Skip to main content

Endodontic Treatment for Young Permanent Teeth

  • Chapter
  • First Online:
Contemporary Endodontics for Children and Adolescents

Abstract

The endodontic treatment of young permanent immature teeth differs from that of mature permanent teeth due to their high potential healing properties. Diagnosis of the pulp status is critical in determining the appropriate treatment plan. It is based on clinical and radiographic examination and occasionally use of CBCT.

The gradual propagation of bacterial invasion into the pulp tissue enables the removal of the coronal part of pulp tissue followed by the placement of a bioceramic material. The decision to perform a partial or cervical pulpotomy is based on the ability to stop the bleeding. The use of mineral trioxide aggregate and other calcium silicate cements is associated with better outcomes than calcium hydroxide. The procedure is expected to promote healing and preserve the vitality of the tooth.

If the pulp becomes necrotic, revascularization of the immature pulp can enable periapical repair and continued root development. Following pulp space disinfection and blood clot induction, a bioceramic material is placed over the clot. Favorable results and high survival rates were reported.

In almost mature roots, when other treatment options fail, root canal treatment is carried out. Distinct problems in disinfection and obturation make the treatment more challenging and may also necessitate apexification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singh RK, Shakya VK, Khanna R, et al. Interventions for managing immature permanent teeth with necrotic pulps. Cochrane Database Syst Rev. 2017;2017:6. https://doi.org/10.1002/14651858.CD012709.

    Article  Google Scholar 

  2. Haug SR, Syngcuk K, Heyeraas KJ. Structure and function of the pulp–dentin complex. In: Rotstein I, Ingle JI, editors. Ingle’s endodontics, vol. 1. 7th ed. Raleigh, NC: PMPA; 2019. p. 59–84.

    Google Scholar 

  3. Tranasi M, Sberna MT, Zizzari V, et al. Microarray evaluation of age-related changes in human dental pulp. J Endod. 2009;35(9):1211–7. https://doi.org/10.1016/j.joen.2009.05.026.

    Article  PubMed  Google Scholar 

  4. Pashley DH, Kehl T, Pashley E, Palmer P. Comparison of in vitro and in vivo dog dentin permeability. J Dent Res. 1981;60(3):763–8. https://doi.org/10.1177/00220345810600031801.

    Article  PubMed  Google Scholar 

  5. Pashley D. Pulpdentin complex. In: Hargreaves K, Gooodis HE, editors. Seltzer and bender’s dental pulp. 3rd ed. Chicago, IL: Quintessence; 2002. p. 41–62.

    Google Scholar 

  6. Cvek M, Cleaton-Jones PE, Austin JC, Andreasen JO. Pulp reactions to exposure after experimental crown fractures or grinding in adult monkeys. J Endod. 1982;8(9):391–7. https://doi.org/10.1016/S0099-2399(82)80092-7.

    Article  PubMed  Google Scholar 

  7. Bimstein E, Rotstein I. Cvek pulpotomy—revisited. Dent Traumatol. 2016;32(6):438–42. https://doi.org/10.1111/edt.12297.

    Article  PubMed  Google Scholar 

  8. Nolla CA. The development of permanent teeth. J Dent Child. 1960;27:254–66. Fourth Qua.

    Google Scholar 

  9. Andreasen JO, Borum MK, Jacobsen HL, Andreasen FM. Replantation of 400 avulsed permanent incisors. 1. Diagnosis of healing complications. Endod Dent Traumatol. 1995;11(2):51–8. https://doi.org/10.1111/j.1600-9657.1995.tb00461.x.

    Article  PubMed  Google Scholar 

  10. Claus I, Laureys W, Cornelissen R, Dermaut LR. Histologic analysis of pulpal revascularization of autotransplanted immature teeth after removal of the original pulp tissue. Am J Orthod Dentofacial Orthop. 2004;125(1):93–9. https://doi.org/10.1016/S0889-5406(03)00619-X.

    Article  PubMed  Google Scholar 

  11. Trope M. Treatment of immature teeth with non-vital pulps and apical periodontitis. Endod Topics. 2006;14(1):51–9. https://doi.org/10.1111/j.1601-1546.2008.00223.x.

    Article  Google Scholar 

  12. Shahmohammadi R, Sheikh Nizami M, Moradi S, Jafarzadeh H, Azarpazhooh A. Treatment outcomes of permanent immature teeth with crown fracture: a retrospective cohort study. J Endod. 2021;47(11):1715–23. https://doi.org/10.1016/j.joen.2021.08.010.

    Article  PubMed  Google Scholar 

  13. Andreasen JO. External root resorption: its implication in dental traumatology, paedodontics, periodontics, orthodontics and endodontics. Int Endod J. 1985;18(2):109–18. https://doi.org/10.1111/j.1365-2591.1985.tb00427.x.

    Article  PubMed  Google Scholar 

  14. Juloski J, Radovic I, Goracci C, Vulicevic ZR, Ferrari M. Ferrule effect: a literature review. J Endod. 2012;38(1):11–9. https://doi.org/10.1016/j.joen.2011.09.024.

    Article  PubMed  Google Scholar 

  15. Eichenberger M, Erb J, Zwahlen M, Schätzle M. The timing of extraction of non-restorable first permanent molars: a systematic review introduction. Eur J Paediatr Dent. 2015;16(4):8–272.

    Google Scholar 

  16. Fulling HJ, Andreasen JO. Influence of maturation status and tooth type of permanent teeth upon electrometric and thermal pulp testing. Eur J Oral Sci. 1976;84(5):286–90. https://doi.org/10.1111/j.1600-0722.1976.tb00491.x.

    Article  Google Scholar 

  17. Jespersen JJ, Hellstein J, Williamson A, Johnson WT, Qian F. Evaluation of dental pulp sensibility tests in a clinical setting. J Endod. 2014;40(3):351–4. https://doi.org/10.1016/j.joen.2013.11.009.

    Article  PubMed  Google Scholar 

  18. Berman LIRI. Diagnosis. In: Berman LH, Hargreaves Kenneth H, editors. Pathways of the pulp. 12th ed. St. Louis, MO: Mosby Elsevier; 2020.

    Google Scholar 

  19. Cohenca N, Karni S, Rotstein I, Rotstein I. Extraoral sinus tract misdiagnosed as an endodontic lesion. J Endod. 2003;29(12):841–3. https://doi.org/10.1097/00004770-200312000-00015.

    Article  PubMed  Google Scholar 

  20. Owatz CB, Khan AA, Schindler WG, Schwartz SA, Keiser K, Hargreaves KM. The incidence of mechanical allodynia in patients with irreversible pulpitis. J Endod. 2007;33(5):552–6. https://doi.org/10.1016/j.joen.2007.01.023.

  21. Nguyen RHN, Pigg M, Nixdorf D, Nguyen R. Validity of preoperative clinical findings to identify dental pulp status: a National dental practice-based research network study. J Endod. 2016;42(6):935–42. https://doi.org/10.1016/j.joen.2016.03.016.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jafarzadeh H, Abbott P, v, Abbott P. Review of pulp sensibility tests. Part I: general information and thermal tests. Int Endod J. 2010;43(9):738–62. https://doi.org/10.1111/j.1365-2591.2010.01754.x.

    Article  PubMed  Google Scholar 

  23. Lima TFR, dos Santos SL, da Silva Fidalgo TK, Silva EJNL. Vitality tests for pulp diagnosis of traumatized teeth: a systematic review. J Endod. 2019;45(5):490–9. https://doi.org/10.1016/j.joen.2019.01.014.

    Article  PubMed  Google Scholar 

  24. Alghaithy RA, Qualtrough AJE, Qualtrough A. Pulp sensibility and vitality tests for diagnosing pulpal health in permanent teeth: a critical review. Int Endod J. 2017;50(2):135–42. https://doi.org/10.1111/iej.12611.

    Article  PubMed  Google Scholar 

  25. Jones DM, Jones D. Effect of the type carrier used on the results of dichlorodifluoromethane application to teeth. J Endod. 1999;25(10):692–4. https://doi.org/10.1016/S0099-2399(99)80358-6.

    Article  PubMed  Google Scholar 

  26. Petersson K, Söderström C, Kiani-Anaraki M, Lévy G. Evaluation of the ability of thermal and electrical tests to register pulp vitality. Endod Dent Traumatol. 1999;15(3):127–31. https://doi.org/10.1111/j.1600-9657.1999.tb00769.x.

    Article  PubMed  Google Scholar 

  27. Lin J, Chandler NP. Electric pulp testing: a review. Int Endod J. 2008;41(5):365–74. https://doi.org/10.1111/j.1365-2591.2008.01375.x.

    Article  PubMed  Google Scholar 

  28. Turedi I, Ulusoy AT, Ulusoy A. Evaluation of electric pulp test thresholds and correct probe tip placement site in developing incisors: a clinical study in 1200 teeth. Eur Arch Paediatr Dent. 2022;23(3):449–54. https://doi.org/10.1007/s40368-022-00703-z.

    Article  PubMed  Google Scholar 

  29. Fuss Z, Trowbridge H, Bender IB, Rickoff B, Sorin S. Assessment of reliability of electrical and thermal pulp testing agents. J Endod. 1986;12(7):301–5. https://doi.org/10.1016/S0099-2399(86)80112-1.

    Article  PubMed  Google Scholar 

  30. Bastos JV, Goulart EMA, de Souza Côrtes MI, de Souza CM. Pulpal response to sensibility tests after traumatic dental injuries in permanent teeth. Dent Traumatol. 2014;30(3):188–92. https://doi.org/10.1111/edt.12074.

    Article  PubMed  Google Scholar 

  31. Seltzer S, Bender I, Ziontz M. The dynamics of pulp inflammation: correlations between diagnostic data and actual histologic findings in the pulp. Oral Surg Oral Med Oral Pathol. 1963;16:846–71. https://doi.org/10.1016/0030-4220(63)90323-2.

    Article  PubMed  Google Scholar 

  32. Weisleder R, Yamauchi S, Caplan DJ, Trope M, Teixeira FB. The validity of pulp testing: a clinical study. J Am Dent Assoc. 2009;140(8):1013–7. https://doi.org/10.14219/jada.archive.2009.0312.

    Article  PubMed  Google Scholar 

  33. Abbott PV, Chen E, Abbott P. Evaluation of accuracy, reliability, and repeatability of five dental pulp tests. J Endod. 2011;37(12):1619–23. https://doi.org/10.1016/j.joen.2011.07.004.

    Article  PubMed  Google Scholar 

  34. Peters DD, Baumgartner JC, Lorton L, Lorton L. Adult pulpal diagnosis. I. Evaluation of the positive and negative responses to cold and electrical pulp tests. J Endod. 1994;20(10):506–11. https://doi.org/10.1016/S0099-2399(06)80048-8.

    Article  PubMed  Google Scholar 

  35. Karayilmaz H, Kirzioǧlu Z. Comparison of the reliability of laser Doppler flowmetry, pulse oximetry and electric pulp tester in assessing the pulp vitality of human teeth. J Oral Rehabil. 2011;38(5):340–7. https://doi.org/10.1111/j.1365-2842.2010.02160.x.

    Article  PubMed  Google Scholar 

  36. Evans D, Reid J, Strang R, Stirrups D. A comparison of laser Doppler flowmetry with other methods of assessing the vitality of traumatized anterior teeth. Dent Traumatol. 1999;15(6):284–90. https://doi.org/10.1111/j.1600-9657.1999.tb00789.x.

    Article  Google Scholar 

  37. Mesaros S, Trope M, Maixner W, Burkes EJ. Comparison of two laser Doppler systems on the measurement of blood flow of premolar teeth under different pulpal conditions. Int Endod J. 1997;30(3):167–74. https://doi.org/10.1046/j.1365-2591.1997.00068.x.

    Article  PubMed  Google Scholar 

  38. Roeykens H, van Maele G, de Moor R, Martens L. Reliability of laser Doppler flowmetry in a 2-probe assessment of pulpal blood flow. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999;87(6):742–8. https://doi.org/10.1016/S1079-2104(99)70173-3.

    Article  PubMed  Google Scholar 

  39. Jafarzadeh H, Abbott PV, Abbott P. Review of pulp sensibility tests. Part II: electric pulp tests and test cavities. Int Endod J. 2010;43(11):945–58. https://doi.org/10.1111/j.1365-2591.2010.01760.x.

    Article  PubMed  Google Scholar 

  40. American Academy of Pediatric Dentistry. Prescribing dental radiographs for infants, children, adolescents, and individuals with special health care needs. In: Stigers J, editor. The reference manual of pediatric dentistry. Chicago, IL: American Academy of Pediatric Dentistry; 2021. p. 258–61.

    Google Scholar 

  41. Bourguignon C, Cohenca N, Lauridsen E, et al. International association of dental traumatology guidelines for the management of traumatic dental injuries: 1. Fractures and luxations of permanent teeth. Dent Traumatol. 2020;36(4):314–30. https://doi.org/10.1111/edt.12578.

    Article  PubMed  Google Scholar 

  42. Seltzer S, Bender I, Seltzer S. Roentgenographic and direct observation of experimental lesions in bone: I. 1961. J Endod. 2003;29(11):702–6. https://doi.org/10.1097/00004770-200311000-00005.

    Article  PubMed  Google Scholar 

  43. Marmary Y, Koter T, Healing I, Healing I. The effect of periapical rarefying osteitis on cortical and cancellous bone. A study comparing conventional radiographs with computed tomography. Dentomaxillofac Radiol. 1999;28(5):267–71. https://doi.org/10.1038/sj/dmfr/4600453.

    Article  PubMed  Google Scholar 

  44. Gonçalves M, Jorge E, Tanomaru-Filho M, Gonçalves M. Detection of periapical lesion development by conventional radiography or computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;106(1):e56–61. https://doi.org/10.1016/j.tripleo.2008.03.020.

    Article  PubMed  Google Scholar 

  45. Hartwell G, Tewary S, Luzzo J, Hartwell G. Endodontic radiography: who is reading the digital radiograph? J Endod. 2011;37(7):919–21. https://doi.org/10.1016/j.joen.2011.02.027.

    Article  PubMed  Google Scholar 

  46. Goldman M, Pearson A, Darzenta N. Endodontic success—who’s reading the radiograph? Oral Surg Oral Med Oral Pathol. 1972;33(3):432–7. https://doi.org/10.1016/0030-4220(72)90473-2.

    Article  PubMed  Google Scholar 

  47. Andreasen FM, Andreasen F. Transient apical breakdown and its relation to color and sensibility changes after luxation injuries to teeth. Endod Dent Traumatol. 1986;2(1):9–19. https://doi.org/10.1111/j.1600-9657.1986.tb00118.x.

    Article  PubMed  Google Scholar 

  48. Priya E, Kumar R, Khambete N, Priya E. Extraoral periapical radiography: an alternative approach to intraoral periapical radiography. Imaging Sci Dent. 2011;41(4):161–5. https://doi.org/10.5624/isd.2011.41.4.161.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Mozzo P, Procacci C, Tacconi A, Tinazzi Martini P, Bergamo Andreis IA. A new volumetric CT machine for dental imaging based on the cone-beam technique: preliminary results. Eur Radiol. 1998;8(9):1558–64. https://doi.org/10.1007/s003300050586.

    Article  PubMed  Google Scholar 

  50. Patel S, Brown J, Semper M. European society of endodontology position statement: use of cone beam computed tomography in endodontics: European society of endodontology (ESE) developed by. Int Endod J. 2019;52(12):1675–8. https://doi.org/10.1111/iej.13187.

    Article  PubMed  Google Scholar 

  51. Kutanzi KR, Lumen A, Koturbash I, Miousse IR. Pediatric exposures to ionizing radiation: carcinogenic considerations. Int J Environ Res Public Health. 2016;13(11):1057. https://doi.org/10.3390/ijerph13111057.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Patel S, Brown J, Pimentel T, Kelly RD, Abella F, Durack C. Cone beam computed tomography in endodontics—a review of the literature. Int Endod J. 2019;52(8):1138–52. https://doi.org/10.1111/iej.13115.

    Article  PubMed  Google Scholar 

  53. AAE. Glossary of endodontic terms—American Association of Endodontists. Chicago, IL: American Association of Endodontists.

    Google Scholar 

  54. Wolters WJ, Duncan HF, Tomson PL, et al. Minimally invasive endodontics: a new diagnostic system for assessing pulpitis and subsequent treatment needs. Int Endod J. 2017;50(9):825–9. https://doi.org/10.1111/iej.12793.

    Article  PubMed  Google Scholar 

  55. Ruksakiet K, Hanák L, Farkas N, et al. Antimicrobial efficacy of chlorhexidine and sodium hypochlorite in root canal disinfection: a systematic review and meta-analysis of randomized controlled trials. J Endod. 2020;46(8):1032–41. https://doi.org/10.1016/j.joen.2020.05.002.

    Article  PubMed  Google Scholar 

  56. Witherspoon DE. Vital pulp therapy with new materials: new directions and treatment perspectives-permanent teeth. J Endod. 2008;34(7 SUPPL):220–4. https://doi.org/10.1016/j.joen.2008.02.030.

    Article  Google Scholar 

  57. Bogen G. Vital pulp therapy. In: Berman L, Hargreaves K, editors. Pathways of the pulp, vol. 1. 12th ed. Amsterdam: Elsevier; 2020. p. 2817–925.

    Google Scholar 

  58. Nuni E. Pulp therapy for the young permanent dentition. In: Fuks A, Peretz B, editors. Pediatric endodontics current concepts in pulp therapy for primary and young permanent teeth, vol. 1. 1st ed. Cham: Springer; 2016. p. 117–48.

    Google Scholar 

  59. Demir T, Çehreli ZC. Clinical and radiographic evaluation of adhesive pulp capping in primary molars following hemostasis with 1.25% sodium hypochlorite: 2-year results. Am J Dent. 2007;20(3):182–8.

    PubMed  Google Scholar 

  60. Goldman M, Kronman JH, Goldman LB, Clausen H, Grady J. New method of irrigation during endodontic treatment. J Endod. 1976;2(9):257–60. https://doi.org/10.1016/S0099-2399(76)80085-4.

    Article  PubMed  Google Scholar 

  61. Siqueira JF. Antibacterial effects of endodontic irrigants on black-pigmented gram-negative anaerobes and facultative bacteria. J Endod. 1998;24(6):414–6. https://doi.org/10.1016/S0099-2399(98)80023-X.

    Article  PubMed  Google Scholar 

  62. Heling I, Chandler NP. Antimicrobial effect of irrigant combinations within dentinal tubules. Int Endod J. 1998;31(1):8–14. https://doi.org/10.1046/j.1365-2591.1998.t01-1-00124.x.

    Article  PubMed  Google Scholar 

  63. dos Reis-Prado AH, Abreu LG, Fagundes RR, et al. Influence of ethylenediaminetetraacetic acid on regenerative endodontics: a systematic review. Int Endod J. 2022;55(6):579–612. https://doi.org/10.1111/iej.13728.

    Article  PubMed  Google Scholar 

  64. Zeng Q, Nguyen S, Zhang H, et al. Release of growth factors into root canal by irrigations in regenerative endodontics. J Endod. 2016;42(12):1760–6. https://doi.org/10.1016/j.joen.2016.04.029.

    Article  PubMed  Google Scholar 

  65. Mohammadi Z, Dummer PMH. Properties and applications of calcium hydroxide in endodontics and dental traumatology. Int Endod J. 2011;44(8):697–730. https://doi.org/10.1111/j.1365-2591.2011.01886.x.

    Article  PubMed  Google Scholar 

  66. Peters LB, van Winkelhoff AJ, Buijs JF, Wesselink PR. Effects of instrumentation, irrigation and dressing with calcium hydroxide on infection in pulpless teeth with periapical bone lesions. Int Endod J. 2002;35(1):13–21. https://doi.org/10.1046/j.0143-2885.2001.00447.x.

    Article  PubMed  Google Scholar 

  67. Sathorn C, Parashos P, Messer HH. Effectiveness of single- versus multiple-visit endodontic treatment of teeth with apical periodontitis: a systematic review and meta-analysis. Int Endod J. 2005;38(6):347–55. https://doi.org/10.1111/j.1365-2591.2005.00955.x.

    Article  PubMed  Google Scholar 

  68. Mass E, Zilberman U. Long-term radiologic pulp evaluation after partial pulpotomy in young permanent molars. Quintessence Int. 2011;42(7):547–54.

    PubMed  Google Scholar 

  69. Smith AJ, Lesot H. Induction and regulation of crown dentinogenesis: embryonic events as a template for dental tissue repair? Crit Rev Oral Biol Med. 2001;12(5):425–37. https://doi.org/10.1177/10454411010120050501.

    Article  PubMed  Google Scholar 

  70. Dung SZ, Gregory RL, Li Y, Stookey GK. Effect of lactic acid and proteolytic enzymes on the release of organic matrix components from human root dentin. Caries Res. 1995;29(6):483–9. https://doi.org/10.1159/000262119.

    Article  PubMed  Google Scholar 

  71. Graham L, Cooper PR, Cassidy N, Nor JE, Sloan AJ, Smith AJ. The effect of calcium hydroxide on solubilisation of bio-active dentine matrix components. Biomaterials. 2006;27(14):2865–73. https://doi.org/10.1016/j.biomaterials.2005.12.020.

    Article  PubMed  Google Scholar 

  72. Ricucci D, Loghin S, Niu L, na, Tay FR. Changes in the radicular pulp-dentine complex in healthy intact teeth and in response to deep caries or restorations: a histological and histobacteriological study. J Dent. 2018;73:76–90. https://doi.org/10.1016/j.jdent.2018.04.007.

    Article  PubMed  Google Scholar 

  73. Dammaschke T, Nowicka A, Lipski M, Ricucci D. Histological evaluation of hard tissue formation after direct pulp capping with a fast-setting mineral trioxide aggregate (RetroMTA) in humans. Clin Oral Investig. 2019;23(12):4289–99. https://doi.org/10.1007/s00784-019-02876-2.

    Article  PubMed  Google Scholar 

  74. Cox CF, Sübay RK, Ostro E, Suzuki S, Suzuki SH. Tunnel defects in dentin bridges: their formation following direct pulp capping. Oper Dent. 1996;21(1):4–11.

    PubMed  Google Scholar 

  75. Fisher FJ, McCabe JF. Calcium hydroxide base materials. An investigation into the relationship between chemical structure and antibacterial properties. Br Dent J. 1978;144(11):341–4. https://doi.org/10.1038/sj.bdj.4804093.

    Article  PubMed  Google Scholar 

  76. Poggio C, Arciola CR, Beltrami R, et al. Cytocompatibility and antibacterial properties of capping materials. Sci World J. 2014;2014:181945. https://doi.org/10.1155/2014/181945.

    Article  Google Scholar 

  77. Lee SJ, Monsef M, Torabinejad M. Sealing ability of a mineral trioxide aggregate for repair of lateral root perforations. J Endod. 1993;19(11):541–4. https://doi.org/10.1016/S0099-2399(06)81282-3.

    Article  PubMed  Google Scholar 

  78. Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review-part I: chemical, physical, and antibacterial properties. J Endod. 2010;36(1):16–27. https://doi.org/10.1016/j.joen.2009.09.006.

    Article  PubMed  Google Scholar 

  79. Torabinejad M, Parirokh M. Mineral trioxide aggregate: a comprehensive literature review-part II: leakage and biocompatibility investigations. J Endod. 2010;36(2):190–202. https://doi.org/10.1016/j.joen.2009.09.010.

    Article  PubMed  Google Scholar 

  80. Guven G, Cehreli ZC, Ural A, Serdar MA, Basak F. Effect of mineral trioxide aggregate cements on transforming growth factor β1 and bone morphogenetic protein production by human fibroblasts in vitro. J Endod. 2007;33(4):447–50. https://doi.org/10.1016/j.joen.2006.12.020.

    Article  PubMed  Google Scholar 

  81. Wattanapakkavong K, Srisuwan T. Release of transforming growth factor beta 1 from human tooth dentin after application of either ProRoot MTA or biodentine as a coronal barrier. J Endod. 2019;45(6):701–5. https://doi.org/10.1016/j.joen.2019.03.011.

    Article  PubMed  Google Scholar 

  82. Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review-part III: clinical applications, drawbacks, and mechanism of action. J Endod. 2010;36(3):400–13. https://doi.org/10.1016/j.joen.2009.09.009.

    Article  PubMed  Google Scholar 

  83. Nie E, Yu J, Jiang R, et al. Effectiveness of direct pulp capping bioactive materials in dentin regeneration: a systematic review. Materials (Basel). 2021;14(22):6811. https://doi.org/10.3390/ma14226811.

    Article  PubMed  Google Scholar 

  84. el Meligy OAS, Avery DR. Comparison of mineral trioxide aggregate and calcium hydroxide as pulpotomy agents in young permanent teeth (apexogenesis). Pediatr Dent. 2006;28(5):399–404. https://doi.org/10.1016/s0084-3717(08)70476-8.

    Article  PubMed  Google Scholar 

  85. Mente J, Geletneky B, Ohle M, et al. Mineral trioxide aggregate or calcium hydroxide direct pulp capping: an analysis of the clinical treatment outcome. J Endod. 2010;36(5):806–13. https://doi.org/10.1016/j.joen.2010.02.024.

    Article  PubMed  Google Scholar 

  86. Kaup M, Schäfer E, Dammaschke T. An in vitro study of different material properties of biodentine compared to ProRoot MTA. Head Face Med. 2015;11(1):1–8. https://doi.org/10.1186/s13005-015-0074-9.

    Article  Google Scholar 

  87. Camilleri J, Laurent P, About I. Hydration of biodentine, theracal LC, and a prototype tricalcium silicate-based dentin replacement material after pulp capping in entire tooth cultures. J Endod. 2014;40(11):1846–54. https://doi.org/10.1016/j.joen.2014.06.018.

    Article  PubMed  Google Scholar 

  88. Laurent P, Camps J, de Méo M, Déjou J, About I. Induction of specific cell responses to a Ca3SiO5-based posterior restorative material. Dent Mater. 2008;24(11):1486–94. https://doi.org/10.1016/j.dental.2008.02.020.

    Article  PubMed  Google Scholar 

  89. Araújo LB, Cosme-Silva L, Fernandes AP, et al. Effects of mineral trioxide aggregate, biodentine™ and calcium hydroxide on viability, proliferation, migration and differentiation of stem cells from human exfoliated deciduous teeth. J Appl Oral Sci. 2018;26:e20160629. https://doi.org/10.1590/1678-7757-2016-0629.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Jung S, Mielert J, Kleinheinz J, Dammaschke T. Human oral cells’ response to different endodontic restorative materials: an in vitro study. Head Face Med. 2014;10(1):1–9. https://doi.org/10.1186/s13005-014-0055-4.

    Article  Google Scholar 

  91. Ranly DM. Pulpotomy therapy in primary teeth: new modalities for old rationales. Pediatr Dent. 1994;16(6):403–9.

    PubMed  Google Scholar 

  92. Cvek M. A clinical report on partial pulpotomy and capping with calcium hydroxide in permanent incisors with complicated crown fracture. J Endod. 1978;4(8):232–7. https://doi.org/10.1016/S0099-2399(78)80153-8.

    Article  PubMed  Google Scholar 

  93. Langeland K. Tissue response to dental caries. Endod Dent Traumatol. 1987;3(4):149–71. https://doi.org/10.1111/j.1600-9657.1987.tb00619.x.

    Article  PubMed  Google Scholar 

  94. Loghin S, Ricucci D, Siqueira J, Loghin S. Pulp and apical tissue response to deep caries in immature teeth: a histologic and histobacteriologic study. J Dent. 2017;56:19–32. https://doi.org/10.1016/j.jdent.2016.10.005.

    Article  PubMed  Google Scholar 

  95. Berg J, Cohenca N, Paranjpe A, Berg J. Vital pulp therapy. Dent Clin N Am. 2013;57(1):59–73. https://doi.org/10.1016/j.cden.2012.09.004.

    Article  PubMed  Google Scholar 

  96. Mejàre I, Cvek M, Cvek M. Partial pulpotomy in young permanent teeth with deep carious lesions. Endod Dent Traumatol. 1993;9(6):238–42. https://doi.org/10.1111/j.1600-9657.1993.tb00279.x.

    Article  PubMed  Google Scholar 

  97. Taha NA, Abdulkhader SZ. Full Pulpotomy with biodentine in symptomatic young permanent teeth with carious exposure. J Endod. 2018;44(6):932–7. https://doi.org/10.1016/j.joen.2018.03.003.

    Article  PubMed  Google Scholar 

  98. Linsuwanont P, Wimonsutthikul K, Pothimoke U, Santiwong B. Treatment outcomes of mineral trioxide aggregate pulpotomy in vital permanent teeth with carious pulp exposure: the retrospective study. J Endod. 2017;43(2):225–30. https://doi.org/10.1016/j.joen.2016.10.027.

    Article  PubMed  Google Scholar 

  99. Qudeimat MA, Alyahya A, Hasan AA. Mineral trioxide aggregate pulpotomy for permanent molars with clinical signs indicative of irreversible pulpitis: a preliminary study. Int Endod J. 2017;50(2):126–34. https://doi.org/10.1111/iej.12614.

    Article  PubMed  Google Scholar 

  100. Stashenko P, Yu SM, Wang CY. Kinetics of immune cell and bone resorptive responses to endodontic infections. J Endod. 1992;18(9):422–6. https://doi.org/10.1016/S0099-2399(06)80841-1.

    Article  PubMed  Google Scholar 

  101. Abdulkhader SZ, Taha N, Abdulkhader S. Full pulpotomy with biodentine in symptomatic young permanent teeth with carious exposure. J Endod. 2018;44(6):932–7. https://doi.org/10.1016/j.joen.2018.03.003.

    Article  PubMed  Google Scholar 

  102. Teixeira LS, Demarco FF, Coppola MC, Bonow ML. Clinical and radiographic evaluation of pulpotomies performed under intrapulpal injection of anaesthetic solution. Int Endod J. 2001;34(6):440–6. https://doi.org/10.1046/j.1365-2591.2001.00414.x.

    Article  PubMed  Google Scholar 

  103. Bombana AC, Tortamano N, Soares MS. O controle da ansiedade e da dor durante as intervenções endodônticas. In: Paiva JG, Antoniazzi JH, editors. Endodontia: bases para a prática clínica. 2nd ed. São Paulo: Artes Medicas; 1993. p. 299–320.

    Google Scholar 

  104. Tong HJ, Alzahrani FS, Sim YF, Tahmassebi JF, Duggal M. Anesthetic efficacy of articaine versus lidocaine in children’s dentistry: a systematic review and meta-analysis. Int J Paediatr Dent. 2018;28(4):347–60. https://doi.org/10.1111/ipd.12363.

    Article  PubMed  Google Scholar 

  105. Granath LE, Hagman G. Experimental pulpotomy in human bicuspids with reference to cutting technique. Acta Odontol Scand. 1971;29(2):155–63. https://doi.org/10.3109/00016357109026511.

    Article  PubMed  Google Scholar 

  106. European Society of Endodontology (ESE), Duncan HF, Galler KM, Tomson PL, Simon S, El-Karim I, Kundzina R, Krastl G, Dammaschke T, Fransson H, Markvart M, Zehnder M, Bjørndal L. European society of endodontology position statement: management of deep caries and the exposed pulp. Int Endod J. 2019;52(7):923–34. https://doi.org/10.1111/iej.13080.

    Article  Google Scholar 

  107. AAE. Position statement on vital pulp therapy. J Endod. 2021;47(9):1340–4. https://doi.org/10.1016/j.joen.2021.07.015.

    Article  Google Scholar 

  108. Bachoo IK, Seymour D, Brunton P. A biocompatible and bioactive replacement for dentine: is this a reality? The properties and uses of a novel calcium-based cement. Br Dent J. 2013;214(2):E5. https://doi.org/10.1038/sj.bdj.2013.57.

    Article  PubMed  Google Scholar 

  109. Careddu R, Duncan HF, Duncan HFH. A prospective clinical study investigating the effectiveness of partial pulpotomy after relating preoperative symptoms to a new and established classification of pulpitis. Int Endod J. 2021;54(12):2156–72. https://doi.org/10.1111/iej.13629.

    Article  PubMed  Google Scholar 

  110. Hashem DF, Foxton R, Manoharan A, Watson TF, Banerjee A. The physical characteristics of resin composite-calcium silicate interface as part of a layered/laminate adhesive restoration. Dent Mater. 2014;30(3):343–9. https://doi.org/10.1016/j.dental.2013.12.010.

    Article  PubMed  Google Scholar 

  111. Alqaderi HE, Al-Mutawa SA, Qudeimat MA. MTA pulpotomy as an alternative to root canal treatment in children’s permanent teeth in a dental public health setting. J Dent. 2014;42(11):1390–5. https://doi.org/10.1016/j.jdent.2014.06.007.

    Article  PubMed  Google Scholar 

  112. Nosrat A, Seifi A, Asgary S. Pulpotomy in caries-exposed immature permanent molars using calcium-enriched mixture cement or mineral trioxide aggregate: a randomized clinical trial. Int J Paediatr Dent. 2013;23(1):56–63.

    Article  PubMed  Google Scholar 

  113. Uesrichai N, Nirunsittirat A, Chuveera P, Srisuwan T, Sastra Uji T, Chompu-inwai P. Partial pulpotomy with two bioactive cements in permanent teeth of 6- to 18-year-old patients with signs and symptoms indicative of irreversible pulpitis: a noninferiority randomized controlled trial. Int Endod J. 2019;52(6):749–59. https://doi.org/10.1111/iej.13071.

    Article  PubMed  Google Scholar 

  114. Abuelniel GM, Duggal MS, Kabel N. A comparison of MTA and biodentine as medicaments for pulpotomy in traumatized anterior immature permanent teeth: a randomized clinical trial. Dent Traumatol. 2020;36(4):400–10. https://doi.org/10.1111/edt.12553.

    Article  PubMed  Google Scholar 

  115. Qudeimat MA, Alyahya A, Hasan AA, Barrieshi-Nusair KM. Mineral trioxide aggregate pulpotomy for permanent molars with clinical signs indicative of irreversible pulpitis: a preliminary study. Int Endod J. 2017;50(2):126–34. https://doi.org/10.1111/iej.12614.

    Article  PubMed  Google Scholar 

  116. Eid A, Mancino D, Rekab MS, Haikel Y, Kharouf N. Effectiveness of three agents in pulpotomy treatment of permanent molars with incomplete root development: a randomized controlled trial. Healthcare (Basel). 2022;10(3):431. https://doi.org/10.3390/healthcare10030431.

    Article  PubMed  Google Scholar 

  117. Doranala S, Surakanti JR, Vemisetty H, Loka SR, Sudireddy K, Punna R. Comparative assessment of titanium-prepared platelet-rich fibrin, EndoSequence root repair material, and calcium hydroxide as pulpotomy agents in permanent teeth with irreversible pulpitis: a randomized controlled trial. J Conserv Dent. 2021;24(6):606–10.

    Article  PubMed  Google Scholar 

  118. Chen Y, Chen X, Zhang Y, et al. Materials for pulpotomy in immature permanent teeth: a systematic review and meta-analysis. BMC Oral Health. 2019;19(1):227. https://doi.org/10.1186/s12903-019-0917-z.

    Article  PubMed  PubMed Central  Google Scholar 

  119. American Academy of Pediatric Dentistry. Pulp therapy for primary and immature permanent teeth. The reference manual of pediatric dentistry. Chicago, IL: American Academy of Pediatric Dentistry; 2021.

    Google Scholar 

  120. Elmsmari F, Ruiz XF, Miró Q, Feijoo-Pato N, Durán-Sindreu F, Olivieri JG. Outcome of partial pulpotomy in cariously exposed posterior permanent teeth: a systematic review and meta-analysis. J Endod. 2019;45(11):1296–306. https://doi.org/10.1016/j.joen.2019.07.005.

    Article  PubMed  Google Scholar 

  121. Shirvani A, Asgary S. Mineral trioxide aggregate versus formocresol pulpotomy: a systematic review and meta-analysis of randomized clinical trials. Clin Oral Investig. 2014;18(4):1023–30. https://doi.org/10.1007/s00784-014-1189-2.

    Article  PubMed  Google Scholar 

  122. Banchs F, Trope M. Revascularization of immature permanent teeth with apical periodontitis: new treatment protocol? J Endod. 2004;30(4):196–200. https://doi.org/10.1097/00004770-200404000-00003.

    Article  PubMed  Google Scholar 

  123. Nygaard-Östby B, Hjortdal O. Tissue formation in the root canal following pulp removal. Eur J Oral Sci. 1971;79(3):333–49. https://doi.org/10.1111/j.1600-0722.1971.tb02019.x.

    Article  Google Scholar 

  124. Hoshino E, Kurihara-Ando N, Sato I, et al. In-vitro antibacterial susceptibility of bacteria taken from infected root dentine to a mixture of ciprofloxacin, metronidazole and minocycline. Int Endod J. 1996;29(2):125–30. https://doi.org/10.1111/j.1365-2591.1996.tb01173.x.

    Article  PubMed  Google Scholar 

  125. Iwaya SI, Ikawa M, Kubota M. Revascularization of an immature permanent tooth with apical periodontitis and sinus tract. Dent Traumatol. 2001;17(4):185–7. https://doi.org/10.1034/j.1600-9657.2001.017004185.x.

    Article  PubMed  Google Scholar 

  126. Galler KM, Krastl G, Simon S, et al. European society of endodontology position statement: revitalization procedures. Int Endod J. 2016;49(8):717–23. https://doi.org/10.1111/iej.12629.

    Article  PubMed  Google Scholar 

  127. Chen MYH, Chen KL, Chen CA, Tayebaty F, Rosenberg PA, Lin LM. Responses of immature permanent teeth with infected necrotic pulp tissue and apical periodontitis/abscess to revascularization procedures. Int Endod J. 2012;45(3):294–305. https://doi.org/10.1111/j.1365-2591.2011.01978.x.

    Article  PubMed  Google Scholar 

  128. American Association of Endodontics. Clinical considerations for regenerative procedures. Available at: http://www.aae.org/uploadedfiles/publications_and_research/research/currentregenerativeendodonticconsiderations.pdf.

  129. Martin DE, de Almeida JFA, Henry MA, et al. Concentration-dependent effect of sodium hypochlorite on stem cells of apical papilla survival and differentiation. J Endod. 2014;40(1):51–5. https://doi.org/10.1016/j.joen.2013.07.026.

    Article  PubMed  Google Scholar 

  130. Kahler B, Rossi-Fedele G. A review of tooth discoloration after regenerative endodontic therapy. J Endod. 2016;42(4):563–9. https://doi.org/10.1016/j.joen.2015.12.022.

    Article  PubMed  Google Scholar 

  131. Sabrah AHA, Al-Asmar AA, Alsoleihat F, Al-Zer H. The discoloration effect of diluted minocycline containing triple antibiotic gel used in revascularization. J Dent Sci. 2020;15(2):181–5. https://doi.org/10.1016/j.jds.2019.06.005.

    Article  PubMed  Google Scholar 

  132. Zarean P, Zarean P, Roozbeh R, Zarean P. In vitro comparison of shear bond strength of a flowable composite resin and a single-component glass-ionomer to three different pulp-capping agents. Dent Med Probl. 2019;56(3):239–44. https://doi.org/10.17219/dmp/109233.

    Article  PubMed  Google Scholar 

  133. Thibodeau B, Teixeira F, Yamauchi M, Caplan DJ, Trope M. Pulp revascularization of immature dog teeth with apical periodontitis. J Endod. 2007;33(6):680–9. https://doi.org/10.1016/j.joen.2007.03.001.

    Article  PubMed  Google Scholar 

  134. Lovelace TW, Henry MA, Hargreaves KM, Diogenes A. Evaluation of the delivery of mesenchymal stem cells into the root canal space of necrotic immature teeth after clinical regenerative endodontic procedure. J Endod. 2011;37(2):133–8. https://doi.org/10.1016/j.joen.2010.10.009.

    Article  PubMed  Google Scholar 

  135. Torabinejad M, Turman M. Revitalization of tooth with necrotic pulp and open apex by using platelet-rich plasma: a case report. J Endod. 2011;37(2):265–8. https://doi.org/10.1016/j.joen.2010.11.004.

    Article  PubMed  Google Scholar 

  136. Shivashankar VY, Johns DA, Maroli RK, et al. Comparison of the effect of PRP, PRF and induced bleeding in the revascularization of teeth with necrotic pulp and open apex: a triple blind randomized clinical trial. J Clin Diagn Res. 2017;11(6):ZC34–9. https://doi.org/10.7860/JCDR/2017/22352.10056.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Ulusoy AT, Turedi I, Cimen M, Cehreli ZC. Evaluation of blood clot, platelet-rich plasma, platelet-rich fibrin, and platelet pellet as scaffolds in regenerative endodontic treatment: a prospective randomized trial. J Endod. 2019;45(5):560–6. https://doi.org/10.1016/j.joen.2019.02.002.

    Article  PubMed  Google Scholar 

  138. Ong TK, Lim GS, Singh M, Fial A, v. Quantitative assessment of root development after regenerative endodontic therapy: a systematic review and meta-analysis. J Endod. 2020;46(12):1856–1866.e2. https://doi.org/10.1016/j.joen.2020.08.016.

    Article  PubMed  Google Scholar 

  139. Yanpiset K, Jeeruphan T, Jantarat J, Yanpiset K. Mahidol study 1: comparison of radiographic and survival outcomes of immature teeth treated with either regenerative endodontic or apexification methods: a retrospective study. J Endod. 2012;38(10):1330–6. https://doi.org/10.1016/j.joen.2012.06.028.

    Article  PubMed  Google Scholar 

  140. Chan EKM, Desmeules M, Cielecki M, Dabbagh B, Ferraz Dos Santos B. Longitudinal cohort study of regenerative endodontic treatment for immature necrotic permanent teeth. J Endod. 2017;43(3):395–400. https://doi.org/10.1016/j.joen.2016.10.035.

    Article  PubMed  Google Scholar 

  141. Saoud TMA, Zaazou A, Nabil A, Moussa S, Lin LM, Gibbs JL. Clinical and radiographic outcomes of traumatized immature permanent necrotic teeth after revascularization/revitalization therapy. J Endod. 2014;40(12):1946–52. https://doi.org/10.1016/j.joen.2014.08.023.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Lopes MF, Wikström AA, Brundin MM, Lopes MFM. What is the best long-term treatment modality for immature permanent teeth with pulp necrosis and apical periodontitis? Eur Arch Paediatr Dent. 2021;22(3):311–40. https://doi.org/10.1007/s40368-020-00575-1.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Duggal M, Tong HJ, Al-Ansary M, Twati W, Day PF, Nazzal H. Interventions for the endodontic management of non-vital traumatized immature permanent anterior teeth in children and adolescents: a systematic review of the evidence and guidelines of the European academy of pediatric dentistry. Eur Arch Pediatr Dent. 2017;18(3):139–51. https://doi.org/10.1007/s40368-017-0289-5.

    Article  Google Scholar 

  144. Shabahang S, Torabinejad M, Milan M, Shabahang S. Histologic examination of teeth with necrotic pulps and periapical lesions treated with 2 scaffolds: an animal investigation. J Endod. 2015;41(6):846–52. https://doi.org/10.1016/j.joen.2015.01.026.

    Article  PubMed  Google Scholar 

  145. Pagliarin CML, Londero CLD, Felippe MCS, Felippe WT, Danesi CC, Barletta FB. Tissue characterization following revascularization of immature dog teeth using different disinfection pastes. Braz Oral Res. 2016;30(1):S1806–83242016000100273. https://doi.org/10.1590/1807-3107BOR-2016.vol30.0074.

    Article  PubMed  Google Scholar 

  146. Nabil A, Saoud T, Zaazou A, Nabil A. Histological observations of pulpal replacement tissue in immature dog teeth after revascularization of infected pulps. Dent Traumatol. 2015;31(3):243–9. https://doi.org/10.1111/edt.12169.

    Article  PubMed  Google Scholar 

  147. Shimizu E, Ricucci D, Albert J, et al. Clinical, radiographic, and histological observation of a human immature permanent tooth with chronic apical abscess after revitalization treatment. J Endod. 2013;39(8):1078–83. https://doi.org/10.1016/j.joen.2013.04.032.

    Article  PubMed  Google Scholar 

  148. Becerra P, Ricucci D, Loghin S, Gibbs JL, Lin LM. Histologic study of a human immature permanent premolar with chronic apical abscess after revascularization/revitalization. J Endod. 2014;40(1):133–9. https://doi.org/10.1016/j.joen.2013.07.017.

    Article  PubMed  Google Scholar 

  149. Gibbs JL, Martin G, Ricucci D, Gibbs J. Histological findings of revascularized/revitalized immature permanent molar with apical periodontitis using platelet-rich plasma. J Endod. 2013;39(1):138–44. https://doi.org/10.1016/j.joen.2012.09.015.

    Article  PubMed  Google Scholar 

  150. Fida Z, Yu L, Prabhu N, Kahler B. Ingrowth of mineralized tissue into the root canal of immature permanent teeth after a traumatic injury: a report of 3 cases. J Endod. 2021;47(9):1507–14. https://doi.org/10.1016/j.joen.2021.05.011.

    Article  PubMed  Google Scholar 

  151. Laureys WGM, Cuvelier CA, Dermaut LR, de Pauw GAM. The critical apical diameter to obtain regeneration of the pulp tissue after tooth transplantation, replantation, or regenerative endodontic treatment. J Endod. 2013;39(6):759–63. https://doi.org/10.1016/j.joen.2013.02.004.

    Article  PubMed  Google Scholar 

  152. Estefan BS, el Batouty KM, Nagy MM, Diogenes A. Influence of age and apical diameter on the success of endodontic regeneration procedures. J Endod. 2016;42(11):1620–5. https://doi.org/10.1016/J.JOEN.2016.06.020.

    Article  PubMed  Google Scholar 

  153. Cvek M, Cvek M. Prognosis of luxated non-vital maxillary incisors treated with calcium hydroxide and filled with gutta-percha. A retrospective clinical study. Endod Dent Traumatol. 1992;8(2):45–55. https://doi.org/10.1111/j.1600-9657.1992.tb00228.x.

    Article  PubMed  Google Scholar 

  154. Pizzol TSD, Nicoloso G, Goldenfum G, Pizzol T. Pulp revascularization or apexification for the treatment of immature necrotic permanent teeth: systematic review and meta-analysis. J Clin Pediatr Dent. 2019;43(5):305–13. https://doi.org/10.17796/1053-4625-43.5.1.

    Article  PubMed  Google Scholar 

  155. Schwendicke F, Stolpe M. Direct pulp capping after a carious exposure versus root canal treatment: a cost-effectiveness analysis. J Endod. 2014;40(11):1764–70. https://doi.org/10.1016/j.joen.2014.07.028.

    Article  PubMed  Google Scholar 

  156. Hahn CL, Liewehr FR. Relationships between caries bacteria, host responses, and clinical signs and symptoms of pulpitis. J Endod. 2007;33(3):213–9. https://doi.org/10.1016/j.joen.2006.11.008.

    Article  PubMed  Google Scholar 

  157. Awawdeh L, Hemaidat K, Al-Omari W. Higher maximal occlusal bite force in endodontically treated teeth versus vital contralateral counterparts. J Endod. 2017;43(6):871–5. https://doi.org/10.1016/j.joen.2016.12.028.

    Article  PubMed  Google Scholar 

  158. Bufersen S, Jones J, Shanmugham J, et al. Survival of endodontically treated permanent teeth among children: a retrospective cohort study. BMC Oral Health. 2021;21(1):1–9. https://doi.org/10.1186/s12903-021-01952-y.

    Article  Google Scholar 

  159. Pimentel PS, Brown J, Pimentel T. Cone beam computed tomography in endodontics—a review of the literature. Int Endod J. 2019;52(8):1138–52. https://doi.org/10.1111/iej.13115.

    Article  PubMed  Google Scholar 

  160. Peters Ove A, Peters CI, Basrani B. Cleaning and shaping of the root canal system. In: Berman K, Hargreaves K, editors. Pathways of the pulp; 2020. p. 854–1063.

    Google Scholar 

  161. Brown DWP. Paper points revisited: risk of cellulose fibre shedding during canal length confirmation. Int Endod J. 2017;50(6):620–6. https://doi.org/10.1111/iej.12663.

    Article  PubMed  Google Scholar 

  162. Trope M. Treatment of the immature tooth with a non-vital pulp and apical periodontitis. Dent Clin N Am. 2010;54(2):313–24. https://doi.org/10.1016/j.cden.2009.12.006.

    Article  PubMed  Google Scholar 

  163. Zehnder M. Root canal irrigants. J Endod. 2006;32(5):389–98. https://doi.org/10.1016/j.joen.2005.09.014.

    Article  PubMed  Google Scholar 

  164. Takagi BAR, Kopper PMP, Luz L, Luisi SB, Scarparo RK. Apical extrusion of sodium hypochlorite in immature teeth: comparison of three different cleaning protocols. Aust Endod J. 2022;48(3):380–5. https://doi.org/10.1111/aej.12574.

    Article  PubMed  Google Scholar 

  165. Minu J, Susila A, Minu J. Activated Irrigation vs. conventional non-activated irrigation in endodontics—a systematic review. Eur Endod J. 2019;4(3):96–110. https://doi.org/10.14744/eej.2019.80774.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Nielsen BA, Craig Baumgartner J, Craig BJ. Comparison of the EndoVac system to needle irrigation of root canals. J Endod. 2007;33(5):611–5. https://doi.org/10.1016/j.joen.2007.01.020.

    Article  PubMed  Google Scholar 

  167. Violich DR, Chandler N. The smear layer in endodontics—a review. Int Endod J. 2010;43(1):2–15. https://doi.org/10.1111/j.1365-2591.2009.01627.x.

    Article  PubMed  Google Scholar 

  168. Sathorn C, Parashos P, Messer HH, Messer H. Effectiveness of single- versus multiple-visit endodontic treatment of teeth with apical periodontitis: a systematic review and meta-analysis. Int Endod J. 2005;38(6):347–55. https://doi.org/10.1111/j.1365-2591.2005.00955.x.

    Article  PubMed  Google Scholar 

  169. Sathorn C, Parashos P, Messer H, Messer H. Antibacterial efficacy of calcium hydroxide intracanal dressing: a systematic review and meta-analysis. Int Endod J. 2007;40(1):2–10. https://doi.org/10.1111/j.1365-2591.2006.01197.x.

    Article  PubMed  Google Scholar 

  170. Sjögren U, Figdor D, Spångberg L. The antimicrobial effect of calcium hydroxide as a short-term intracanal dressing. Int Endod J. 1991;24(3):119–25. https://doi.org/10.1111/j.1365-2591.1991.tb00117.x.

    Article  PubMed  Google Scholar 

  171. Frank AL. Therapy for the divergent pulpless tooth by continued apical formation. J Am Dent Assoc. 1966;72(1):87–93. https://doi.org/10.14219/jada.archive.1966.0017.

    Article  PubMed  Google Scholar 

  172. Andreasen JO, Farik B, Munksgaard EC. Long-term calcium hydroxide as a root canal dressing may increase risk of root fracture. Dent Traumatol. 2002;18(3):134–7. https://doi.org/10.1034/j.1600-9657.2002.00097.x.

    Article  PubMed  Google Scholar 

  173. Dalavai P, Nasreen F, Srinivasan R, Pramod J, Bhandary S, Penmatsa C. To evaluate and compare the compressive strength of root dentin exposed to calcium hydroxide, mixed with various vehicles for a period of 30 days—an in vitro study. J Conserv Dent. 2021;24(6):563–7. https://doi.org/10.4103/jcd.jcd_316_21.

    Article  PubMed  Google Scholar 

  174. Keskin G, Tek G, Keskin G. Use of mineral trioxide aggregate with or without a collagen sponge as an apical plug in teeth with immature apices. J Clin Pediatr Dent. 2021;45(3):165–70. https://doi.org/10.17796/1053-4625-45.3.4.

    Article  PubMed  Google Scholar 

  175. Yancich PP, Hartwell GR, Portell FR. A comparison of apical seal: chloroform versus eucalyptol-dipped gutta-percha obturation. J Endod. 1989;15(6):257–60. https://doi.org/10.1016/S0099-2399(89)80220-1.

    Article  PubMed  Google Scholar 

  176. de Oliveira NG, PRS A, da Silveira MT, APV S, Carvalho MV. Comparison of the biocompatibility of calcium silicate-based materials to mineral trioxide aggregate: systematic review. Eur J Dent. 2018;12(2):317–26. https://doi.org/10.4103/ejd.ejd_347_17.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Lim M, Jung C, Shin DH, Bum CY, Song M. Calcium silicate-based root canal sealers: a literature review. Restor Dent Endod. 2020;45(3):e35. https://doi.org/10.5395/rde.2020.45.e35.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Gillen BM, Looney SW, Gu LS, et al. Impact of the quality of coronal restoration versus the quality of root canal fillings on success of root canal treatment: a systematic review and meta-analysis. J Endod. 2011;37(7):895–902. https://doi.org/10.1016/j.joen.2011.04.002.

    Article  PubMed  Google Scholar 

  179. Mannocci F, Bhuva B, Roig M, et al. European society of endodontology position statement: the restoration of root filled teeth. Int Endod J. 2021;54(11):1974–81. https://doi.org/10.1111/iej.13607.

    Article  PubMed  Google Scholar 

  180. Kerekes K, Heide S, Jacobsen I. Follow-up examination of endodontic treatment in traumatized juvenile incisors. J Endod. 1980;6(9):744–8. https://doi.org/10.1016/S0099-2399(80)80186-5.

    Article  PubMed  Google Scholar 

  181. Seghi RR, Nasrin S, Draney J, Katsube N. Root fortification. J Endod. 2013;39(3 Suppl):S57–62. https://doi.org/10.1016/j.joen.2012.10.029.

    Article  PubMed  Google Scholar 

  182. Goldberg F, Kaplan A, Roitman M, Manfré S, Picca M. Reinforcing effect of a resin glass ionomer in the restoration of immature roots in vitro. Dent Traumatol. 2002;18(2):70–2. https://doi.org/10.1034/j.1600-9657.2002.00083.x.

    Article  PubMed  Google Scholar 

  183. Davidovich E, Shay B, Nuni E, Mijiritsky E. An innovative treatment approach using digital workflow and CAD-CAM part 1: the restoration of endodontically treated molars in children. Int J Environ Res Public Health. 2020;17(4):1364. https://doi.org/10.3390/ijerph17041364.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nuni, E., Slutzky-Goldberg, I. (2023). Endodontic Treatment for Young Permanent Teeth. In: Fuks, A.B., Moskovitz, M., Tickotsky, N. (eds) Contemporary Endodontics for Children and Adolescents. Springer, Cham. https://doi.org/10.1007/978-3-031-23980-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23980-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23979-3

  • Online ISBN: 978-3-031-23980-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics