Skip to main content

Therapeutic Innovations for Heart Failure

  • Chapter
  • First Online:
Cardiac Mechanobiology in Physiology and Disease

Part of the book series: Cardiac and Vascular Biology ((Abbreviated title: Card. vasc. biol.,volume 9))

  • 454 Accesses

Abstract

Despite recent understanding of the molecular mechanisms leading to disease progression, treatment of heart failure remains challenging, accompanied by high rates of hospitalization. Although there are specific, well-defined guidelines on pharmacological treatments, morbidity and mortality remain high. This chapter first summarizes fundamental basic mechanisms of cardiac hypertrophy due to increased afterload as well as heart failure as potential complication and provides an update on recent therapeutic approaches. Specifically, here we underline pharmacological, gene therapy, and RNA-based approaches aiming to reduce the severity of symptoms and improving cardiac function in the transition from compensated hypertrophy to myocardial failure. Moreover, we describe the main anti-inflammatory treatments analyzed in clinical trials and their outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Miranda-Silva D, Lima T, Rodrigues P, Leite-Moreira A, Falcao-Pires I (2021) Mechanisms underlying the pathophysiology of heart failure with preserved ejection fraction: the tip of the iceberg. Heart Fail Rev 26(3):453–478. https://doi.org/10.1007/s10741-020-10042-0

    Article  PubMed  Google Scholar 

  2. Razeghi P, Young ME, Alcorn JL, Moravec CS, Frazier OH, Taegtmeyer H (2001) Metabolic gene expression in fetal and failing human heart. Circulation 104(24):2923–2931. https://doi.org/10.1161/hc4901.100526

    Article  CAS  PubMed  Google Scholar 

  3. Kang PM, Izumo S (2000) Apoptosis and heart failure: a critical review of the literature. Circ Res 86(11):1107–1113. https://doi.org/10.1161/01.res.86.11.1107

    Article  CAS  PubMed  Google Scholar 

  4. Dirkx E, da Costa Martins PA (1832) De Windt LJ (2013) Regulation of fetal gene expression in heart failure. Biochim Biophys Acta 12:2414–2424. https://doi.org/10.1016/j.bbadis.2013.07.023

    Article  CAS  Google Scholar 

  5. Carnevale D, Cifelli G, Mascio G, Madonna M, Sbroggio M, Perrino C, Persico MG, Frati G, Lembo G (2011) Placental growth factor regulates cardiac inflammation through the tissue inhibitor of metalloproteinases-3/tumor necrosis factor-alpha-converting enzyme axis: crucial role for adaptive cardiac remodeling during cardiac pressure overload. Circulation 124(12):1337–1350. https://doi.org/10.1161/CIRCULATIONAHA.111.050500

    Article  CAS  PubMed  Google Scholar 

  6. Hartupee J, Mann DL (2017) Neurohormonal activation in heart failure with reduced ejection fraction. Nat Rev Cardiol 14(1):30–38. https://doi.org/10.1038/nrcardio.2016.163

    Article  CAS  PubMed  Google Scholar 

  7. Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, Grant SR, Olson EN (1998) A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93(2):215–228. https://doi.org/10.1016/s0092-8674(00)81573-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Olson EN, Molkentin JD (1999) Prevention of cardiac hypertrophy by calcineurin inhibition: hope or hype? Circ Res 84(6):623–632. https://doi.org/10.1161/01.res.84.6.623

    Article  CAS  PubMed  Google Scholar 

  9. Molkentin JD (2000) Calcineurin and beyond: cardiac hypertrophic signaling. Circ Res 87(9):731–738. https://doi.org/10.1161/01.res.87.9.731

    Article  CAS  PubMed  Google Scholar 

  10. Akazawa H, Komuro I (2003) Roles of cardiac transcription factors in cardiac hypertrophy. Circ Res 92(10):1079–1088. https://doi.org/10.1161/01.RES.0000072977.86706.23

    Article  CAS  PubMed  Google Scholar 

  11. He Q, Mendez M, LaPointe MC (2002) Regulation of the human brain natriuretic peptide gene by GATA-4. Am J Physiol Endocrinol Metab 283(1):E50–E57. https://doi.org/10.1152/ajpendo.00274.2001

    Article  CAS  PubMed  Google Scholar 

  12. Morimoto T, Hasegawa K, Wada H, Kakita T, Kaburagi S, Yanazume T, Sasayama S (2001) Calcineurin-GATA4 pathway is involved in beta-adrenergic agonist-responsive endothelin-1 transcription in cardiac myocytes. J Biol Chem 276(37):34983–34989. https://doi.org/10.1074/jbc.M005498200

    Article  CAS  PubMed  Google Scholar 

  13. van Oort RJ, van Rooij E, Bourajjaj M, Schimmel J, Jansen MA, van der Nagel R, Doevendans PA, Schneider MD, van Echteld CJ, De Windt LJ (2006) MEF2 activates a genetic program promoting chamber dilation and contractile dysfunction in calcineurin-induced heart failure. Circulation 114(4):298–308. https://doi.org/10.1161/CIRCULATIONAHA.105.608968

    Article  CAS  PubMed  Google Scholar 

  14. Molkentin JD, Markham BE (1993) Myocyte-specific enhancer-binding factor (MEF-2) regulates alpha-cardiac myosin heavy chain gene expression in vitro and in vivo. J Biol Chem 268(26):19512–19520

    Article  CAS  PubMed  Google Scholar 

  15. Morin S, Charron F, Robitaille L, Nemer M (2000) GATA-dependent recruitment of MEF2 proteins to target promoters. EMBO J 19(9):2046–2055. https://doi.org/10.1093/emboj/19.9.2046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Blaeser F, Ho N, Prywes R, Chatila TA (2000) Ca(2+)-dependent gene expression mediated by MEF2 transcription factors. J Biol Chem 275(1):197–209. https://doi.org/10.1074/jbc.275.1.197

    Article  CAS  PubMed  Google Scholar 

  17. Kohli S, Ahuja S, Rani V (2011) Transcription factors in heart: promising therapeutic targets in cardiac hypertrophy. Curr Cardiol Rev 7(4):262–271. https://doi.org/10.2174/157340311799960618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Heineke J, Ritter O (2012) Cardiomyocyte calcineurin signaling in subcellular domains: from the sarcolemma to the nucleus and beyond. J Mol Cell Cardiol 52(1):62–73. https://doi.org/10.1016/j.yjmcc.2011.10.018

    Article  CAS  PubMed  Google Scholar 

  19. Bourajjaj M, Armand AS, da Costa Martins PA, Weijts B, van der Nagel R, Heeneman S, Wehrens XH, De Windt LJ (2008) NFATc2 is a necessary mediator of calcineurin-dependent cardiac hypertrophy and heart failure. J Biol Chem 283(32):22295–22303. https://doi.org/10.1074/jbc.M801296200

    Article  CAS  PubMed  Google Scholar 

  20. Rauchhaus M, Doehner W, Francis DP, Davos C, Kemp M, Liebenthal C, Niebauer J, Hooper J, Volk HD, Coats AJ, Anker SD (2000) Plasma cytokine parameters and mortality in patients with chronic heart failure. Circulation 102(25):3060–3067. https://doi.org/10.1161/01.cir.102.25.3060

    Article  CAS  PubMed  Google Scholar 

  21. Deswal A, Petersen NJ, Feldman AM, Young JB, White BG, Mann DL (2001) Cytokines and cytokine receptors in advanced heart failure: an analysis of the cytokine database from the Vesnarinone trial (VEST). Circulation 103(16):2055–2059. https://doi.org/10.1161/01.cir.103.16.2055

    Article  CAS  PubMed  Google Scholar 

  22. Mann DL (2002) Inflammatory mediators and the failing heart: past, present, and the foreseeable future. Circ Res 91(11):988–998. https://doi.org/10.1161/01.res.0000043825.01705.1b

    Article  CAS  PubMed  Google Scholar 

  23. Bradham WS, Bozkurt B, Gunasinghe H, Mann D, Spinale FG (2002) Tumor necrosis factor-alpha and myocardial remodeling in progression of heart failure: a current perspective. Cardiovasc Res 53(4):822–830. https://doi.org/10.1016/s0008-6363(01)00503-x

    Article  CAS  PubMed  Google Scholar 

  24. Forstermann U, Munzel T (2006) Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation 113(13):1708–1714. https://doi.org/10.1161/CIRCULATIONAHA.105.602532

    Article  CAS  PubMed  Google Scholar 

  25. Kruger M, Kotter S, Grutzner A, Lang P, Andresen C, Redfield MM, Butt E, dos Remedios CG, Linke WA (2009) Protein kinase G modulates human myocardial passive stiffness by phosphorylation of the titin springs. Circ Res 104(1):87–94. https://doi.org/10.1161/CIRCRESAHA.108.184408

    Article  CAS  PubMed  Google Scholar 

  26. Fraccarollo D, Widder JD, Galuppo P, Thum T, Tsikas D, Hoffmann M, Ruetten H, Ertl G, Bauersachs J (2008) Improvement in left ventricular remodeling by the endothelial nitric oxide synthase enhancer AVE9488 after experimental myocardial infarction. Circulation 118(8):818–827. https://doi.org/10.1161/CIRCULATIONAHA.107.717702

    Article  CAS  PubMed  Google Scholar 

  27. Tromp J, Ouwerkerk W, van Veldhuisen DJ, Hillege HL, Richards AM, van der Meer P, Anand IS, Lam CSP, Voors AA (2021) A systematic review and network-meta-analysis of pharmacological treatment of heart failure with reduced ejection fraction. JACC Heart Fail 10:73. https://doi.org/10.1016/j.jchf.2021.09.004

    Article  PubMed  Google Scholar 

  28. Investigators S, Yusuf S, Pitt B, Davis CE, Hood WB, Cohn JN (1991) Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med 325(5):293–302. https://doi.org/10.1056/NEJM199108013250501

    Article  Google Scholar 

  29. The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II) (1999) A randomised trial. Lancet 353(9146):9–13

    Article  Google Scholar 

  30. McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Bohm M, Burri H, Butler J, Celutkiene J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A (2021) Corrigendum to: 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: developed by the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) with the special contribution of the heart failure association (HFA) of the ESC. Eur Heart J 42(48):4901. https://doi.org/10.1093/eurheartj/ehab670

    Article  PubMed  Google Scholar 

  31. Anon (2000) Major cardiovascular events in hypertensive patients randomized to doxazosin vs chlorthalidone: the antihypertensive and lipid-lowering treatment to prevent heart attack trial (ALLHAT). ALLHAT collaborative research group. JAMA 283(15):1967–1975

    Article  Google Scholar 

  32. Durstenfeld MS, Katz SD, Park H, Blecker S (2019) Mineralocorticoid receptor antagonist use after hospitalization of patients with heart failure and post-discharge outcomes: a single-center retrospective cohort study. BMC Cardiovasc Disord 19(1):194. https://doi.org/10.1186/s12872-019-1175-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Komajda M, Bohm M, Borer JS, Ford I, Tavazzi L, Pannaux M, Swedberg K (2018) Incremental benefit of drug therapies for chronic heart failure with reduced ejection fraction: a network meta-analysis. Eur J Heart Fail 20(9):1315–1322. https://doi.org/10.1002/ejhf.1234

    Article  CAS  PubMed  Google Scholar 

  34. Li X, Braza J, Mende U, Choudhary G, Zhang P (2021) Cardioprotective effects of early intervention with sacubitril/valsartan on pressure overloaded rat hearts. Sci Rep 11(1):16542. https://doi.org/10.1038/s41598-021-95988-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Norden ES, Bendiksen BA, Andresen H, Bergo KK, Espe EK, Hasic A, Hauge-Iversen IM, Veras I, Hussain RI, Sjaastad I, Christensen G, Cataliotti A (2021) Sacubitril/valsartan ameliorates cardiac hypertrophy and preserves diastolic function in cardiac pressure overload. ESC Heart Fail 8(2):918–927. https://doi.org/10.1002/ehf2.13177

    Article  PubMed  PubMed Central  Google Scholar 

  36. Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, Januzzi J, Verma S, Tsutsui H, Brueckmann M, Jamal W, Kimura K, Schnee J, Zeller C, Cotton D, Bocchi E, Bohm M, Choi DJ, Chopra V, Chuquiure E, Giannetti N, Janssens S, Zhang J, Gonzalez Juanatey JR, Kaul S, Brunner-La Rocca HP, Merkely B, Nicholls SJ, Perrone S, Pina I, Ponikowski P, Sattar N, Senni M, Seronde MF, Spinar J, Squire I, Taddei S, Wanner C, Zannad F, Investigators EM-RT (2020) Cardiovascular and renal outcomes with Empagliflozin in heart failure. N Engl J Med 383(15):1413–1424. https://doi.org/10.1056/NEJMoa2022190

    Article  CAS  PubMed  Google Scholar 

  37. McMurray JJV, Solomon SD, Inzucchi SE, Kober L, Kosiborod MN, Martinez FA, Ponikowski P, Sabatine MS, Anand IS, Belohlavek J, Bohm M, Chiang CE, Chopra VK, de Boer RA, Desai AS, Diez M, Drozdz J, Dukat A, Ge J, Howlett JG, Katova T, Kitakaze M, Ljungman CEA, Merkely B, Nicolau JC, O'Meara E, Petrie MC, Vinh PN, Schou M, Tereshchenko S, Verma S, Held C, DeMets DL, Docherty KF, Jhund PS, Bengtsson O, Sjostrand M, Langkilde AM, Committees D-HT, Investigators (2019) Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med 381(21):1995–2008. https://doi.org/10.1056/NEJMoa1911303

    Article  CAS  PubMed  Google Scholar 

  38. Byrne NJ, Parajuli N, Levasseur JL, Boisvenue J, Beker DL, Masson G, Fedak PWM, Verma S, Dyck JRB (2017) Empagliflozin prevents worsening of cardiac function in an experimental model of pressure overload-induced heart failure. JACC Basic Transl Sci 2(4):347–354. https://doi.org/10.1016/j.jacbts.2017.07.003

    Article  PubMed  PubMed Central  Google Scholar 

  39. Li X, Lu Q, Qiu Y, do Carmo JM, Wang Z, da Silva AA, Mouton A, ACM O, Hall ME, Li J, Hall JE (2021) Direct cardiac actions of the sodium glucose co-transporter 2 inhibitor Empagliflozin improve myocardial oxidative phosphorylation and attenuate pressure-overload heart failure. J Am Heart Assoc 10(6):e018298. https://doi.org/10.1161/JAHA.120.018298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schumacher SM, Naga Prasad SV (2018) Tumor necrosis factor-alpha in heart failure: an updated review. Curr Cardiol Rep 20(11):117. https://doi.org/10.1007/s11886-018-1067-7

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mann DL, McMurray JJ, Packer M, Swedberg K, Borer JS, Colucci WS, Djian J, Drexler H, Feldman A, Kober L, Krum H, Liu P, Nieminen M, Tavazzi L, van Veldhuisen DJ, Waldenstrom A, Warren M, Westheim A, Zannad F, Fleming T (2004) Targeted anticytokine therapy in patients with chronic heart failure: results of the randomized Etanercept worldwide evaluation (RENEWAL). Circulation 109(13):1594–1602. https://doi.org/10.1161/01.CIR.0000124490.27666.B2

    Article  CAS  PubMed  Google Scholar 

  42. Chung ES, Packer M, Lo KH, Fasanmade AA, Willerson JT, Anti TNFTACHFI (2003) Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: results of the anti-TNF therapy against congestive heart failure (ATTACH) trial. Circulation 107(25):3133–3140. https://doi.org/10.1161/01.CIR.0000077913.60364.D2

    Article  CAS  PubMed  Google Scholar 

  43. Mitoma H, Horiuchi T, Tsukamoto H, Tamimoto Y, Kimoto Y, Uchino A, Kentaro T, Harashima S, Hatta N, Harada M (2008) Mechanisms for cytotoxic effects of anti-tumor necrosis factor agents on transmembrane tumor necrosis factor alpha-expressing cells: comparison among infliximab, etanercept, and adalimumab. Arthritis Rheum 58(5):1248–1257. https://doi.org/10.1002/art.23447

    Article  CAS  PubMed  Google Scholar 

  44. Van Tassell BW, Raleigh JM, Abbate A (2015) Targeting interleukin-1 in heart failure and inflammatory heart disease. Curr Heart Fail Rep 12(1):33–41. https://doi.org/10.1007/s11897-014-0231-7

    Article  CAS  PubMed  Google Scholar 

  45. Zell R, Geck P, Werdan K, Boekstegers P (1997) TNF-alpha and IL-1 alpha inhibit both pyruvate dehydrogenase activity and mitochondrial function in cardiomyocytes: evidence for primary impairment of mitochondrial function. Mol Cell Biochem 177(1–2):61–67. https://doi.org/10.1023/a:1006896832582

    Article  CAS  PubMed  Google Scholar 

  46. Ikonomidis I, Lekakis JP, Nikolaou M, Paraskevaidis I, Andreadou I, Kaplanoglou T, Katsimbri P, Skarantavos G, Soucacos PN, Kremastinos DT (2008) Inhibition of interleukin-1 by anakinra improves vascular and left ventricular function in patients with rheumatoid arthritis. Circulation 117(20):2662–2669. https://doi.org/10.1161/CIRCULATIONAHA.107.731877

    Article  CAS  PubMed  Google Scholar 

  47. Van Tassell BW, Canada J, Carbone S, Trankle C, Buckley L, Oddi Erdle C, Abouzaki NA, Dixon D, Kadariya D, Christopher S, Schatz A, Regan J, Viscusi M, Del Buono M, Melchior R, Mankad P, Lu J, Sculthorpe R, Biondi-Zoccai G, Lesnefsky E, Arena R, Abbate A (2017) Interleukin-1 blockade in recently decompensated systolic heart failure: results from REDHART (recently decompensated heart failure Anakinra response trial). Circ Heart Fail 10(11):e004373. https://doi.org/10.1161/CIRCHEARTFAILURE.117.004373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Everett BM, Cornel JH, Lainscak M, Anker SD, Abbate A, Thuren T, Libby P, Glynn RJ, Ridker PM (2019) Anti-inflammatory therapy with Canakinumab for the prevention of hospitalization for heart failure. Circulation 139(10):1289–1299. https://doi.org/10.1161/CIRCULATIONAHA.118.038010

    Article  CAS  PubMed  Google Scholar 

  49. Yura Y, Sano S, Walsh K (2020) Clonal hematopoiesis: a new step linking inflammation to heart failure. JACC Basic Transl Sci 5(2):196–207. https://doi.org/10.1016/j.jacbts.2019.08.006

    Article  PubMed  PubMed Central  Google Scholar 

  50. Liao X, Shen Y, Zhang R, Sugi K, Vasudevan NT, Alaiti MA, Sweet DR, Zhou L, Qing Y, Gerson SL, Fu C, Wynshaw-Boris A, Hu R, Schwartz MA, Fujioka H, Richardson B, Cameron MJ, Hayashi H, Stamler JS, Jain MK (2018) Distinct roles of resident and nonresident macrophages in nonischemic cardiomyopathy. Proc Natl Acad Sci USA 115(20):E4661–E4669. https://doi.org/10.1073/pnas.1720065115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Patel B, Bansal SS, Ismahil MA, Hamid T, Rokosh G, Mack M, Prabhu SD (2018) CCR2(+) monocyte-derived infiltrating macrophages are required for adverse cardiac remodeling during pressure overload. JACC Basic Transl Sci 3(2):230–244. https://doi.org/10.1016/j.jacbts.2017.12.006

    Article  PubMed  PubMed Central  Google Scholar 

  52. Adamo L, Rocha-Resende C, Prabhu SD, Mann DL (2020) Reappraising the role of inflammation in heart failure. Nat Rev Cardiol 17(5):269–285. https://doi.org/10.1038/s41569-019-0315-x

    Article  PubMed  Google Scholar 

  53. Mann DL (2001) Autoimmunity, immunoglobulin adsorption and dilated cardiomyopathy: has the time come for randomized clinical trials? J Am Coll Cardiol 38(1):184–186. https://doi.org/10.1016/s0735-1097(01)01310-9

    Article  CAS  PubMed  Google Scholar 

  54. Tardif JC, Kouz S, Waters DD, Bertrand O, Diaz R, Maggioni AP, Pinto FJ, Ibrahim R, Gamra H, Kiwan GS, Berry C, Lopez-Sendon J, Ostadal P, Koenig W, Angoulvant D, Gregoire JC, Lavoie MA, Dube MP, Rhainds D, Provencher M, Blondeau L, Orfanos A, L'Allier PL, Guertin MC, Roubille F (2019) Efficacy and safety of low-dose colchicine after myocardial infarction. N Engl J Med 381(26):2497–2505. https://doi.org/10.1056/NEJMoa1912388

    Article  CAS  PubMed  Google Scholar 

  55. Koide M, Hamawaki M, Narishige T, Sato H, Nemoto S, DeFreyte G, Zile MR, Cooper GI, Carabello BA (2000) Microtubule depolymerization normalizes in vivo myocardial contractile function in dogs with pressure-overload left ventricular hypertrophy. Circulation 102(9):1045–1052. https://doi.org/10.1161/01.cir.102.9.1045

    Article  CAS  PubMed  Google Scholar 

  56. Zile MR, Koide M, Sato H, Ishiguro Y, Conrad CH, Buckley JM, Morgan JP, Gt C (1999) Role of microtubules in the contractile dysfunction of hypertrophied myocardium. J Am Coll Cardiol 33(1):250–260. https://doi.org/10.1016/s0735-1097(98)00550-6

    Article  CAS  PubMed  Google Scholar 

  57. Shahryari A, Saghaeian Jazi M, Mohammadi S, Razavi Nikoo H, Nazari Z, Hosseini ES, Burtscher I, Mowla SJ, Lickert H (2019) Development and clinical translation of approved gene therapy products for genetic disorders. Front Genet 10:868. https://doi.org/10.3389/fgene.2019.00868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. St George JA (2003) Gene therapy progress and prospects: adenoviral vectors. Gene Ther 10(14):1135–1141. https://doi.org/10.1038/sj.gt.3302071

    Article  CAS  PubMed  Google Scholar 

  59. Grimm D, Buning H (2017) Small but increasingly mighty: latest advances in AAV vector research, design, and evolution. Hum Gene Ther 28(11):1075–1086. https://doi.org/10.1089/hum.2017.172

    Article  CAS  PubMed  Google Scholar 

  60. Geisler A, Jungmann A, Kurreck J, Poller W, Katus HA, Vetter R, Fechner H, Muller OJ (2011) microRNA122-regulated transgene expression increases specificity of cardiac gene transfer upon intravenous delivery of AAV9 vectors. Gene Ther 18(2):199–209. https://doi.org/10.1038/gt.2010.141

    Article  CAS  PubMed  Google Scholar 

  61. Buning H, Schmidt M (2015) Adeno-associated vector toxicity-to be or not to be? Mol Ther 23(11):1673–1675. https://doi.org/10.1038/mt.2015.182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sun CP, Wu TH, Chen CC, Wu PY, Shih YM, Tsuneyama K, Tao MH (2013) Studies of efficacy and liver toxicity related to adeno-associated virus-mediated RNA interference. Hum Gene Ther 24(8):739–750. https://doi.org/10.1089/hum.2012.239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Anon (2020) High-dose AAV gene therapy deaths. Nat Biotechnol 38(8):910. https://doi.org/10.1038/s41587-020-0642-9

    Article  CAS  Google Scholar 

  64. Domenger C, Grimm D (2019) Next-generation AAV vectors-do not judge a virus (only) by its cover. Hum Mol Genet 28(R1):R3–R14. https://doi.org/10.1093/hmg/ddz148

    Article  CAS  PubMed  Google Scholar 

  65. Werfel S, Jungmann A, Lehmann L, Ksienzyk J, Bekeredjian R, Kaya Z, Leuchs B, Nordheim A, Backs J, Engelhardt S, Katus HA, Muller OJ (2014) Rapid and highly efficient inducible cardiac gene knockout in adult mice using AAV-mediated expression of Cre recombinase. Cardiovasc Res 104(1):15–23. https://doi.org/10.1093/cvr/cvu174

    Article  CAS  PubMed  Google Scholar 

  66. van der Pol A, Hoes MF, de Boer RA, van der Meer P (2020) Cardiac foetal reprogramming: a tool to exploit novel treatment targets for the failing heart. J Intern Med 288(5):491–506. https://doi.org/10.1111/joim.13094

    Article  PubMed  PubMed Central  Google Scholar 

  67. Miyazaki Y, Ikeda Y, Shiraishi K, Fujimoto SN, Aoyama H, Yoshimura K, Inui M, Hoshijima M, Kasahara H, Aoki H, Matsuzaki M (2012) Heart failure-inducible gene therapy targeting protein phosphatase 1 prevents progressive left ventricular remodeling. PLoS One 7(4):e35875. https://doi.org/10.1371/journal.pone.0035875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gabisonia K, Prosdocimo G, Aquaro GD, Carlucci L, Zentilin L, Secco I, Ali H, Braga L, Gorgodze N, Bernini F, Burchielli S, Collesi C, Zandona L, Sinagra G, Piacenti M, Zacchigna S, Bussani R, Recchia FA, Giacca M (2019) MicroRNA therapy stimulates uncontrolled cardiac repair after myocardial infarction in pigs. Nature 569(7756):418–422. https://doi.org/10.1038/s41586-019-1191-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sherman W, Martens TP, Viles-Gonzalez JF, Siminiak T (2006) Catheter-based delivery of cells to the heart. Nat Clin Pract Cardiovasc Med 3(Suppl 1):S57–S64. https://doi.org/10.1038/ncpcardio0446

    Article  PubMed  Google Scholar 

  70. Tilemann L, Ishikawa K, Weber T, Hajjar RJ (2012) Gene therapy for heart failure. Circ Res 110(5):777–793. https://doi.org/10.1161/CIRCRESAHA.111.252981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Francisco J, Zhang Y, Jeong JI, Mizushima W, Ikeda S, Ivessa A, Oka S, Zhai P, Tallquist MD, Del Re DP (2020) Blockade of fibroblast YAP attenuates cardiac fibrosis and dysfunction through MRTF-A inhibition. JACC Basic Transl Sci 5(9):931–945. https://doi.org/10.1016/j.jacbts.2020.07.009

    Article  PubMed  PubMed Central  Google Scholar 

  72. Yoo SY, Jeong SN, Kang JI, Lee SW (2018) Chimeric adeno-associated virus-mediated cardiovascular reprogramming for ischemic heart disease. ACS Omega 3(5):5918–5925. https://doi.org/10.1021/acsomega.8b00904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jaski BE, Jessup ML, Mancini DM, Cappola TP, Pauly DF, Greenberg B, Borow K, Dittrich H, Zsebo KM, Hajjar RJ, Calcium Up-Regulation by Percutaneous Administration of Gene Therapy In Cardiac Disease Trial I (2009) Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID trial), a first-in-human phase 1/2 clinical trial. J Card Fail 15(3):171–181. https://doi.org/10.1016/j.cardfail.2009.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jessup M, Greenberg B, Mancini D, Cappola T, Pauly DF, Jaski B, Yaroshinsky A, Zsebo KM, Dittrich H, Hajjar RJ, Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease I (2011) Calcium Upregulation by percutaneous Administration of Gene Therapy in cardiac disease (CUPID): a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure. Circulation 124(3):304–313. https://doi.org/10.1161/CIRCULATIONAHA.111.022889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Greenberg B, Butler J, Felker GM, Ponikowski P, Voors AA, Desai AS, Barnard D, Bouchard A, Jaski B, Lyon AR, Pogoda JM, Rudy JJ, Zsebo KM (2016) Calcium upregulation by percutaneous administration of gene therapy in patients with cardiac disease (CUPID 2): a randomised, multinational, double-blind, placebo-controlled, phase 2b trial. Lancet 387(10024):1178–1186. https://doi.org/10.1016/S0140-6736(16)00082-9

    Article  CAS  PubMed  Google Scholar 

  76. Kieserman JM, Myers VD, Dubey P, Cheung JY, Feldman AM (2019) Current landscape of heart failure gene therapy. J Am Heart Assoc 8(10):e012239. https://doi.org/10.1161/JAHA.119.012239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wittkopper K, Dobrev D, Eschenhagen T, El-Armouche A (2011) Phosphatase-1 inhibitor-1 in physiological and pathological beta-adrenoceptor signalling. Cardiovasc Res 91(3):392–401. https://doi.org/10.1093/cvr/cvr058

    Article  CAS  PubMed  Google Scholar 

  78. Chen G, Zhou X, Florea S, Qian J, Cai W, Zhang Z, Fan GC, Lorenz J, Hajjar RJ, Kranias EG (2010) Expression of active protein phosphatase 1 inhibitor-1 attenuates chronic beta-agonist-induced cardiac apoptosis. Basic Res Cardiol 105(5):573–581. https://doi.org/10.1007/s00395-010-0106-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nicolaou P, Rodriguez P, Ren X, Zhou X, Qian J, Sadayappan S, Mitton B, Pathak A, Robbins J, Hajjar RJ, Jones K, Kranias EG (2009) Inducible expression of active protein phosphatase-1 inhibitor-1 enhances basal cardiac function and protects against ischemia/reperfusion injury. Circ Res 104(8):1012–1020. https://doi.org/10.1161/CIRCRESAHA.108.189811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Watanabe S, Ishikawa K, Fish K, Oh JG, Motloch LJ, Kohlbrenner E, Lee P, Xie C, Lee A, Liang L, Kho C, Leonardson L, McIntyre M, Wilson S, Samulski RJ, Kranias EG, Weber T, Akar FG, Hajjar RJ (2017) Protein phosphatase Inhibitor-1 gene therapy in a swine model of nonischemic heart failure. J Am Coll Cardiol 70(14):1744–1756. https://doi.org/10.1016/j.jacc.2017.08.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Pathak A, del Monte F, Zhao W, Schultz JE, Lorenz JN, Bodi I, Weiser D, Hahn H, Carr AN, Syed F, Mavila N, Jha L, Qian J, Marreez Y, Chen G, McGraw DW, Heist EK, Guerrero JL, DePaoli-Roach AA, Hajjar RJ, Kranias EG (2005) Enhancement of cardiac function and suppression of heart failure progression by inhibition of protein phosphatase 1. Circ Res 96(7):756–766. https://doi.org/10.1161/01.RES.0000161256.85833.fa

    Article  CAS  PubMed  Google Scholar 

  82. Schwab DM, Tilemann L, Bauer R, Heckmann M, Jungmann A, Wagner M, Burgis J, Vettel C, Katus HA, El-Armouche A, Muller OJ (2018) AAV-9 mediated phosphatase-1 inhibitor-1 overexpression improves cardiac contractility in unchallenged mice but is deleterious in pressure-overload. Gene Ther 25(1):13–19. https://doi.org/10.1038/gt.2017.97

    Article  CAS  PubMed  Google Scholar 

  83. Pritchard TJ, Kawase Y, Haghighi K, Anjak A, Cai W, Jiang M, Nicolaou P, Pylar G, Karakikes I, Rapti K, Rubinstein J, Hajjar RJ, Kranias EG (2013) Active inhibitor-1 maintains protein hyper-phosphorylation in aging hearts and halts remodeling in failing hearts. PLoS One 8(12):e80717. https://doi.org/10.1371/journal.pone.0080717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lehmann LH, Jebessa ZH, Kreusser MM, Horsch A, He T, Kronlage M, Dewenter M, Sramek V, Oehl U, Krebs-Haupenthal J, von der Lieth AH, Schmidt A, Sun Q, Ritterhoff J, Finke D, Volkers M, Jungmann A, Sauer SW, Thiel C, Nickel A, Kohlhaas M, Schafer M, Sticht C, Maack C, Gretz N, Wagner M, El-Armouche A, Maier LS, Londono JEC, Meder B, Freichel M, Grone HJ, Most P, Muller OJ, Herzig S, Furlong EEM, Katus HA, Backs J (2018) A proteolytic fragment of histone deacetylase 4 protects the heart from failure by regulating the hexosamine biosynthetic pathway. Nat Med 24(1):62–72. https://doi.org/10.1038/nm.4452

    Article  CAS  PubMed  Google Scholar 

  85. Jebessa ZH, Shanmukha KD, Dewenter M, Lehmann LH, Xu C, Schreiter F, Siede D, Gong XM, Worst BC, Federico G, Sauer SW, Fischer T, Wechselberger L, Muller OJ, Sossalla S, Dieterich C, Most P, Grone HJ, Moro C, Oberer M, Haemmerle G, Katus HA, Tyedmers J, Backs J (2019) The lipid droplet-associated protein ABHD5 protects the heart through proteolysis of HDAC4. Nat Metab 1(11):1157–1167. https://doi.org/10.1038/s42255-019-0138-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Suckau L, Fechner H, Chemaly E, Krohn S, Hadri L, Kockskamper J, Westermann D, Bisping E, Ly H, Wang X, Kawase Y, Chen J, Liang L, Sipo I, Vetter R, Weger S, Kurreck J, Erdmann V, Tschope C, Pieske B, Lebeche D, Schultheiss HP, Hajjar RJ, Poller WC (2009) Long-term cardiac-targeted RNA interference for the treatment of heart failure restores cardiac function and reduces pathological hypertrophy. Circulation 119(9):1241–1252. https://doi.org/10.1161/CIRCULATIONAHA.108.783852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tian Y, Liu Y, Wang T, Zhou N, Kong J, Chen L, Snitow M, Morley M, Li D, Petrenko N, Zhou S, Lu M, Gao E, Koch WJ, Stewart KM, Morrisey EE (2015) A microRNA-hippo pathway that promotes cardiomyocyte proliferation and cardiac regeneration in mice. Sci Transl Med 7(279):279ra238. https://doi.org/10.1126/scitranslmed.3010841

    Article  CAS  Google Scholar 

  88. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103(7):2257–2261. https://doi.org/10.1073/pnas.0510565103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chen J, Huang ZP, Seok HY, Ding J, Kataoka M, Zhang Z, Hu X, Wang G, Lin Z, Wang S, Pu WT (2013) Mir-17-92 cluster is required for and sufficient to induce cardiomyocyte proliferation in postnatal and adult hearts. Circ Res 7:12

    Google Scholar 

  90. Eulalio A, Mano M, Dal Ferro M, Zentilin L, Sinagra G, Zacchigna S, Giacca M (2012) Functional screening identifies miRNAs inducing cardiac regeneration. Nature 492(7429):376–381. https://doi.org/10.1038/nature11739

    Article  CAS  PubMed  Google Scholar 

  91. Zhou SS, Jin JP, Wang JQ, Zhang ZG, Freedman JH, Zheng Y, Cai L (2018) miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol Sin 39(7):1073–1084. https://doi.org/10.1038/aps.2018.30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gupta SK, Foinquinos A, Thum S, Remke J, Zimmer K, Bauters C, de Groote P, Boon RA, de Windt LJ, Preissl S, Hein L, Batkai S, Pinet F, Thum T (2016) Preclinical development of a MicroRNA-based therapy for elderly patients with myocardial infarction. J Am Coll Cardiol 68(14):1557–1571. https://doi.org/10.1016/j.jacc.2016.07.739

    Article  CAS  PubMed  Google Scholar 

  93. Li Q, Xie J, Li R, Shi J, Sun J, Gu R, Ding L, Wang L, Xu B (2014) Overexpression of microRNA-99a attenuates heart remodelling and improves cardiac performance after myocardial infarction. J Cell Mol Med 18(5):919–928. https://doi.org/10.1111/jcmm.12242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ucar A, Gupta SK, Fiedler J, Erikci E, Kardasinski M, Batkai S, Dangwal S, Kumarswamy R, Bang C, Holzmann A, Remke J, Caprio M, Jentzsch C, Engelhardt S, Geisendorf S, Glas C, Hofmann TG, Nessling M, Richter K, Schiffer M, Carrier L, Napp LC, Bauersachs J, Chowdhury K, Thum T (2012) The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat Commun 3:1078. https://doi.org/10.1038/ncomms2090

    Article  CAS  PubMed  Google Scholar 

  95. Bernardo BC, Ooi JY, Matsumoto A, Tham YK, Singla S, Kiriazis H, Patterson NL, Sadoshima J, Obad S, Lin RC, McMullen JR (2016) Sex differences in response to miRNA-34a therapy in mouse models of cardiac disease: identification of sex-, disease- and treatment-regulated miRNAs. J Physiol 594(20):5959–5974. https://doi.org/10.1113/JP272512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hobuss L, Bar C, Thum T (2019) Long non-coding RNAs: at the heart of cardiac dysfunction? Front Physiol 10:30. https://doi.org/10.3389/fphys.2019.00030

    Article  PubMed  PubMed Central  Google Scholar 

  97. Han P, Li W, Lin CH, Yang J, Shang C, Nuernberg ST, Jin KK, Xu W, Lin CY, Lin CJ, Xiong Y, Chien H, Zhou B, Ashley E, Bernstein D, Chen PS, Chen HV, Quertermous T, Chang CP (2014) A long noncoding RNA protects the heart from pathological hypertrophy. Nature 514(7520):102–106. https://doi.org/10.1038/nature13596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hoepfner J, Leonardy J, Lu D, Schmidt K, Hunkler HJ, Biss S, Foinquinos A, Xiao K, Regalla K, Ramanujam D, Engelhardt S, Bar C, Thum T (2021) The long non-coding RNA NRON promotes the development of cardiac hypertrophy in the murine heart. Mol Ther 30:1265. https://doi.org/10.1016/j.ymthe.2021.11.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Viereck J, Kumarswamy R, Foinquinos A, Xiao K, Avramopoulos P, Kunz M, Dittrich M, Maetzig T, Zimmer K, Remke J, Just A, Fendrich J, Scherf K, Bolesani E, Schambach A, Weidemann F, Zweigerdt R, de Windt LJ, Engelhardt S, Dandekar T, Batkai S, Thum T (2016) Long noncoding RNA Chast promotes cardiac remodeling. Sci Transl Med 8(326):326ra322. https://doi.org/10.1126/scitranslmed.aaf1475

    Article  CAS  Google Scholar 

  100. Piccoli MT, Gupta SK, Viereck J, Foinquinos A, Samolovac S, Kramer FL, Garg A, Remke J, Zimmer K, Batkai S, Thum T (2017) Inhibition of the cardiac fibroblast-enriched lncRNA Meg3 prevents cardiac fibrosis and diastolic dysfunction. Circ Res 121(5):575–583. https://doi.org/10.1161/CIRCRESAHA.117.310624

    Article  CAS  PubMed  Google Scholar 

  101. Remes A, Wagner AH, Schmiedel N, Heckmann M, Ruf T, Ding L, Jungmann A, Senger F, Katus HA, Ullrich ND, Frey N, Hecker M, Muller OJ (2021) AAV-mediated expression of NFAT decoy oligonucleotides protects from cardiac hypertrophy and heart failure. Basic Res Cardiol 116(1):38. https://doi.org/10.1007/s00395-021-00880-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anca Remes .

Editor information

Editors and Affiliations

Ethics declarations

This work is supported by the EU-Project Cardio-ReGenix to OJM.

Conflict of Interest

Authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Remes, A., Frank, D., Müller, O.J. (2023). Therapeutic Innovations for Heart Failure. In: Hecker, M., Duncker, D.J. (eds) Cardiac Mechanobiology in Physiology and Disease. Cardiac and Vascular Biology, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-031-23965-6_13

Download citation

Publish with us

Policies and ethics