Skip to main content

Water Cycle Changes in a Warming World: The Scientific Background

  • Chapter
  • First Online:
Water Risk Modeling

Abstract

Global climate change is rapidly approaching the threshold of what is considered safe by the global climate research community. There is ample and robust evidence that extreme weather events are occurring more frequently across the globe. Also, it is now a well-established fact that the warming catalysed by the industrial revolution is caused by human emissions of greenhouse gases into the atmosphere, primarily in the form of Carbon Dioxide (CO2). While fossil fuels have allowed society to evolve into its current modern iteration, their effects may also wreak havoc on the stable climate we depend upon in the long term. In the course of the last two centuries, scientists have determined that the planet warms with every ton of CO2 emitted, and also that weather becomes increasingly extreme due to the associated changes in the global water cycle. Since the beginning of the rapid ‘modern’ global warming 40 years ago, many of the changes the scientific community predicted—underpinned by a very solid understanding of the physics of the atmosphere and the climate system—have indeed materialised. Heat extremes have become hotter, drought episodes have become longer, extreme rainfalls have become more extreme. In essence, it is very likely that the hydrological cycle during the wet season has already intensified. This review article introduces the theory behind warming-induced changes of the global water cycle and includes a discussion of the implications of this theory at global and regional levels. A few recent attribution studies demonstrate how the role of humans in altering the odds of extreme weather occurring is quantified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The ENSO is a climate phenomenon occurring in three phases: ‘El Niño’, ‘Neutral’ and ‘La Niña’. During the El Niño phase, there are above-average sea surface temperatures (SSTs) in the central and eastern tropical Pacific Ocean. The La Niña phase is characterized by below-average SSTs in this region. The two phases are characterized by either reduced or increased rainfall over Indonesia and the tropical Pacific Ocean; additionally, low-level surface winds can weaken or even reverse direction between the two phases. The Neutral phase can either lie between the extremes of El Niño and La Niña, or else display atmospheric versus ocean behaviours inconsistent with either of the other phases.

References

  • Abbott, B. W., Bishop, K., Zarnetske, J. P., Minaudo, C., Chapin III, F. S., Krause, S., Hannah, D. M., Conner, L., Ellison, D., Godsey, S. E., Plont, S., Marçais, J., Kolbe, T., Huebner, A., Frei, R. J., Hampton, T., Gu, S., Buhman, M., Sara Sayedi, S., … & Pinay, G. (2019). Human domination of the global water cycle absent from depictions and perceptions. Nature Geoscience, 12(7), 533–540. https://doi.org/10.1038/s41561-019-0374-y

  • Adler, R. F., Gu, G., Sapiano, M., Wang, J.-J., & Huffman, G. J. (2017). Global precipitation: Means, variations and trends during the satellite era (1979–2014). Surveys in Geophysics, 38(4), 679–699. https://doi.org/10.1007/s10712-017-9416-4

    Article  Google Scholar 

  • Allan, R. P., Barlow, M., Byrne, M. P., Cherchi, A., Douville, H., Fowler, H. J., Gan, T. Y., Pendergrass, A. G., Rosenfeld, D., Swann, A. L. S., Wilcox, L. J., & Zolina, O. (2020). Advances in understanding large-scale responses of the water cycle to climate change. Annals of the New York Academy of Sciences, 1472(1), 49–75. https://doi.org/10.1111/nyas.14337

  • Arias, P. A., Fu, R., Vera, C., & Rojas, M. (2015). A correlated shortening of the North and South American monsoon seasons in the past few decades. Climate Dynamics, 45(11), 3183–3203. https://doi.org/10.1007/s00382-015-2533-1

    Article  Google Scholar 

  • Arrhenius, S. (1896). On the influence of carbonic acid in the air on the temperature of the ground. Philosophical Magazine and Journal of Science, 41(5), 237–276.

    Article  Google Scholar 

  • Bollasina, M. A., Ming, Y., & Ramaswamy, V. (2011). Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science, 334(6055), 502–505. https://doi.org/10.1126/science.1204994

    Article  Google Scholar 

  • Bonfils, C. J., Santer, B. D., Fyfe, J. C., Marvel, K., Phillips, T. J., & Zimmerman, S. R. (2020). Human influence on joint changes in temperature, rainfall and continental aridity. Nature Climate Change, 10(8), 1–6, https://doi.org/10.1038/s41558-020-0821-1

  • Byrne, M. P., & O’Gorman, P. A. (2018). Trends in continental temperature and humidity directly linked to ocean warming. Proceedings of the National Academy of Sciences, 115(19), 4863–4868. https://doi.org/10.1073/pnas.1722312115

    Article  Google Scholar 

  • Caesar, L., McCarthy, G. D., Thornalley, D. J. R., Cahill, N., & Rahmstorf, S. (2021). Current Atlantic meridional overturning circulation weakest in last millennium. Nature Geoscience, 14(3), 118–120. https://doi.org/10.1038/s41561-021-00699-z

    Article  Google Scholar 

  • Callendar, G. S. (1938). The artificial production of carbon dioxide and its influence on temperature. Quarterly Journal Royal Meteorological Society, 64, 223–240. https://doi.org/10.1002/qj.49706427503

    Article  Google Scholar 

  • Caretta, M. A., Mukherji, A., Arfanuzzaman, M., Betts, R. A., Gelfan, A., Hirabayashi, Y., Lissner, T. K., Liu, J., Lopez Gunn, E., Morgan, R., Mwanga, S., & Supratid, S. (2022). Water. In H.-O. Pörtner, D. C. Roberts, M. Tignor, E. S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, & B. Rama (Eds.), Climate change 2022: Impacts, adaptation and vulnerability. Contribution of working group II to the sixth assessment report of the intergovernmental panel on climate change (pp. 551–712). Cambridge University Press. https://doi.org/10.1017/9781009325844.006

  • Chemke, R., Zanna, L., & Polvani, L. M. (2020). Identifying a human signal in the North Atlantic warming hole. Nature Communications, 11, 1540. https://doi.org/10.1038/s41467-020-15285-x

    Article  Google Scholar 

  • Chen, J., Dai, A., Zhang, Y., & Rasmussen, K. L. (2020). Changes in convective available potential energy and convective inhibition under global warming. Journal of Climate, 33(6), 2025–2050. https://doi.org/10.1175/jcli-d-19-0461.1

    Article  Google Scholar 

  • Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T., Friedlingstein, P., Gao, X., Gutowski, W. J., Johns, T., Krinner, G., Shongwe, M., Tebaldi, C., Weaver, A. J., Wehner, M. F., Allen, M. R., Andrews, T., Beyerle, U., Bitz, C. M., S. Bony, & Booth, B. B. B. (2013). Long-term climate change: Projections, commitments and irreversibility. In T. F. Stocker, Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., & Midgley, P. M. (Eds.), Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change (pp. 1029–1136). Cambridge University Press. https://doi.org/10.1017/cbo9781107415324.024

  • Collins, M., Sutherland, M., Bouwer, L., Cheong, S.-M., Frolicher, T., DesCombes, H. J., Roxy, M. K., Losada, I., McInnes, K., Ratter, B., Rivera-Arriga, E., Susanto, R. D., Swingedouw, D., Tibig, L., Bakker, P., Eakin, C. M., Emanuel, K., Grose, M., Hemer, M., …, & Kaab, A. (2019). Extremes, abrupt changes and managing risks. In H.-O. Pörtner, D. C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, M. Nicolai, A. Okem, J. Petzold, B. Rama, & N. Weyer (Eds.), IPCC special report on the ocean and cryosphere in a changing climate (pp. 589–655). www.ipcc.ch/srocc/chapter/chapter-6

  • Cuthbert, M. O., Gleeson, T., Moosdorf, N., Befus, K. M., Schneider, A., Hartmann, J., & Lehner, B. (2019). Global patterns and dynamics of climate—Groundwater interactions. Nature Climate Change, 9(2), 137–141. https://doi.org/10.1038/s41558-018-0386-4

  • Dagan, G., & P. Stier (2020). Constraint on precipitation response to climate change by combination of atmospheric energy and water budgets. npj Climate and Atmospheric Science, 3(1), 34. https://doi.org/10.1038/s41612-020-00137-8

  • Douville, H., Raghavan, K., Renwick, J., Allan, R. P., Arias, P. A., Barlow, M., Cerezo-Mota, R., Cherchi, A., Gan, T. Y., Gergis, J., Jiang, D., Khan, A., Pokam Mba, W., Rosenfeld, D., Tierney, J., & Zolina, O. (2021). Water cycle changes In V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B. Zhou (Eds.), Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change (pp. 1055–1210). Cambridge University Press. https://doi.org/10.1017/9781009157896.010

  • Douville, H., & John, A. (2021). Fast adjustment versus slow SST-mediated response of daily precipitation statistics to abrupt 4xCO2. Climate Dynamics, 56(3), 1083–1104. https://doi.org/10.1007/s00382-020-05522-w

    Article  Google Scholar 

  • Emanuel, K. (2017). Assessing the present and future probability of Hurricane Harvey’s rainfall. Proceedings of the National Academy of Sciences of the USA. https://doi.org/10.1073/pnas.1716222114

    Article  Google Scholar 

  • Eyring, V., Gillett, N. P., Achuta Rao, K. M., Barimalala, R., Barreiro Parrillo, M., Bellouin, N., Cassou, C., Durack, P. J., Kosaka, Y., McGregor, S., Min, S., Morgenstern, O., & Sun, Y. (2021). Human influence on the climate system. In V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B. Zhou (Eds.), Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change (pp. 423–552). Cambridge University Press. https://doi.org/10.1017/9781009157896.005

  • Fischer, E. M., & Knutti, R. (2016). Observed heavy precipitation increase confirms theory and early models. Nature Climate Change, 6(11), 986–991. https://doi.org/10.1038/nclimate3110

    Article  Google Scholar 

  • Fleming, J. R. (1999). Joseph Fourier, the ‘greenhouse effect’, and the quest for a universal theory of terrestrial temperatures. Endeavour, 23(2), 72–75. https://doi.org/10.1016/S0160-9327(99)01210-7

    Article  Google Scholar 

  • Foote, E. (1857). Circumstances affecting the heat of the sun's rays. American Journal of Science, 22, 382–383.

    Google Scholar 

  • Fourier, J. (1824). Remarques générales sur les températures du globe terrestre et des espaces planétaires. Annales De Chimie Et De Physique, 27, 136–167.

    Google Scholar 

  • Fourier, J. (1827). Mémoire sur la température du globe terrestre et des espaces planétaires. Mémoires De L’académie Royale Des Sciences, 7, 569–604.

    Google Scholar 

  • Fujita, M., Mizuta, R., Ishii, M., Endo, H., Sato, T., Okada, Y., Kawazoe, S., Sugimoto, S., Ishihara, K., & Watanabe, S. (2019). Precipitation changes in a climate with 2-K surface warming from large ensemble simulations using 60-km global and 20-km regional atmospheric models. Geophysical Research Letters, 46(1), 435–442. https://doi.org/10.1029/2018gl079885

  • Gale, E. L., & Saunders, M. A. (2013). The 2011 Thailand flood: Climate causes and return periods. Weather, 68(9), 233–237.

    Article  Google Scholar 

  • Gianotti, D. J., Akbar, R., Feldman, A. F., Salvucci, G. D., & Entekhabi, D. (2020). Terrestrial evaporation and moisture drainage in a warmer climate. Geophysical Research Letters, 47(5), e2019GL086498. https://doi.org/10.1029/2019gl086498

  • Gimeno, L., Drumond, A., Nieto, R., Trigo, R. M., & Stohl, A. (2010). On the origin of continental precipitation. Geophysical Research Letters, 37(13), L13804. https://doi.org/10.1029/2010gl043712

    Article  Google Scholar 

  • Gutenstein, M., Fennig, K., Schröder, M., Trent, T., Bakan, S., Roberts, J. B., & Robertson, F. R. (2021). Intercomparison of freshwater fluxes over ocean and investigations into water budget closure. Hydrology and Earth System Sciences, 25(1), 121–146. https://doi.org/10.5194/hess-25-121-2021

  • Hartmann, A., Gleeson, T., Wada, Y., & Wagener, T. (2017). Enhanced groundwater recharge rates and altered recharge sensitivity to climate variability through subsurface heterogeneity. Proceedings of the National Academy of Sciences, 114(11), 2842–2847. https://doi.org/10.1073/pnas.1614941114

    Article  Google Scholar 

  • Haustein, K., Allen, M. R., Forster, P. M., Otto, F. E. L., Mitchell, D. M., Matthews, H. D., & Frame, D. J. (2017). A real-time Global Warming Index. Scientific Reports, 7, 15417. https://doi.org/10.1038/s41598-017-14828-5

    Article  Google Scholar 

  • Hawkins, E., & Jones, P. D. (2013). Notes and correspondence on increasing global temperatures: 75 years after callendar. Quarterly Journal of the Royal Meteorological Society, 139, 1961–1963. https://doi.org/10.1002/qj.2178

    Article  Google Scholar 

  • Held, I. M., & Soden, B. J. (2006). Robust responses of the hydrological cycle to global warming. Journal of Climate, 19(21), 5686–5699. https://doi.org/10.1175/jcli3990.1

    Article  Google Scholar 

  • Hilton, I. (2008). The reality of global warming: Catastrophies dimly seen. World Policy Journal, 25(1), 1–8.

    Article  Google Scholar 

  • IPCC. (2021). Summary for policymakers. In V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B. Zhou (Eds.), Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change (pp. 3–32). Cambridge University Press. https://doi.org/10.1017/9781009157896.001

  • IPCC. (2022). In Climate change 2022: Impacts, adaptation and vulnerability. Contribution of working group II to the sixth assessment report of the intergovernmental panel on climate change (p. 3056). Cambridge University Press. https://doi.org/10.1017/9781009325844

  • IPCC—Working Group 1. (2021). Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change: Douville, H., K. Raghavan, J. Renwick, R.P. Allan, P.A. Arias, M. Barlow, R. Cerezo-Mota, A. Cherchi, T.Y. Gan, J. Gergis, D. Jiang, A. Khan, W. Pokam Mba, D. Rosenfeld, J. Tierney, and O. Zolina, 2021: Water cycle changes. In V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B. Zhou (Eds.), Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change (pp. 1055–1210). Cambridge University Press. https://doi.org/10.1017/9781009157896.010

  • Jackson, R. (2020). Eunice Foote, John Tyndall and a question of priority. Notes and Records of the Royal Institution, 74, 105–118. https://doi.org/10.1098/rsnr.2018.0066

    Article  Google Scholar 

  • Keeling, C. D. (1960). The concentration and isotopic abundances of carbon dioxide in the atmosphere. Tellus, 12(2), 200–203.

    Article  Google Scholar 

  • Keeling, C. D. (1970). Is carbon dioxide from fossil fuels changing man’s environment? Proceedings of the American Philosophical Society, 114(1), 10–17.

    Google Scholar 

  • Kotchoni, D. O., Vouillamoz, J. M., Lawson, F., Adjomayi, P., Boukari, M., & Taylor, R. G. (2019). Relationships between rainfall and groundwater recharge in seasonally humid Benin: A comparative analysis of long-term hydrographs in sedimentary and crystalline aquifers. Hydrogeology Journal, 27(2), 447–457. https://doi.org/10.1007/s10040-018-1806-2

  • Kreienkamp, F., Philip, S.Y., Tradowsky, J. S., Kew, S. F., Lorenz, P., Arrighi, J., Belleflamme, A., Bettmann, T., Caluwaerts, S., Chan, S. C., Ciavarella, A., De Cruz, L., de Vries, H., Demuth, N., Ferrone, A., Fischer, E. M., Fowler, H. J., Goergen, K., Heinrich, D., Henrichs, Y., Lenderink, G., Kaspar, F., Nilson, E., Otto, F. E. L., Ragone, F., Seneviratne, S. I., Singh, R. K., Skålevåg, A., Termonia, P., Thalheimer, L., van Aalst, M., Van den Bergh, J., Van de Vyver, H., Vannitsem, S., van Oldenborgh, G. J., Van Schaeybroeck, B., Vautard, R., Vonk, D., & Wanders, N. (2021). Rapid attribution of heavy rainfall events leading to the severe flooding in Western Europe during July 2021. World Weather Attribution. https://www.worldweatherattribution.org/wp-content/uploads/Scientific-report-Western-Europe-floods-2021-attribution.pdf

  • Kumar, S., Allan, R. P., Zwiers, F., Lawrence, D. M., & Dirmeyer, P. A. (2015). Revisiting trends in wetness and dryness in the presence of internal climate variability and water limitations over land. Geophysical Research Letters, 42(24), 10867–10875. https://doi.org/10.1002/2015gl066858

    Article  Google Scholar 

  • Kumar, S., Zwiers, F., Dirmeyer, P. A., Lawrence, D. M., Shrestha, R., & Werner, A. T. (2016). Terrestrial contribution to the heterogeneity in hydrological changes under global warming. Water Resources Research, 52(4), 3127–3142. https://doi.org/10.1002/2016wr018607

  • Lacis, A. A., Schmidt, G. A., Rind, D., & Ruedy, R. A. (2010). Atmospheric CO2: Principal control knob governing Earth’s temperature. Science, 330, 356–359. https://doi.org/10.1126/science.1190653

    Article  Google Scholar 

  • Laliberté, F., Zika, J., Mudryk, L., Kushner, P. J., Kjellsson, J., & Döös, K. (2015). Constrained work output of the moist atmospheric heat engine in a warming climate. Science, 347(6221), 540–543.

    Article  Google Scholar 

  • Lenderink, G., Barbero, R., Loriaux, J. M., & Fowler, H. J. (2017). Super-Clausius–Clapeyron scaling of extreme hourly convective precipitation and its relation to large-scale atmospheric conditions. Journal of Climate, 30, 6037–6052. https://doi.org/10.1175/JCLI-D-16-0808.1

    Article  Google Scholar 

  • Li, G., Harrison, S. P., Bartlein, P. J., Izumi, K., & Colin Prentice, I. (2013). Precipitation scaling with temperature in warm and cold climates: An analysis of CMIP5 simulations. Geophysical Research Letters, 40(15), 4018–4024. https://doi.org/10.1002/grl.50730

    Article  Google Scholar 

  • Liu, M., Vecchi, G. A., Smith, J. A., & Knutson, T. R. (2019). Causes of large projected increases in hurricane precipitation rates with global warming. npj Climate and Atmospheric Science, 2, 38. https://doi.org/10.1038/s41612-019-0095-3

  • Luijendijk, E., Gleeson, T., & Moosdorf, N. (2020). Fresh groundwater discharge insignificant for the world’s oceans but important for coastal ecosystems. Nature Communications, 11(1), 1260. https://doi.org/10.1038/s41467-020-15064-8

    Article  Google Scholar 

  • Manabe, S., & Wetherald, R. T. (1967). Thermal equilibrium of atmosphere with a given distribution of relative humidity. Journal of the Atmospheric Sciences, 24(3), 241–258.

    Article  Google Scholar 

  • Manabe, S., & Wetherald, R. T. (1975). The effects of the doubling of CO2 concentration on the climate of a general circulation model. Journal of the Atmospheric Sciences, 32(1), 3–15.

    Article  Google Scholar 

  • Mann, M. E., Rahmstorf, S., Kornhuber, K., Steinman, B. A., Miller, S. K., & Coumou, D. (2017). Influence of anthropogenic climate change on planetary wave resonance and extreme weather events. Science and Reports, 7, 45242. https://doi.org/10.1038/srep45242

  • McKay, D. I. A., Staal, A., Abrams, J. F., Winkelmann, R., Sakschewski, B., Loriani, S., Fetzer, I., Cornell, S. E., Rockström, J., & Lenton, T. M. (2022). Exceeding 1.5 °C global warming could trigger multiple climate tipping points. Science, 377, 6611. https://doi.org/10.1126/science.abn7950

  • Mekonnen, M. M., & Hoekstra, A. Y. (2016). Four billion people facing severe water scarcity. Science Advances, 2(2), e1500323. https://doi.org/10.1126/sciadv.1500323

    Article  Google Scholar 

  • Molnar, P., Fatichi, S., Gaál, L., Szolgay, J., & Burlando, P. (2015). Storm type effects on super Clausius–Clapeyron scaling of intense rainstorm properties with air temperature. Hydrology and Earth System Science, 19, 1753–1766. https://doi.org/10.5194/hess-19-1753-2015

    Article  Google Scholar 

  • Oster, J. L., Ibarra, D. E., Winnick, M. J., & Maher, K. (2015). Steering of westerly storms over western North America at the Last Glacial Maximum. Nature Geoscience, 8(3), 201–205. https://doi.org/10.1038/ngeo2365

    Article  Google Scholar 

  • Otto, F. E. L. (2017). Attribution of weather and climate events. Annual Review of Environment and Resources, 42, 627–646. https://doi.org/10.1146/annurev-environ-102016-060847

    Article  Google Scholar 

  • Otto, F. E. L. (2019). Attribution of extreme weather events: How does climate change affect weather? Weather, 4(9), 325–326. https://doi.org/10.1002/wea.3610

    Article  Google Scholar 

  • Otto, F. E. L., Wolski, P., Lehner, F., Tebaldi, C., van Oldenborgh, G. J., Hogesteeger, S., Singh, R., Holden, P., Fuckar, N. S., Odoulami, R. C., & New, M. (2018). Likelihood of Cape Town water crisis tripled by climate change. World Weather Attribution. https://www.worldweatherattribution.org/the-role-of-climate-change-in-the-2015-2017-drought-in-the-westerncape-of-south-africa

  • Padrón, R. S., Gudmundsson, L., Decharme, B., Ducharne, A., Lawrence, D. M., Mao, J., Peano, D., Krinner, G., Kim, H., & Seneviratne, S. I. (2020). Observed changes in dry-season water availability attributed to human-induced climate change. Nature Geoscience, 13(7), 477–481. https://doi.org/10.1038/s41561-020-0594-1

  • Peixoto, J. P., & Oort, A. H. (1992). Physics of climate (A. H. Oort, Ed.). American Inst. of Physics.

    Google Scholar 

  • Pendergrass, A. G. (2020). The global-mean precipitation response to CO2-induced warming in CMIP6 models. Geophysical Research Letters, 47(17), e2020GL089964. https://doi.org/10.1029/2020gl089964

  • Philip, S., Kew, S., van Oldenborgh, G. J., Otto, F., Vautard, R., van der Wiel, K., ... & van Aalst, M. (2020). A protocol for probabilistic event attribution analyses. Advances in Statistical Climatology, Meteorology and Oceanography, 6, 177–203. https://doi.org/10.5194/ascmo-6-177-2020

  • Pierrehumbert, R. T., & Archer, D. (Eds.). (2011). The warming papers: The scientific foundation for the climate change forecast. Wiley.

    Google Scholar 

  • Plass, G. N. (1956). The carbon dioxide theory of climatic change. Tellus, 8(2), 140–154.

    Article  Google Scholar 

  • Pouillet, C. S. (1837). Memoir on the solar heat, on the radiating and absorbing powers of atmospheric air, and on the temperature of space. In R. Taylor (Ed.), Scientific memoirs selected from the transactions of foreign academies of science and learned societies (Vol. 4, pp. 44–90).

    Google Scholar 

  • Promchote, P., Wang, S.-Y., & Johnson, P. G. (2016). The 2011 great flood in Thailand: Climate diagnostics and implications from climate change. Journal of Climate, 29, 367–379. https://doi.org/10.1175/JCLI-D-15-0310.1

    Article  Google Scholar 

  • Pulliainen, J., Luojus, K., Derksen, C., Mudryk, L., Lemmetyinen, J., Salminen, M., Ikonen, J., Takala, M., Cohen, J., Smolander, T., & Norberg, J. (2020). Patterns and trends of Northern Hemisphere snow mass from 1980 to 2018. Nature, 581(7808), 294–298. https://doi.org/10.1038/s41586-020-2258-0

  • Rayer, Q.G. (2022). Global warming is not new news. ESG Clarity. https://esgclarity.com/global-warming-is-not-new-news

  • Rayer, Q. G., Haustein, K., & Walton, P. (2021). Water insecurity and climate risk: Investment impact of floods and droughts [Ch 6]. In T. Walker, D. Gramlich, K. Vico, & A. Dumont-Bergeron (Eds.), Water risk and its impact on the financial markets and society. Palgrave studies in sustainable business in association with future earth (pp. 157–188). Palgrave Macmillan. https://doi.org/10.1007/978-3-030-77650-3_6

  • Rayer, Q. G., Pfleiderer, P., & Haustein, K. (2020). Global warming and extreme weather investment risks [Ch 3]. In T. Walker, D. Gramlich, M. Bitar, & P. Fardnia (Eds.), Ecological, societal, and technological risks and the financial sector. Palgrave studies in sustainable business in association with future earth (pp. 39–68). Palgrave Macmillan. https://doi.org/10.1007/978-3-030-38858-4_3

  • Richardson, T. B., Forster, P. M., Andrews, T., Boucher, O., Faluvegi, G., Fläschner, D., Hodnebrog, Ø., Kasoar, M., Kirkevåg, A., Lamarque, J. F., Myhre, G., Olivié, D., Samset, B. H., Shawki, D., Shindell, D., Takemura, T., & Voulgarakis, A. (2018). Drivers of precipitation change: An energetic understanding. Journal of Climate, 31(23), 9641–9657. https://doi.org/10.1175/jcli-d-17-0240.1

  • Rodell, M., Beaudoing, H. K., L’ecuyer, T. S., Olson, W. S., Famiglietti, J. S., Houser, P. R., Adler, R., Bosilovich, M. G., Clayson, C. A., Chambers, D., Clark, E, …, & Wood, E. F. (2015). The observed state of the water cycle in the early twenty-first century. Journal of Climate, 28(21), 8289–8318. https://doi.org/10.1175/jcli-d-14-00555.1

  • Ruiz-Vásquez, M., Arias, P. A., Martínez, J. A., & Espinoza, J. C. (2020). Effects of Amazon basin deforestation on regional atmospheric circulation and water vapor transport towards tropical South America. Climate Dynamics, 54(9–10), 4169–4189. https://doi.org/10.1007/s00382-020-05223-4

    Article  Google Scholar 

  • Sahany, S., Mishra, S. K., Pathak, R., & Rajagopalan, B. (2018). Spatiotemporal variability of seasonality of rainfall over India. Geophysical Research Letters, 45(14), 7140–7147. https://doi.org/10.1029/2018gl077932

    Article  Google Scholar 

  • Salzmann, M. (2016). Global warming without global mean precipitation increase’. Science Advances, 2(6), e1501572. https://doi.org/10.1126/sciadv.1501572

    Article  Google Scholar 

  • Samset, B. H., et al. (2016). Fast and slow precipitation responses to individual climate forcers: A PDRMIP multimodel study. Geophysical Research Letters, 43(6), 2782–2791. https://doi.org/10.1002/2016gl068064

    Article  Google Scholar 

  • Schurer, A. P., Ballinger, A. P., Friedman, A. R., & Hegerl, G. C. (2020). Human influence strengthens the contrast between tropical wet and dry regions. Environmental Research Letters, 15(10), 104026. https://doi.org/10.1088/1748-9326/ab83ab

    Article  Google Scholar 

  • Seneviratne, S. I., Zhang, X., Adnan, M., Badi, W., Dereczynski, C., Di Luca, A., Ghosh, S., Iskandar, I., Kossin, J., Lewis, S., Otto, F., Pinto, I., Satoh, M., Vicente-Serrano, S. M., Wehner, M., & Zhou, B. (2021). Weather and climate extreme events in a changing climate. In V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B. Zhou (Eds.), Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change (pp. 1513–1766). Cambridge University Press. https://doi.org/10.1017/9781009157896.013

  • Singh, M. S., & O’Gorman, P. A. (2013). Influence of entrainment on the thermal stratification in simulations of radiative–convective equilibrium. Geophysical Research Letters, 40(16), 4398–4403. https://doi.org/10.1002/grl.50796

    Article  Google Scholar 

  • Stephens, G. L., Li, J., Wild, M., Clayson, C. A., Loeb, N., Kato, S., L'ecuyer, T., Stackhouse, P. W., Lebsock, M., & Andrews, T. (2012). An update on Earth’s energy balance in light of the latest global observations. Nature Geoscience, 5(10), 691–696. https://doi.org/10.1038/ngeo1580

    Article  Google Scholar 

  • Stephens, G. L., Hakuba, M. Z., Webb, M. J., Lebsock, M., Yue, Q., Kahn, B. H., Hristova-Veleva, S., Rapp, A. D., Stubenrauch, C. J., Elsaesser, G. S., & Slingo, J. (2018). Regional intensification of the tropical hydrological cycle during ENSO. Geophysical Research Letters, 45(9), 4361–4370. https://doi.org/10.1029/2018gl077598

    Article  Google Scholar 

  • Stevens, B., & Feingold, G. (2009). Untangling aerosol effects on clouds and precipitation in a buffered system. Nature, 461(7264), 607. https://doi.org/10.1038/nature08281

    Article  Google Scholar 

  • Trenberth, K. E., Fasullo, J. T., & Mackaro, J. (2011). Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. Journal of Climate, 24(18), 4907–4924. https://doi.org/10.1175/2011jcli4171.1

    Article  Google Scholar 

  • Tyndall, J. (1859). Note on the transmission of radiant heat through gaseous bodies. Proceedings of the Royal Society of London, 10, 37–39.

    Google Scholar 

  • Tyndall, J. (1861). The Bakerian lecture: On the absorption and radiation of heat by gases and vapours, and on the physical connexion of radiation, absorption, and conduction. Philosophical Transactions of the Royal Society of London, 151, 1–36.

    Article  Google Scholar 

  • UNFCCC. (2015). Adoption of the Paris agreement. United Nations Framework Convention on Climate Change. https://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf

  • van der Ent, R. J., & Savenije, H. G. (2013). Oceanic sources of continental precipitation and the correlation with sea surface temperature. Water Resources Research, 49(7), 3993–4004. https://doi.org/10.1002/wrcr.20296

    Article  Google Scholar 

  • van Oldenborgh, G. J., van der Wiel, K., Sebastian, A., Singh, R., Arrighi, J., Otto, F. E. L., Haustein, K., Li, S., Vecchi, G., & Cullen, H. (2017, August). Attribution of extreme rainfall from Hurricane Harvey. Environmental Research Letters, 12(12), 124009. https://doi.org/10.1088/1748-9326/aa9ef2

  • van Oldenborgh, G. J., van Urk, A., & Allen, M. R. (2012). The absence of a role of climate change in the 2011 Thailand floods. Bulletin American Meteorological Society, 93, 1047–1049. https://doi.org/10.1175/BAMS-D-12-00021.1

    Article  Google Scholar 

  • van Oldenborgh, G. J., van der Wiel, K., Kew, S., Philip, S., Otto, F., Vautard, R., King, A., Lott, F., Arrighi, J., Singh, R., & van Aalst, M. (2021). Pathways and pitfalls in extreme event attribution. Climatic Change, 166(1–2), 13. https://doi.org/10.1007/s10584-021-03071-7

  • WMO. (2012). Health in the green economy: Health co-benefits of climate change mitigation—Transport sector. World Health Organisation.

    Google Scholar 

  • Zappa, G., Ceppi, P., & Shepherd, T. G. (2020). Time-evolving sea-surface warming patterns modulate the climate change response of subtropical precipitation over land. Proceedings of the National Academy of Sciences, 117(9), 201911015. https://doi.org/10.1073/pnas.1911015117

    Article  Google Scholar 

  • Zhang, Y., & Fueglistaler, S. (2019). Mechanism for increasing tropical rainfall unevenness with global warming. Geophysical Research Letters, 46(24), 14836–14843. https://doi.org/10.1029/2019gl086058

    Article  Google Scholar 

  • Zhou, Y. Q., Sawyer, A. H., David, C. H., & Famiglietti, J. S. (2019). Fresh submarine groundwater discharge to the near-global coast. Geophysical Research Letters, 46(11), 5855–5863. https://doi.org/10.1029/2019gl082749

    Article  Google Scholar 

  • Zielinski, S. (2015). Climate change is altering the global heat engine. Smithsonian Magazine. https://www.smithsonianmag.com/science-nature/climatechange-altering-global-heat-engine-180954079

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karsten Haustein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haustein, K., Rayer, Q. (2023). Water Cycle Changes in a Warming World: The Scientific Background. In: Gramlich, D., Walker, T., Michaeli, M., Esme Frank, C. (eds) Water Risk Modeling. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-031-23811-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23811-6_2

  • Published:

  • Publisher Name: Palgrave Macmillan, Cham

  • Print ISBN: 978-3-031-23810-9

  • Online ISBN: 978-3-031-23811-6

  • eBook Packages: Economics and FinanceEconomics and Finance (R0)

Publish with us

Policies and ethics