Skip to main content

Cellular and Molecular Mechanisms Guiding the Development and Repair of the Dentin–Pulp Complex

  • Chapter
  • First Online:
Contemporary Endodontics for Children and Adolescents
  • 580 Accesses

Abstract

Odontogenesis is a complex process, which requires reciprocal signaling and tight coordination between the oral epithelium and the adjacent neural crest-derived ectomesenchyme. Both the enamel and the dentin-pulp complex of the mature tooth are derived from these two germ layers through a series of intermediate phases. This chapter will focus on the dentin-pulp complex, which is derived from the ectomesenchyme. Odontoblasts were initially perceived as dentin-producing cells and are now recognized also as sensory cells, which participate in defense-related inflammatory processes. Upon injury or bacterial infection in a fully developed tooth, dental pulp stem cells can be induced to differentiate into dentin-producing odontoblasts, as in reactionary dentin. A better understanding of the molecular and cellular mechanisms driving this process is underway to fully exploit the endogenous potential of the dentino-pulpal complex in restorative dentistry.

This chapter will provide a synopsis of the development of the dentin-pulp complex, highlighting its importance as well as key features of the ectomesenchyme in development and in maintaining healthy teeth. Finally, some recent advances and new insights into the biology of the dentin-pulp complex and how they may be exploited to improve dental treatments are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harjunmaa E, Kallonen A, Voutilainen M, Hämäläinen K, Mikkola ML, Jernvall J. On the difficulty of increasing dental complexity. Nature. 2012;483(7389):324–7.

    Article  PubMed  Google Scholar 

  2. Morita R, Kihira M, Nakatsu Y, Nomoto Y, Ogawa M, Ohashi K, et al. Coordination of cellular dynamics contributes to tooth epithelium deformations. PLoS One. 2016;11(9):e0161336.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Vainio S, Thesleff I. Sequential induction of syndecan, tenascin and cell proliferation associated with mesenchymal cell condensation during early tooth development. Differentiation. 1992;50(2):97–105.

    Article  PubMed  Google Scholar 

  4. Mammoto T, Mammoto A, Yu-suke T, Tat T, Gibbs A, Derda R, et al. Mechanochemical control of mesenchymal condensation and embryonic tooth organ formation. Dev Cell. 2011;21(4):758–69.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Svandova E, Peterkova R, Matalova E, Lesot H. Formation and developmental specification of the odontogenic and osteogenic Mesenchymes. Front Cell Dev Biol. 2020;17:8.

    Google Scholar 

  6. Kollar EJ, Baird GR. Tissue interactions in embryonic mouse tooth germs. II. The inductive role of the dental papilla. J Embryol Exp Morphol. 1970;24(1):173–86.

    PubMed  Google Scholar 

  7. Hu B, Nadiri A, Bopp-Kuchler S, Perrin-Schmitt F, Wang S, Lesot H. Dental epithelial histo-morphogenesis in the mouse: positional information versus cell history. Arch Oral Biol. 2005;50(2):131–6.

    Article  PubMed  Google Scholar 

  8. Kökten T, Bécavin T, Keller L, Weickert JL, Kuchler-Bopp S, Lesot H. Immunomodulation stimulates the innervation of engineered tooth organ. PLoS One. 2014;9(1):e86011.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lechguer AN, Couble ML, Labert N, Kuchler-Bopp S, Keller L, Magloire H, et al. Cell differentiation and matrix Organization in Engineered Teeth. J Dent Res. 2011;90(5):583–9.

    Article  Google Scholar 

  10. Kollar E, Baird G. The influence of the dental papilla on the development of tooth shape in embryonic mouse tooth germs. J Embryo. 1969;21(1):131–48.

    Google Scholar 

  11. Mina M, Kollar EJ. The induction of odontogenesis in non-dental mesenchyme combined with early murine mandibular arch epithelium. Arch Oral Biol. 1987;32(2):123–7.

    Article  PubMed  Google Scholar 

  12. Ruch JV, Lesot H, Bègue-Kirn C. Odontoblast differentiation. Int J Dev Biol. 1995;39(1):51–68.

    PubMed  Google Scholar 

  13. Bleicher F, Richard B, Thivichon-Prince B, Farges JC, Carrouel F. Odontoblasts and dentin formation. In: Vishwakarma A, Sharpe P, Shi S, Ramalingam M, editors. Stem cell biology and tissue engineering in dental sciences. Amsterdam: Elsevier; 2015. p. 379–95.

    Chapter  Google Scholar 

  14. Couve E, Osorio R, Schmachtenberg O. The amazing odontoblast. J Dent Res. 2013;92(9):765–72.

    Article  PubMed  Google Scholar 

  15. Goldberg M, Farges J, Lacerdapinheiro S, Six N, Jegat N, Decup F, et al. Inflammatory and immunological aspects of dental pulp repair. Pharmacol Res. 2008;58(2):137–47.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Nakashima M, Fukuyama F, Iohara K. Pulp regenerative cell therapy for mature molars: a report of 2 cases. J Endod. 2022;48(10):1334–1340.e1.

    Article  PubMed  Google Scholar 

  17. Neves VCM, Babb R, Chandrasekaran D, Sharpe PT. Promotion of natural tooth repair by small molecule GSK3 antagonists. Sci Rep. 2017;7:39654.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Couble ML, Farges JC, Bleicher F, Perrat-Mabillon B, Boudeulle M, Magloire H. Odontoblast differentiation of human dental pulp cells in explant cultures. Calcif Tissue Int. 2000;66(2):129–38.

    Article  PubMed  Google Scholar 

  19. Sharpe PT. Dental mesenchymal stem cells. Development. 2016;143(13):2273–80.

    Article  PubMed  Google Scholar 

  20. Volponi AA, Sharpe PT. The tooth – a treasure chest of stem cells. Br Dent J. 2013;215(7):353–8.

    Article  PubMed  Google Scholar 

  21. Yu T, Volponi AA, Babb R, An Z, Sharpe PT. Stem cells in tooth development, growth, repair, and regeneration. Curr Top Dev Biol. 2015;115:187–212.

    Article  PubMed  Google Scholar 

  22. Yu T, Klein OD. Molecular and cellular mechanisms of tooth development, homeostasis and repair. Development. 2020;147(2):dev184754.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Smith AJ, Scheven BA, Takahashi Y, Ferracane JL, Shelton RM, Cooper PR. Dentine as a bioactive extracellular matrix. Arch Oral Biol. 2012;57(2):109–21.

    Article  PubMed  Google Scholar 

  24. Nishikawa S, Sasaki F. Apoptosis of dental pulp cells and their elimination by macrophages and MHC class II-expressing dendritic cells. J Histochem Cytochem. 1999;47(3):303–12.

    Article  PubMed  Google Scholar 

  25. Galler KM, Weber M, Korkmaz Y, Widbiller M, Feuerer M. Inflammatory response mechanisms of the dentine–pulp complex and the periapical tissues. Int J Mol Sci. 2021;22(3):1480.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Smith A, Tony J, Cooper PR. Cellular signaling in dentin repair and regeneration. In: Stem cell biology and tissue engineering in dental sciences. Amsterdam: Elsevier; 2015. p. 405–17.

    Google Scholar 

  27. Horst OV, Horst JA, Samudrala R, Dale BA. Caries induced cytokine network in the odontoblast layer of human teeth. BMC Immunol. 2011;24(12):9.

    Article  Google Scholar 

  28. Yumoto H, Hirao K, Hosokawa Y, Kuramoto H, Takegawa D, Nakanishi T, et al. The roles of odontoblasts in dental pulp innate immunity. Jpn Dent Sci Rev. 2018;54(3):105–17.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Farges JC, Carrouel F, Keller JF, Baudouin C, Msika P, Bleicher F, et al. Cytokine production by human odontoblast-like cells upon toll-like receptor-2 engagement. Immunobiology. 2011;216(4):513–7.

    Article  PubMed  Google Scholar 

  30. Keller JF, Carrouel F, Colomb E, Durand SH, Baudouin C, Msika P, et al. Toll-like receptor 2 activation by lipoteichoic acid induces differential production of pro-inflammatory cytokines in human odontoblasts, dental pulp fibroblasts and immature dendritic cells. Immunobiology. 2010;215(1):53–9.

    Article  PubMed  Google Scholar 

  31. Neves VCM, Yianni V, Sharpe PT. Macrophage modulation of dental pulp stem cell activity during tertiary dentinogenesis. Sci Rep. 2020;10(1):20216.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Laroux FS. Mechanisms of inflammation: the good, the bad and the ugly. Front Biosci. 2004;1(9):3156–62.

    Article  Google Scholar 

  33. Cooper PR, Holder MJ, Smith AJ. Inflammation and regeneration in the dentin-pulp complex: a double-edged sword. J Endod. 2014;40(4 Suppl):S46–51.

    Article  PubMed  Google Scholar 

  34. Krivanek J, Soldatov RA, Kastriti ME, Chontorotzea T, Herdina AN, Petersen J, et al. Dental cell type atlas reveals stem and differentiated cell types in mouse and human teeth. Nat Commun. 2020;11(1):4816.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hirao K, Yumoto H, Takahashi K, Mukai K, Nakanishi T, Matsuo T. Roles of TLR2, TLR4, NOD2, and NOD1 in pulp fibroblasts. J Dent Res. 2009;88(8):762–7.

    Article  PubMed  Google Scholar 

  36. Chang J, Zhang C, Tani-Ishii N, Shi S, Wang CY. NF-kappaB activation in human dental pulp stem cells by TNF and LPS. J Dent Res. 2005;84(11):994–8.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

I would like to thank Prof. Anna Fuks and Dr. Sharonit Sahar-Helft for fruitful and critical discussions and for their generosity in sharing images. This book chapter has been made possible thanks to support from the Israel Science Foundation (ISF grant 655/18).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tal Burstyn-Cohen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Burstyn-Cohen, T. (2023). Cellular and Molecular Mechanisms Guiding the Development and Repair of the Dentin–Pulp Complex. In: Fuks, A.B., Moskovitz, M., Tickotsky, N. (eds) Contemporary Endodontics for Children and Adolescents. Springer, Cham. https://doi.org/10.1007/978-3-031-23980-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23980-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23979-3

  • Online ISBN: 978-3-031-23980-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics