Skip to main content

Semi-supervised Multi-organ Segmentation with Cross Supervision Using Siamese Network

  • Conference paper
  • First Online:
Fast and Low-Resource Semi-supervised Abdominal Organ Segmentation (FLARE 2022)

Abstract

Numerous unlabeled data is useful for supervised medical image segmentation, if the labeled data is limited. To leverage all the unlabeled images for efficient abdominal organ segmentation, we developed semi-supervised framework with cross supervision using siamese network, i.e., SemiSeg-CSSN. Cross supervision enables the two networks to optimize the network using pseudo-labels generated by the other. Moreover, we applied the cascade strategy for the task because of the large and uncertain locations of the abdomen regions. To validate the effects of unlabeled data, we employed an unlabeled image filtering strategy to select the unlabeled image and their pseudo label images with low uncertainty. On the FLARE2022 validation cases, with the help of unlabeled data, our method obtained the average dice similarity coefficient (DSC) of 77.7% and average normalized surface distance (NSD) of 82.0%, which is better than the supervised method. The average running time is 12.9 s per case in inference phase and maximum used GPU memory is 2052 MB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In: Proceedings of the Eleventh Annual Conference on Computational Learning Theory, pp. 92–100 (1998)

    Google Scholar 

  2. Chen, L.-C., Lopes, R.G., Cheng, B., Collins, M.D., Cubuk, E.D., Zoph, B., Adam, H., Shlens, J.: Naive-student: leveraging semi-supervised learning in video sequences for urban scene segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 695–714. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_40

    Chapter  Google Scholar 

  3. Chen, X., Yuan, Y., Zeng, G., Wang, J.: Semi-supervised semantic segmentation with cross pseudo supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2613–2622 (2021)

    Google Scholar 

  4. Chen, Y., Mancini, M., Zhu, X., Akata, Z.: Semi-supervised and unsupervised deep visual learning: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 1–23 (2022). https://doi.org/10.1109/TPAMI.2022.3201576

  5. Clark, K., et al.: The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26(6), 1045–1057 (2013)

    Article  Google Scholar 

  6. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213–3223 (2016)

    Google Scholar 

  7. Everingham, M., Eslami, S., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes challenge: A retrospective. Int. J. Comput. Vision 111(1), 98–136 (2015)

    Article  Google Scholar 

  8. Fralick, S.: Learning to recognize patterns without a teacher. IEEE Trans. Inf. Theory 13(1), 57–64 (1967)

    Article  Google Scholar 

  9. Heller, N., et al.: The state of the art in kidney and kidney tumor segmentation in contrast-enhanced CT imaging: results of the kits19 challenge. Med. Image Anal. 67, 101821 (2021)

    Article  Google Scholar 

  10. Heller, N., et al.: An international challenge to use artificial intelligence to define the state-of-the-art in kidney and kidney tumor segmentation in ct imaging. Proc. Am. Soc. Clin. Oncol. 38(6), 626–626 (2020)

    Article  Google Scholar 

  11. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: NNU-net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  12. Ma, J., et al.: Fast and low-GPU-memory abdomen CT organ segmentation: the flare challenge. Med. Image Anal. 82, 102616 (2022). https://doi.org/10.1016/j.media.2022.102616

    Article  Google Scholar 

  13. Ma, J., et al.: Abdomenct-1k: is abdominal organ segmentation a solved problem? IEEE Trans. Pattern Anal. Mach. Intell. 44(10), 6695–6714 (2022)

    Google Scholar 

  14. Mittal, S., Tatarchenko, M., Brox, T.: Semi-supervised semantic segmentation with high-and low-level consistency. IEEE Trans. Pattern Anal. Mach. Intell. 43(4), 1369–1379 (2019)

    Article  Google Scholar 

  15. Scudder, H.: Probability of error of some adaptive pattern-recognition machines. IEEE Trans. Inf. Theory 11(3), 363–371 (1965)

    Article  MATH  Google Scholar 

  16. Simpson, A.L., et al.: A large annotated medical image dataset for the development and evaluation of segmentation algorithms. arXiv preprint arXiv:1902.09063 (2019)

  17. Yang, L., Zhuo, W., Qi, L., Shi, Y., Gao, Y.: St++: make self-training work better for semi-supervised semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4268–4277 (2022),

    Google Scholar 

  18. Zhang, F., Wang, Y., Yang, H.: Efficient context-aware network for abdominal multi-organ segmentation. arXiv preprint arXiv:2109.10601 (2021)

Download references

Acknowledgements

The authors of this paper declare that the segmentation method they implemented for participation in the FLARE 2022 challenge has not used any pre-trained models nor additional datasets other than those provided by the organizers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dengqiang Jia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jia, D. (2022). Semi-supervised Multi-organ Segmentation with Cross Supervision Using Siamese Network. In: Ma, J., Wang, B. (eds) Fast and Low-Resource Semi-supervised Abdominal Organ Segmentation. FLARE 2022. Lecture Notes in Computer Science, vol 13816. Springer, Cham. https://doi.org/10.1007/978-3-031-23911-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23911-3_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23910-6

  • Online ISBN: 978-3-031-23911-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics