a 4-year observational study. J Dent Res. 2012;91:841–6. https://doi.org/10.1177/0022034512455030.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Schwendicke F, Paris S, Tu Y-K. Effects of using different criteria for caries removal: a systematic review and network meta-analysis. J Dent. 2015;43:1–15. https://doi.org/10.1016/j.jdent.2014.10.004.

    Article  PubMed  Google Scholar 

  24. Prescribing Dental Radiographs for Infants. Children, adolescents, and individuals with special health care needs. Pediatr Dent. 2017;39:205–7.

    Google Scholar 

  25. Kühnisch J, Anttonen V, Duggal MS, Spyridonos ML, Rajasekharan S, Sobczak M, et al. Best clinical practice guidance for prescribing dental radiographs in children and adolescents: an EAPD policy document. Eur Arch Paediatr Dent. 2020;21:375–86. https://doi.org/10.1007/s40368-019-00493-x.

    Article  PubMed  Google Scholar 

  26. ABOPED Nacional. Diretrizes para procedimentos clínicos em Odontopediatria. 3rd ed; 2020.

    Google Scholar 

  27. Mejàre I. Bitewing examination to detect caries in children and adolescents—when and how often? Dent Update. 2005;32:588–90, 593–594,596–597. https://doi.org/10.12968/denu.2005.32.10.588.

    Article  PubMed  Google Scholar 

  28. Mendes FM, Novaes TF, Matos R, Bittar DG, Piovesan C, Gimenez T, et al. Radiographic and laser fluorescence methods have no benefits for detecting caries in primary teeth. Caries Res. 2012;46:536–43. https://doi.org/10.1159/000341189.

    Article  PubMed  Google Scholar 

  29. Bussaneli DG, Restrepo M, Boldieri T, Albertoni TH, Santos-Pinto L, Cordeiro RCL. Proximal caries lesion detection in primary teeth: does this justify the association of diagnostic methods? Lasers Med Sci. 2015;30:2239–44. https://doi.org/10.1007/s10103-015-1798-2.

    Article  PubMed  Google Scholar 

  30. Pontes LRA, Novaes TF, Lara JS, Gimenez T, Moro BLP, Camargo LB, et al. Impact of visual inspection and radiographs for caries detection in children through a 2-year randomized clinical trial: The Caries Detection in Children-1 study. J Am Dent Assoc. 2020;151:407–415.e1. https://doi.org/10.1016/j.adaj.2020.02.008.

    Article  PubMed  Google Scholar 

  31. Novaes TF, Matos R, Braga MM, Imparato JCP, Raggio DP, Mendes FM. Performance of a pen-type laser fluorescence device and conventional methods in detecting approximal caries lesions in primary teeth--in vivo study. Caries Res. 2009;43:36–42. https://doi.org/10.1159/000189705.

    Article  PubMed  Google Scholar 

  32. Mariath AAS, Bressani AEL, de Araujo FB. Elastomeric impression as a diagnostic method of cavitation in proximal dentin caries in primary molars. J Appl Oral Sci. 2007;15:529–33. https://doi.org/10.1590/s1678-77572007000600014.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lussi A, Hack A, Hug I, Heckenberger H, Megert B, Stich H. Detection of approximal caries with a new laser fluorescence device. Caries Res. 2006;40:97–103. https://doi.org/10.1159/000091054.

    Article  PubMed  Google Scholar 

  34. Braga MM, de Benedetto MS, Imparato JCP, Mendes FM. New methodology to assess activity status of occlusal caries in primary teeth using laser fluorescence device. J Biomed Opt. 2010;15:47005. https://doi.org/10.1117/1.3463007.

    Article  Google Scholar 

  35. Achilleos E-E, Rahiotis C, Kakaboura A, Vougiouklakis G. Evaluation of a new fluorescence-based device in the detection of incipient occlusal caries lesions. Lasers Med Sci. 2013;28:193–201. https://doi.org/10.1007/s10103-012-1111-6.

    Article  PubMed  Google Scholar 

  36. Angmar-Månsson B, ten Bosch JJ. Quantitative light-induced fluorescence (QLF): a method for assessment of incipient caries lesions. Dentomaxillofac Radiol. 2001;30:298–307. https://doi.org/10.1038/sj/dmfr/4600644.

    Article  PubMed  Google Scholar 

  37. Dorri M, Dunne SM, Walsh T, Schwendicke F. Micro-invasive interventions for managing proximal dental decay in primary and permanent teeth. Cochrane Database Syst Rev. 2015;2015:CD010431. https://doi.org/10.1002/14651858.CD010431.pub2.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Schwendicke F, Splieth C, Breschi L, Banerjee A, Fontana M, Paris S, et al. When to intervene in the caries process? An expert Delphi consensus statement. Clin Oral Investig. 2019;23:3691–703. https://doi.org/10.1007/s00784-019-03058-w.

    Article  PubMed  Google Scholar 

  39. van Strijp G, van Loveren C. No removal and inactivation of carious tissue: non-restorative cavity control. Monogr Oral Sci. 2018;27:124–36. https://doi.org/10.1159/000487839.

    Article  PubMed  Google Scholar 

  40. Innes NP, Evans DJP, Stirrups DR. The hall technique; a randomized controlled clinical trial of a novel method of managing carious primary molars in general dental practice: acceptability of the technique and outcomes at 23 months. BMC Oral Health. 2007;7:18. https://doi.org/10.1186/1472-6831-7-18.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kidd EAM, Fejerskov O. What constitutes dental caries? Histopathology of carious enamel and dentin related to the action of cariogenic biofilms. J Dent Res. 2004;83:C35–8. https://doi.org/10.1177/154405910408301s07.

    Article  PubMed  Google Scholar 

  42. Guideline on restorative dentistry. Pediatr Dent. 2016;38:250–62.

    Google Scholar 

  43. Pitts NB. Are we ready to move from operative to non-operative/preventive treatment of dental caries in clinical practice? Caries Res. 2004;38:294–304. https://doi.org/10.1159/000077769.

    Article  PubMed  Google Scholar 

  44. Schwendicke F, Frencken JE, Bjørndal L, Maltz M, Manton DJ, Ricketts D, et al. Managing carious lesions: consensus recommendations on carious tissue removal. Adv Dent Res. 2016;28:58–67. https://doi.org/10.1177/0022034516639271.

    Article  PubMed  Google Scholar 

  45. Pitts NB, Ekstrand K. International caries detection and assessment system (ICDAS) and its international caries classification and management system (ICCMS)—methods for staging of the caries process and enabling dentists to manage caries. Community Dent Oral Epidemiol. 2013;41:41–52. https://doi.org/10.1111/cdoe.12025.

    Article  Google Scholar 

  46. Walsh T, Worthington HV, Glenny A-M, Marinho VC, Jeroncic A. Fluoride toothpastes of different concentrations for preventing dental caries. Cochrane Database Syst Rev. 2019;3:CD007868. https://doi.org/10.1002/14651858.CD007868.pub3.

    Article  PubMed  Google Scholar 

  47. Lenzi TL, Montagner AF, Soares FZM, de Oliveira RR. Are topical fluorides effective for treating incipient carious lesions?: a systematic review and meta-analysis. J Am Dent Assoc. 2016;147:84–91.e1. https://doi.org/10.1016/j.adaj.2015.06.018.

    Article  PubMed  Google Scholar 

  48. Phonghanyudh A, Duangthip D, Mabangkhru S, Jirarattanasopha V. Is silver diamine fluoride effective in arresting enamel caries? A randomized clinical trial. Int J Environ Res Public Health. 2022;19:8992. https://doi.org/10.3390/ijerph19158992.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Splieth CH, Banerjee A, Bottenberg P, Breschi L, Campus G, Ekstrand KR, et al. How to intervene in the caries process in children: a joint ORCA and EFCD expert Delphi consensus statement. Caries Res. 2020;54:297–305. https://doi.org/10.1159/000507692.

    Article  PubMed  Google Scholar 

  50. Wright JT, Tampi MP, Graham L, Estrich C, Crall JJ, Fontana M, et al. Sealants for preventing and arresting pit-and-fissure occlusal caries in primary and permanent molars: a systematic review of randomized controlled trials-a report of the American dental association and the American Academy of pediatric dentistry. J Am Dent Assoc. 2016;147:631–645.e18. https://doi.org/10.1016/j.adaj.2016.06.003.

    Article  PubMed  Google Scholar 

  51. Paris S, Meyer-Lueckel H. The potential for resin infiltration technique in dental practice. Dent Update. 2012;39:623–6, 628. https://doi.org/10.12968/denu.2012.39.9.623.

    Article  PubMed  Google Scholar 

  52. Tedesco TK, Calvo AFB, Pássaro AL, Araujo MP, Ladewig NM, Scarpini S, et al. Nonrestorative treatment of initial caries lesion in primary teeth: a systematic review and network meta-analysis. Acta Odontol Scand. 2022;80:1–8. https://doi.org/10.1080/00016357.2021.1928748.

    Article  PubMed  Google Scholar 

  53. Bakhshandeh A, Qvist V, Ekstrand KR. Sealing occlusal caries lesions in adults referred for restorative treatment: 2–3 years of follow-up. Clin Oral Investig. 2012;16:521–9. https://doi.org/10.1007/s00784-011-0549-4.

    Article  PubMed  Google Scholar 

  54. Alves LS, de Santa Giongo FCM, Mua B, Martins VB, Silva BBE, Qvist V, Maltz M. A randomized clinical trial on the sealing of occlusal carious lesions: 3-4-year results. Braz Oral Res. 2017;31:e44. https://doi.org/10.1590/1807-3107BOR-2017.vol31.0044.

    Article  PubMed  Google Scholar 

  55. Qvist V, Borum MK, Møller KD, Andersen TR, Blanche P, Bakhshandeh A. Sealing occlusal dentin caries in permanent molars: 7-year results of a randomized controlled trial. JDR Clin Transl Res. 2017;2:73–86. https://doi.org/10.1177/2380084416680191.

    Article  Google Scholar 

  56. Hesse D, Bonifácio CC, Mendes FM, Braga MM, Imparato JCP, Raggio DP. Sealing versus partial caries removal in primary molars: a randomized clinical trial. BMC Oral Health. 2014;14:58. https://doi.org/10.1186/1472-6831-14-58.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Neivas Camargo T, Cecílio Timóteo AF, Araújo Viol F, Gerhard D, Freitas Pinto JE, Kerber Tedesco T, et al. Impacto del tamaño de la cavidad en la resistencia de unión de sellantes resinosos. Estudio in vitro TT—Impacto do tamanho da cavidade na resistência de união de selantes resinosos. Estudo S mutans TT - Impact of cavity size on bond strength of resin Rev Odontopediatr Latinoam. 2019;9:123–30.

    Google Scholar 

  58. Ferracane JL. Resin composite--state of the art. Dent Mater. 2011;27:29–38. https://doi.org/10.1016/j.dental.2010.10.020.

    Article  PubMed  Google Scholar 

  59. Tedesco TK, Gimenez T, Floriano I, Montagner AF, Camargo LB, Calvo AFB, et al. Scientific evidence for the management of dentin caries lesions in pediatric dentistry: a systematic review and network meta-analysis. PLoS One. 2018;13:e0206296. https://doi.org/10.1371/journal.pone.0206296.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Frencken JE, Holmgren CJ. How effective is ART in the management of dental caries? Community Dent Oral Epidemiol. 1999;27:423–30. https://doi.org/10.1111/j.1600-0528.1999.tb02043.x.

    Article  PubMed  Google Scholar 

  61. de Amorim RG, Frencken JE, Raggio DP, Chen X, Hu X, Leal SC. Survival percentages of atraumatic restorative treatment (ART) restorations and sealants in posterior teeth: an updated systematic review and meta-analysis. Clin Oral Investig. 2018;22:2703–25. https://doi.org/10.1007/s00784-018-2625-5.

    Article  PubMed  Google Scholar 

  62. Innes NPT, Frencken JE, Bjørndal L, Maltz M, Manton DJ, Ricketts D, et al. Managing carious lesions: consensus recommendations on terminology. Adv Dent Res. 2016;28:49–57. https://doi.org/10.1177/0022034516639276.

    Article  PubMed  Google Scholar 

  63. Santamaría R, Innes N. Sealing carious tissue in primary teeth using crowns: the hall technique. Monogr Oral Sci. 2018;27:113–23. https://doi.org/10.1159/000487835.

    Article  PubMed  Google Scholar 

  64. Schwendicke F, Walsh T, Lamont T, Al-yaseen W, Bjørndal L, Clarkson JE, et al. Interventions for treating cavitated or dentine carious lesions. Cochrane Database Syst Rev. 2021;7:CD013039. https://doi.org/10.1002/14651858.CD013039.pub2.

    Article  PubMed  Google Scholar 

  65. Mijan M, de Amorim RG, Leal SC, Mulder J, Oliveira L, Creugers NHJ, et al. The 3.5-year survival rates of primary molars treated according to three treatment protocols: a controlled clinical trial. Clin Oral Investig. 2014;18:1061–9. https://doi.org/10.1007/s00784-013-1077-1.

    Article  PubMed  Google Scholar 

  66. Gomide RT, Frencken JE, Faber J, Kuijpers-Jagtman AM, Leal SC. Cavity treatment in primary molars and malocclusion: quasi-randomised clinical trial. PeerJ. 2020;8:e8439. https://doi.org/10.7717/peerj.8439.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Crystal YO, Niederman R. Evidence-based dentistry update on silver diamine fluoride. Dent Clin N Am. 2019;63:45–68. https://doi.org/10.1016/j.cden.2018.08.011.

    Article  PubMed  Google Scholar 

  68. Chibinski AC, Wambier LM, Feltrin J, Loguercio AD, Wambier DS, Reis A. Silver diamine fluoride has efficacy in controlling caries progression in primary teeth: a systematic review and meta-analysis. Caries Res. 2017;51:527–41. https://doi.org/10.1159/000478668.

    Article  PubMed  Google Scholar 

  69. Tolba ZO, Hamza HS, Moheb DM, Hassanein HE, El Sayed HM. Effectiveness of two concentrations 12% versus 38% of silver diamine fluoride in arresting cavitated dentin caries among children: a systematic review. Egypt Pediatr Assoc Gaz. 2019;67:1–7. https://doi.org/10.1186/s43054-019-0001-y.

    Article  Google Scholar 

  70. Johhnson B, Serban N, Griffin PM, Tomar SL. Projecting the economic impact of silver diamine fluoride on caries treatment expenditures and outcomes in young U.S. children. J Public Health Dent. 2019;79:215–21. https://doi.org/10.1111/jphd.12312.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Borba de Araujo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Araujo, F.B., Maltz, M., Cavalheiro, C.P., Lenzi, T.L. (2023). The Caries Lesion: Diagnosis, Decision-Making, and Recommendations for Lesion Management. In: Fuks, A.B., Moskovitz, M., Tickotsky, N. (eds) Contemporary Endodontics for Children and Adolescents. Springer, Cham. https://doi.org/10.1007/978-3-031-23980-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23980-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23979-3

  • Online ISBN: 978-3-031-23980-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics