Skip to main content

Rock Mass Characterization and Rockfall Monitoring: Traditional Approaches

  • Chapter
  • First Online:
Landslides: Detection, Prediction and Monitoring

Abstract

Rock mass characterization and rockfall/rock slope stability monitoring methods are one of the fastest evolving research areas in the field of geosciences. Traditionally, simple mapping, geodetical or geotechnical methods are used. The ongoing rapid development of monitoring methods is conditioned by engineering challenges when new infrastructure is nowadays being constructed in complicated geological conditions. These are represented by mountainous areas, deep gorges with steep slopes, or even active landslide sites. Traditional methods can be used within these monitoring demanding sites and bring high-quality monitoring results, sometimes with higher precision than modern state-of-art methods. This chapter reviews traditional rock slope stability monitoring methods and discusses their advantages, applicability, and strong/weak sides. Traditional methods are compared against newly introduced, modern state-of-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramson LW, Lee TS, Sharma S, Boyce GM (2001) Slope stability and stabilization methods. Wiley, New York

    Google Scholar 

  • Akbari R (2013) Crack survey in unreinforced concrete or masonry abutments in short- and medium-span bridges. J Perform Constr Facil 27:203–208. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000298

    Article  Google Scholar 

  • Aksoy CO (2008) Review of rock mass rating classification: historical developments, applications, and restrictions. J Min Sci 44:51–63. https://doi.org/10.1007/s10913-008-0005-2

    Article  Google Scholar 

  • André MF (1986) Dating slope deposits and estimating rates of rock wall retreat in northwest Spitsbergen by lichenometry. Geogr Ann Ser B 68(1–2):65–75

    Article  Google Scholar 

  • Angeli M-G, Pasuto A, Silvano S (2000) A critical review of landslide monitoring experiences. Eng Geol 55:133–147. https://doi.org/10.1016/S0013-7952(99)00122-2

    Article  Google Scholar 

  • Arosio D, Longoni L, Papini M, Scaioni M, Zanzi L, Alba M (2009) Towards rockfall forecasting through observing deformations and listening to microseismic emissions. Nat Hazards Earth Syst Sci 9:1119–1131. https://doi.org/10.5194/nhess-9-1119-2009

    Article  Google Scholar 

  • Azam M, Wagnon P, Berthier E, Vincent C, Fujita K, Kargel JS (2018) Review of the status and mass changes of Himalayan-Karakoram glaciers. J Glaciol 64:61–74. https://doi.org/10.1017/jog.2017.86

    Article  Google Scholar 

  • Bakun-Mazor D, Hatzor YH, Glaser SD, Santamarina JC (2013) Thermally vs. seismically induced block displacements in Masada rock slopes. Int J Rock Mech Min Sci 61:196–211. https://doi.org/10.1016/j.ijrmms.2013.03.005

  • Baroň I, Supper R (2013) Application and reliability of techniques for landslide site investigation, monitoring and early warning; outcomes from a questionnaire study. Nat Hazards Earth Syst Sci 13:3157–3168. https://doi.org/10.5194/nhess-13-3157-2013

    Article  Google Scholar 

  • Barton N (1974) A review of the shear strength of filled discontinuities in rock. Norwegian Geotechnical Institute Publication, Olso, p 105

    Google Scholar 

  • Barton N, Bar N (2015) Introducing the Q-slope method and its intended use within civil and mining engineering projects. In SRM regional symposium-EUROCK 2015. International Society for Rock Mechanics and Rock Engineering.

    Google Scholar 

  • Bauer A, Paar G, Kaltenböck A (2005) Mass movement monitoring using terrestrial laser scanner for rock fall management. Geo-Information For Disaster Management. Springer, Berlin, pp 393–406

    Chapter  Google Scholar 

  • Bell FG, Maud RR (1996) Landslides associated with the Pietermaritzburg Formation in the greater Durban area, South Africa: some case histories. Environ Eng Geosci 2(4):557–573

    Article  Google Scholar 

  • Bhalla S, Yang YW, Zhao J, Soh CK (2005) Structural health monitoring of underground facilities: technological issues and challenges. Tunnell Undergr Space Tech 20(5):487–500

    Article  Google Scholar 

  • Bienieawski ZT (1973) Engineering classification of jointed rock masses. Civ Eng S Afr 15:353

    Google Scholar 

  • Blahůt J, Jaboyedoff M, Thiebes B (2021) Novel approaches in landslide monitoring and data analysis special issue: trends and challenges. Appl Sci 11:10453. https://doi.org/10.3390/app112110453

  • Blikra LH, Christiansen HH (2014) A field-based model of permafrost-controlled rockslide deformation in northern Norway. Geomorphology 208:34–49. https://doi.org/10.1016/j.geomorph.2013.11.014

    Article  Google Scholar 

  • Blikra LH, Lovisolo M, Pless G, Kristensen L (2019) Subsurface instrumentation for evaluating water-pressure changes and deformation at the Åknes rockslide, western Norway. Geophys Res Abs 21.

    Google Scholar 

  • Bond AJ, Schuppener B, Scarpelli G, Orr TLL (2013) Eurocode 7: Geotechnical design worked examples. European Union, Luxembourg

    Google Scholar 

  • Boyd JM, Hinds DV, Moy D, Rogers C (1973) Two simple devices for monitoring movements in rock slopes. Q J Eng Geol Hydrogeol 6:295–302

    Article  Google Scholar 

  • Bull W (1996) Dating San Andreas fault earthquakes with lichenometry. Geology 24:111–114. https://doi.org/10.1130/0091-7613(1996)0240111:DSAFEW2.3.CO;2

    Article  Google Scholar 

  • Burland JB, Moore JFA, Smith PDK (1972) A simple and precise borehole extensometer. Geotechnique 22(1):174–177

    Article  Google Scholar 

  • Chandler JH, Moore R (1989) Analytical photogrammetry: a method for monitoring slope instability. Q J Eng Geol Hydrogeol 22:97–110. https://doi.org/10.1144/GSL.QJEG.1989.022.02.02

    Article  Google Scholar 

  • Cloutier C, Locat J, Charbonneau F, Couture R (2015) Understanding the kinematic behavior of the active Gascons rockslide from in-situ and satellite monitoring data. Eng Geol 195:1–15. https://doi.org/10.1016/j.enggeo.2015.05.017

    Article  Google Scholar 

  • Collins B, Stock GM (2016) Rockfall triggering by cyclic thermal stressing of exfoliation fractures. Nat Geosci 9:395–400. https://doi.org/10.1038/ngeo2686

    Article  Google Scholar 

  • Copons R, Vilaplana JM (2008) Rockfall susceptibility zoning at a large scale: from geomorphological inventory to preliminary land use planning. Eng Geol 102:142–151 https://doi.org/10.1016/j.enggeo.2008.03.020

  • Corsini A, Castagnetti C, Bertacchini E, Rivola R, Ronchett F, Capra A (2013) Integrating airborne and multi-temporal long-range terrestrial laser scanning with total station measurements for mapping and monitoring a compound slow moving rock slide. Earth Surf Process Land 38(11):1330–1338

    Article  Google Scholar 

  • Crosta GB, Agliardi F (2002) How to obtain alert velocity thresholds for large rockslides. Phys Chem Earth 27:1557–1565. https://doi.org/10.1016/S1474-7065(02)00177-8

    Article  Google Scholar 

  • Crosta GB, Di Prisco C, Frattini P, Frigerio G, Castellanza R (2014) Chasing a complete understanding of the triggering mechanisms of a large rapidly evolving rockslide. Landslides 11:747–764. https://doi.org/10.1007/s10346-013-0433-1

    Article  Google Scholar 

  • Cuffe OFLW (1907) Survey of inaccessible places by tacheometry. Min Proc Inst Civ Eng 107:315–323

    Google Scholar 

  • D’Amato J, Hantz D, Guerin A, Jaboyedoff M, Baillet L, Mariscal AM (2016) Influence of meteorological factors on rockfall occurrence in a middle mountain limestone cliff. Nat Hazards Earth Syst Sci 16:719–735. https://doi.org/10.5194/nhess-16-719-2016

    Article  Google Scholar 

  • Deere DU, Hendron AJ, Patton FD, Cording EJ (1967) Design of surface and near-surface construction in rock: failure and breakage of rock. In: Proceedings of 8th US symposium of rock mechanics, New York, pp 237–302

    Google Scholar 

  • Degraaff LWS, Dejong MGG, Rupke J, Verhofstand J (1987) A geomorphological mapping system at scale 1: 10,000 for mountainous areas. Z Geomorphol 31:229–242

    Article  Google Scholar 

  • Demek J, Embleton C (1978) Guide to medium-scale geomorphological mapping, 1st edn. Schweizerbarts, Stuttgart

    Google Scholar 

  • Deschamps R, Hynes C, Wigh R (1998) Extending the period of data retrieval for vertical inclinometers. J Geotech Geoenviron Eng 124:454–456. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:5(454)

    Article  Google Scholar 

  • Ding X, Ren DY, Montgomery B, Swindells C (2000) Automatic monitoring of slope deformations using geotechnical instruments. J Surv Eng 126:57–68. https://doi.org/10.1061/(ASCE)0733-9453(2000)126:2(57)

    Article  Google Scholar 

  • Dorren LKA (2003) A review of rockfall mechanics and modelling approaches. Prog Phys Geogr Earth Environ 27:69–87. https://doi.org/10.1191/0309133303pp359ra

  • Dorren D, Jonsson M, Krautblatter M, Mölk M, Stoffel M, Wehrli A, Berger F (2007) State of the art in rockfall–forest interactions. Schweiz Z Fur Forstwes 158:128–141

    Article  Google Scholar 

  • Duffield WA, Burford RO (1973) An accurate invar-wire extensometer. J Res US Geol Surv 1:569– 577

    Google Scholar 

  • Dunnicliff J (1993) Geotechnical instrumentation for monitoring field performance. John Wiley & Sons

    Google Scholar 

  • Einstein HH, Veneziano D, Baecher GB, O’Reilly KJ (1983) The effect of discontinuity persistence on rock slope stability. Int J Rock Mech Min Sci Geomech Abstr 20:227–236. https://doi.org/10.1016/0148-9062(83)90003-7

    Article  Google Scholar 

  • Ellis JF (1975) Linear displacement transducer utilizing an oscillator whose average period varies as a linear function of the displacement. U.S. Patent No 3,891,918, 1975

    Google Scholar 

  • Erol S, Erol B, Ayan T (2004) A general review of the deformation monitoring techniques and a case study: analysing deformations using GPS/levelling. In: XXth ISPRS congress, vol 7, no 5, p 12

    Google Scholar 

  • Fahey BD, Lefebure TH (1988) The freeze-thaw weathering regime at a section of the Niagara escarpment on the Bruce Peninsula, Southern Ontario, Canada. Earth Surf Process Landf 13:293–304. https://doi.org/10.1002/esp.3290130403

    Article  Google Scholar 

  • Fantini A, Fiorucci M, Martino S, Marino L, Napoli G, Prestininzi A, Salvetti O, Sarandrea P, Stedile L (2016) Multi-sensor system designed for monitoring rock falls: the experimental test-site of Acuto (Italy). Rend Online Soc Geol Ital 41:147–150. https://doi.org/10.3301/ROL.2016.115

    Article  Google Scholar 

  • Farrokh N, Intrieri E (2011) Early warning systems for landslides: challenges and new monitoring technologies. 5th Canadian conference on geotechnique and natural hazards. Kelowna.

    Google Scholar 

  • Fassò A, Nicolis O, Bruzzi D, Pezzeti G (2005) Modelling and reducing uncertainty of field monitoring data in geomechanics by computerized statistical methods. In: Proceedings of 11th IACMAG conference, Torino, pp 595–602

    Google Scholar 

  • Feng Q, Sjögren P, Stephansson O, Jing L (2001) Measuring fracture orientation at exposed rock faces by using a non-reflector total station. Eng Geol 59(1–2):133–146

    Article  Google Scholar 

  • Fengrui Z (2011) The discussion of reflectorless measurement accuracy. Bull Surv Map 11.

    Google Scholar 

  • Fiorucci M, Martino S, Bozzano F, Prestininzi A (2020) Comparison of approaches for data analysis of multi-parametric monitoring systems: insights from the Acuto test-site (Central Italy). Appl Sci 10(21):7658

    Article  Google Scholar 

  • Fischer L, Purves RS, Huggel C, Noetzli J, Haeberli W (2012) On the influence of topographic, geological and cryospheric factors on rock avalanches and rockfalls in high-mountain areas. Nat Hazards Earth Syst Sci 12:241

    Article  Google Scholar 

  • Frodl H, Naterop D (2007) Trivec and sliding micrometer: fully digital instruments for geotechnical displacement and deformation measurement. In: 7th FMGM 2007: field measurements in geomechanics. Boston, p 1–12

    Google Scholar 

  • Gaffet S, Guglielmi Y, Cappa F, Pambrun C, Monfret T, Amitrano D (2010) Use of the simultaneous seismic, GPS and meteorological monitoring for the characterization of a large unstable mountain slope in the southern French Alps. Geophys J Int 182:1395–1410. https://doi.org/10.1111/j.1365-246X.2010.04683.x

    Article  Google Scholar 

  • Glawe U, Zika P, Zvelebil J, Moser M, Rybář J (1993) Time prediction of a rock fall in the Carnic Alps. Q J Eng Geol Hydrogeol 26:185–192. https://doi.org/10.1144/GSL.QJEGH.1993.026.003.04

    Article  Google Scholar 

  • Greif V, Sassa K, Fukuoka H (2006) Failure mechanism in an extremely slow rock slide at Bitchu-Matsuyama castle site (Japan). Landslides 3:22–38. https://doi.org/10.1007/s10346-005-0013-0

    Article  Google Scholar 

  • Gunatilake J, Yushiro I, Takanari Y (2002) Relationship of the faulting to the creep movement of Iwakura landslide in Saga, Japan. Landslides 39:212–223

    Article  Google Scholar 

  • Gunzburger Y, Merrien-Soukatchoff V, Guglielm Y (2005) Influence of daily surface temperature fluctuations on rock slope stability: case study of the Rochers de Valabres slope (France). Int J Rock Mech Min Sci 1997(42):331–349. https://doi.org/10.1016/j.ijrmms.2004.11.003

    Article  Google Scholar 

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31:181–216. https://doi.org/10.1016/S0169-555X(99)00078-1

    Article  Google Scholar 

  • Hartmeyer I, Keuschnig M, Schrott L (2012) A scale-oriented approach for the long-term monitoring of ground thermal conditions in permafrost-affected rock faces, Kitzsteinhorn, Hohe Tauern Range, Austria. Austrian J Earth Sci 105(2)

    Google Scholar 

  • Hartvich F, Mentlík P (2010) Slope development reconstruction at two sites in the Bohemian Forest Mountains. Earth Surf Process Landf 35:373–389. https://doi.org/10.1002/esp.1932

    Article  Google Scholar 

  • Hartvich F, Blahut J, Stemberk J (2017) Rock avalanche and rock glacier: a compound landform study from Hornsund, Svalbard. Geomorphology 276:244–256

    Article  Google Scholar 

  • Hoek E, Kaiser PK, Bawden WF (1995) Support of underground excavations in hard rock. AA Balkema, Rotterdam

    Google Scholar 

  • Huang Q-X, Jialin W, Jian-hui D (2009) Lope deformation character analysis based on monitoring results of multiple multi-point borehole extensometer. Chin J Rock Mechan Eng 28:2667–2673

    Google Scholar 

  • Hungr O, Yau HW, Tse CM, Cheng LF, Cheng LF (1999) Natural slope hazard and risk assessment framework In: Urban ground engineering. Thomas Telford Publishing, London, pp 332–353

    Google Scholar 

  • Isioye AO, Jobin P (2012) An assessment of digital elevation models (DEMs) from different spatial data sources. Asian J Eng Sci Technol 2

    Google Scholar 

  • Ivor H, Moxon S (1965) The measurement of in situ rock stress using the photoelastic biaxial gauge with the core-relief technique. Int J Rock Mech Min Sci Geomech Abstr 2:405–419

    Article  Google Scholar 

  • Janeras M, Jara JA, Royan MJ, Vilaplana JM, Aguasca A, Fabregas X, Gili JA, Buxo P (2017) Multi-technique approach to rockfall monitoring in the Montserrat massif (Catalonia, NE Spain). Eng Geol 219:4–20. https://doi.org/10.1016/j.enggeo.2016.12.010

    Article  Google Scholar 

  • Johnson R (2005) Significance of cracks in low-rise buildings: what you need to know. Proc Inst Civ Eng Civ Eng 158:30–35

    Google Scholar 

  • Joshi S, Upreti DK, Das P, Nayaka S (2012) Lichenometry: a technique to date natural hazards. Earth Sci India 4(2):1–16

    Google Scholar 

  • Kanagawa T, Hibino S, Ishida T, Hayash M, Kitahara Y (1986) In situ stress measurements in the Japanese islands: over-coring results from a multi-element gauge used at 23 sites. Int J Rock Mech Min Sci Geomech Abstr 23:29–39

    Article  Google Scholar 

  • Kiremidjian AS, Straser EG, Meng T, Law K, Soon H (1997) Structural damage monitoring for civil structures. In: International workshop-structural health monitoring. SHM, pp 371–382

    Google Scholar 

  • Klapyta P (2013) Application of Schmidt hammer relative age dating to Late Pleistocene moraines and rock glaciers in the Western Tatra mountains, Slovakia. CATENA 111:104–121. https://doi.org/10.1016/j.catena.2013.07.004

    Article  Google Scholar 

  • Klimeš J, Rowberry M, Blahůt J, Briestenský M, Hartvich F, Košťák B, Rybář J, Stemberk J, Štěpančíková P (2012) The monitoring of slow-moving landslides and assessment of stabilisation measures using an optical–mechanical crack gauge. Landslides 9(3):407–415. https://doi.org/10.1007/s10346-011-0306-4

    Article  Google Scholar 

  • Klose CD, Loew S, Giese R, Borm G (2007) Spatial predictions of geological rock mass properties based on in-situ interpretations of multi-dimensional seismic data. Eng Geol 93:99–116. https://doi.org/10.1016/j.enggeo.2007.06.001

    Article  Google Scholar 

  • Košťák B, Chan B, Rybář J (2006) Deformation trends in the Jezeří Castle Massif, Krušné Hory Mts. Acta Geodyn Et Geomater 3:39–49

    Google Scholar 

  • Košťák B, Mrlina J, Stemberk J, Chán B (2011) Tectonic movements monitored in the Bohemian Massif. J Geodyn 52(1):34–44. https://doi.org/10.1016/j.jog.2010.11.007

    Article  Google Scholar 

  • Krautblatter M, Moser M (2009) A nonlinear model coupling rockfall and rainfall intensity based newline on a four year measurement in a high Alpine rock wall (Reintal, German Alps). Nat Hazards Earth Syst Sci 9:1425–1432. https://doi.org/10.5194/nhess-9-1425-2009

    Article  Google Scholar 

  • Krautblatter M, Moser M, Schrott L, Wolf J, Morche D (2012) Significance of rockfall magnitude and carbonate dissolution for rock slope erosion and geomorphic work on Alpine limestone cliffs (Reintal, German Alps). Geomorphology (Amst) 167:21–34. https://doi.org/10.1016/j.geomorph.2012.04.007

  • Krishnan R, Sommer HJ (1994) Estimation of rock face stability. Proc SPIE Int Soc Opt Eng 2347, 93–104

    Google Scholar 

  • Kulatilake, PHSW, Wu, TH (1984) Estimation of mean trace length of discontinuities. Rock Mech Rock Eng 17:215–232. https://doi.org/10.1007/BF01032335

  • Lambert S, Nicot F (eds) (2013) Rockfall engineering. John Wiley & Sons, New York

    Google Scholar 

  • Lambrou E, Pantazis G (2006) A new geodetic methodology for the accurate documentation and monitoring of inaccessible surfaces. In: Proceedings of 12th FIG symposium on deformation measurement and analysis/3rd IAG symposium on geodesy for geotechnical and structural engineering. Baden, pp 22–24

    Google Scholar 

  • Lazar A, Beguž T, Vulič M (2018) Monitoring of the Belca rockfall. Acta Geotech Slovenica 15:2–15 https://doi.org/10.18690/actageotechslov.15.2.2-15.2018

  • Li SJ, Feng XT, Hudson JA (2012) ISRM suggested method for measuring rock mass displacement using a sliding micrometer. In The ISRM suggested methods for rock characterization, testing and monitoring: 2007–2014. Springer, Cham, pp 169–177

    Google Scholar 

  • Ljunggren C, Chang Y, Janson T, Christiansson R (2003) An overview of rock stress measurement methods. Int J Rock Mech Min Sci 40(7–8):975–989

    Article  Google Scholar 

  • Lo TC, Chan PC, Tang Z (1995) Design and characterization of a micro strain gauge. In 1995 IEEE TENCON. IEEE region 10 international conference on microelectronics and VLSI. Asia-Pacific microelectronics 2000. Proceedings. pp 36–39

    Google Scholar 

  • Luckman BH (2008) Forty years of rockfall accumulation at the mount Wilcox site, Jasper National Park, Alberta, Canada. Geogr Pol 79

    Google Scholar 

  • Macciotta R, Derek MC (2015) Remote structural mapping and discrete fracture networks to calculate rockfall volumes at Tornado Mountain, British Columbia. In: 49th US rock mechanics/geomechanics symposium, American Rock Mechanics Association, San Francisco

    Google Scholar 

  • Maria MR, Garcia-Moreno I, Azanon JM (2012) Freeze–thaw cycles and rainfall as triggering factors of mass movements in a warm Mediterranean region: the case of the Tramuntana Range (Mallorca, Spain). Landslides 9:417–432. https://doi.org/10.1007/s10346-011-0290-8

  • Marzorati S, Luzi L, De Amicis M (2002) Rock falls induced by earthquakes: a statistical approach. Soil Dyn Earthquake Eng 1984(22):565–577. https://doi.org/10.1016/S0267-7261(02)00036-2

    Article  Google Scholar 

  • Masoumi I, Ahangari K, Noorzad A (2017) Reliable monitoring of embankment dams with optimal selection of geotechnical instruments. Struct Monit Maint 4:85–105. https://doi.org/10.12989/smm.2017.4.1.085

  • McCarroll D (1985) Weathering-based dating techniques: a critical review. Swansea Geogr 22:27–45

    Google Scholar 

  • McVey JR, Lewis SR, Guidice SR (1974) Deformation monitoring of underground openings: by photographic techniques. U.S. Bureau of Mines, Washington

    Google Scholar 

  • Menditto A, Patriarca M, Magnusson B (2007) Understanding the meaning of accuracy, trueness and precision. Accred Qual Assur 12:45–47. https://doi.org/10.1007/s00769-006-0191-z

    Article  Google Scholar 

  • Mentes G (2012) A new borehole wire extensometer with high accuracy and stability for observation of local geodynamic processes. Rev Sci Instrum 83:015109–015109. https://doi.org/10.1063/1.3676652

    Article  Google Scholar 

  • Motagh M, Djamour Y, Walter TR, Wetzel HU, Zschau J (2007) Land subsidence in Mashhad Valley, northeast Iran: results from InSAR, levelling and GPS. Geophys J Int 168:518–526. https://doi.org/10.1111/j.1365-246X.2006.03246.x

    Article  Google Scholar 

  • Nesje A, Blikra LH, Anda E (1994) Dating rockfall-avalanche deposits from degree of rock-surface weathering by Schmidt-hammer tests: a study from Norangsdalen. Nor Geol Tidsskr 74:108–113

    Google Scholar 

  • O’Connor KM, Dowding CH (1999) Geomeasurements by pulsing TDR cables and probes. CRC Press

    Google Scholar 

  • Olona J, Pulga JA, Fernandez-Viejo G, Lopez-Fernande C, Gonzalez-Cortina JM (2010) Weathering variations in a granitic massif and related geotechnical properties through seismic and electrical resistivity methods. Near Surf Geophys 8:585–599. https://doi.org/10.3997/1873-0604.2010043

    Article  Google Scholar 

  • Ortloff W, Goldammer JG, Schweingruber FH, Swetnam TW (1995) Jahrringanalytische Untersuchungen zur Feuergeschichte eines Bestandes von Pinus ponderosa Dougl. ex Laws. in den Santa Rita Mountains, Arizona, USA. Forstarchiv 66:206–214

    Google Scholar 

  • Osasan K, Afen TB (2010) Review of surface mine slope monitoring techniques. J Min Sci 46:177–186. https://doi.org/10.1007/s10913-010-0023-8

    Article  Google Scholar 

  • Peng M, Li XY, Li DQ, Jiang SH, Zhang LM (2014) Slope safety evaluation by integrating multi-source monitoring information. Struct Saf 49:65–74. https://doi.org/10.1016/j.strusafe.2013.08.007

  • Peters E, Van Der Vliet P (2009) Sensor network geo-beads TM serves real time and online geotechnical monitoring of large areas. In: Proceedings of the international conference on landslide processes: from geomorphologic mapping to dynamic modelling. CERG Éditions, Strasbourg

    Google Scholar 

  • Pratt C, Macciotta R, Hendry M (2019) Quantitative relationship between weather seasonality and rock fall occurrences north of Hope, BC, Canada. Bull Eng Geol Environ 78:3239–3251. https://doi.org/10.1007/s10064-018-1358-7

    Article  Google Scholar 

  • Price DG (2010) Engineering geology: principles and practice, 1st edn. Springer, Heidelberg

    Google Scholar 

  • Racek O, Blahůt J, Hartvich F (2021) Observation of the rock slope thermal regime, coupled with crackmeter stability monitoring: initial results from three different sites in Czechia (Central Europe). Geosci Inst Methods Data Sys 10:203–218. https://doi.org/10.5194/gi-10-203-2021

    Article  Google Scholar 

  • Raška P, Klimes J, Dubisar J (2015) Using local archive sources to reconstruct historical landslide occurrence in selected urban regions of the Czech Republic: examples from regions with different historical development. Land Degrad Devel 26(2):142–157

    Article  Google Scholar 

  • Riley FS (1984) Developments in borehole extensometry. In: Proceedings of the third international symposium on land subsidence. Venice, Italy

    Google Scholar 

  • Rocha M, Cording EJ (1981) Basic geotechnical description of rock masses. Int J Rock Mech Min Sci Geomech Abstr 18:85–110

    Google Scholar 

  • Romana MR (1993) A geomechanical classification for slopes: slope mass rating. In: Rock testing and site characterization, Pergamon, pp 575–600

    Google Scholar 

  • Royan M, Abellan A, Manuel J, Vilaplana (2015) Progressive failure leading to the 3 December 2013 rockfall at Puigcercós scarp (Catalonia, Spain). Landslides 12:585–595. https://doi.org/10.1007/s10346-015-0573-6

    Article  Google Scholar 

  • Rozsypal A (2001) Control monitoring and risks in geotechnics. Jaga, Bratislava

    Google Scholar 

  • Saleh B, Al-Bayari O (2007) Geodetic monitoring of a landslide using conventional surveys and GPS techniques. Surv Rev 39:252–260. https://doi.org/10.1179/175227007X197165

    Article  Google Scholar 

  • Salvini R, Vanneschi C, Riccucci S, Francioni M, Gullì D (2015) Application of an integrated geotechnical and topographic monitoring system in the Lorano marble quarry (Apuan Alps, Italy). Geomorphology 241:209–223

    Article  Google Scholar 

  • Sass O (2005) Temporal variability of rockfall in the Bavarian Alps, Germany. Arct Antarct Alp Res 37:564–573. https://doi.org/10.1657/1523-0430(2005)037

    Article  Google Scholar 

  • Savvaidis PD (2003) Existing landslide monitoring systems and techniques. In From stars to earth and culture, Greece, pp 242–258

    Google Scholar 

  • Scherer M, Lerma JL (2009) From the conventional total station to the prospective image assisted photogrammetric scanning total station: comprehensive review. J Surv Eng 135(4):173–178

    Article  Google Scholar 

  • Sowers GF (1993) Human factors in civil and geotechnical engineering failures. Int J Geotech Eng 119:238–256

    Article  Google Scholar 

  • Stemberk J, Košťák B, Cacon S (2010) A tectonic pressure pulse and increased geodynamic activity recorded from the long-term monitoring of faults in Europe. Tectonophysics 487:1–12. https://doi.org/10.1016/j.tecto.2010.03.001

    Article  Google Scholar 

  • Stiros S, Vichaz C, Skourtis C (2004) Landslide monitoring based on geodetically derived distance changes. J Surv Eng 130:156–162. https://doi.org/10.1061/(ASCE)0733-9453(2004)130:4(156)

    Article  Google Scholar 

  • Stoffel M (2006) A review of studies dealing with tree rings and rockfall activity: the role of dendrogeomorphology in natural hazard research. Nat Haz 39(1):51–70

    Article  Google Scholar 

  • Stoffel M, Bollschweile M (2008) Tree-ring analysis in natural hazards research: an overview. Nat Hazards Earth Syst Sci 8:187–202. https://doi.org/10.5194/nhess-8-187-2008

    Article  Google Scholar 

  • Stoffel M, Hitz OM (2008) Rockfall and snow avalanche impacts leave different anatomical signatures in tree rings of juvenile Larix decidua. Tree Physiol 28:1713–1720. https://doi.org/10.1093/treephys/28.11.1713

    Article  Google Scholar 

  • Strauhal T, Loew S, Holzmann M, Zangerl C (2016) Detailed hydrogeological analysis of a deep-seated rockslide at the Gepatsch reservoir (Klasgarten, Austria). Hydrogeol J 24:349–371. https://doi.org/10.1007/s10040-015-1341-3

    Article  Google Scholar 

  • Strouth A, Burk RL, Eberhardt E (2006) The afternoon creek rockslide near Newhalem, Washington. Landslides 3(2):175–179

    Article  Google Scholar 

  • Sugawara K, Obara Y (1999) Draft ISRM suggested method for in situ stress measurement using the compact conical-ended borehole overcoring (CCBO) technique. Int J Rock Mech Min Sci Geomech Abstr 36:309–322

    Google Scholar 

  • Sugawara K, Fukahori D, Faramarzi L, Nakamura N (2003) High-resolution tilt monitoring for slope stability assessment in limestone quarry. In: Environmental rock engineering: proceedings of the first Kyoto international symposium on underground environment. Kyoto

    Google Scholar 

  • Thorarinsson A (2015) Geotechnical data handling from A to Z. FMGM 2015: proceedings of the ninth symposium on field measurements in geomechanics. Australian Centre for Geomechanics

    Google Scholar 

  • Van Westen CJ, Seijmonsbergen AC, Mantovani F (1999) Comparing landslide hazard maps. Nat Hazard 20:137–158. https://doi.org/10.1023/A:1008036810401

  • Vařilová Z, Zvelebil J (2005) Sandstone relief geohazards and their mitigation: rockfall risk management in the Bohemian Switzerland National Park. Ferrantia 44(44):51–55

    Google Scholar 

  • Vilímek V, Zvelebil J, Klimeš J, Patzelt Z, Astete F, Kachlik V, Hartvich F (2007) Geomorphological research of large-scale slope instability at Machu Picchu, Peru. Geomorphology 89:241–257. https://doi.org/10.1016/j.geomorph.2006.12.004

    Article  Google Scholar 

  • Viswanathan M (2005) Measurement error and research design. Sage Publications, Thousand Oaks

    Book  Google Scholar 

  • Walstra J, Chandler JH, Dixon N, Dijkstra TA (2007) Aerial photography and digital photogrammetry for landslide monitoring. Geol Soc Spec Publ 283(1):53–63

    Article  Google Scholar 

  • Weber S, Beute J, Faillettaz J, Hasler A, Krautblatter M, Vieli A (2017) Quantifying irreversible movement in steep, fractured bedrock permafrost on Matterhorn (CH). Cryosphere 11:567–583. https://doi.org/10.5194/tc-11-567-2017

    Article  Google Scholar 

  • Welch R, Dikkers K (1978) Educational and research aspects of non-metric, close range analogue photogrammetry. Photogram Rec 9(52):537–547

    Article  Google Scholar 

  • Wieczorek GF, Snyder JB (2009) Monitoring slope movements. In: Geological monitoring, Geological Society of America, Boulder, pp 245–271

    Google Scholar 

  • Wieczorek GF, Snyder JB, Alger CS, Isaacson KA (1992) Rock falls in Yosemite Valley, California. US Geological Survey Open-File Report 92

    Google Scholar 

  • Wirth J, Mario G (1968) Vibrating string for measuring purposes. U.S. Patent No. 3,411,347. 19 Nov 1968

    Google Scholar 

  • Wittke W (2014) Stabilization of a rock mass slide. Rock Mechanics Based on an Anisotropic Jointed Rock Model (AJRM), pp 803–818

    Google Scholar 

  • Woschitz H, Macheiner K (2007) Static and kinematic testing of tiltmeters: facilities and results. Vermessung Geoinf 2:134–142

    Google Scholar 

  • Yang B, Mitelman A, Elmo D, Stead D (2022) Why the future of rock mass classification systems requires revisiting their empirical past. Quat J Eng Geol Hydrogeol 55(1):qjegh2021-039 https://doi.org/10.1144/qjegh2021-039

  • Zangerl C, Eberhardt E, Perzlmaier S (2010) Kinematic behavior and velocity characteristics of a complex deep-seated crystalline rockslide system in relation to its interaction with a dam reservoir. Eng Geol 112:53–67. https://doi.org/10.1016/j.enggeo.2010.01.001

    Article  Google Scholar 

  • Zhang Y, Tang H, Li C, Lu G, Cai Y, Zhang J, Tan F (2018) Design and testing of a flexible inclinometer probe for model tests of landslide deep displacement measurement. Sensors 18:224. https://doi.org/10.3390/s18010224

    Article  Google Scholar 

  • Zvelebil J, Moser M (2001) Monitoring based time-prediction of rock falls: three case-histories. Phys Chem Earth Hydrol Oceans Atmos 26:159–167. https://doi.org/10.1016/S1464-1909(00)00234-3

    Article  Google Scholar 

  • Zvelebil J, Cílek V, Stemberk J (2002) Partial results of monitoring of stability deterioration on Pravčice rock arch, NW Bohemia. In: Understanding and managing stone decay. SWAPNET 2001 Karolinum, Praha, pp 243–261

    Google Scholar 

Download references

Acknowledgements

We would like to thank Charles University and the Czech Academy of Sciences for their financial support. We would also like to thank the reviewers and the editor for their beneficial remarks that lead to the improvement of this paper. This research was performed in the framework of the long-term conceptual development research organization RVO: 67985891, TAČR project no. SS02030023 “Rock environment and resources” within the program “Environment for life”, internal financing from Charles University Progress Q44 and SVV (SVV260438) and the Charles University Grant Agency (GAUK 359421).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondřej Racek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Racek, O., Blahůt, J. (2023). Rock Mass Characterization and Rockfall Monitoring: Traditional Approaches. In: Thambidurai, P., Singh, T.N. (eds) Landslides: Detection, Prediction and Monitoring. Springer, Cham. https://doi.org/10.1007/978-3-031-23859-8_2

Download citation

Publish with us

Policies and ethics