Skip to main content

Paradigm Shifts in the History of Nox2 and Its Regulators: An Appreciative Critique

  • Chapter
  • First Online:
NADPH Oxidases Revisited: From Function to Structure
  • 905 Accesses

Abstract

This chapter narrates the history of the almost a century-long work on the phagocyte NADPH oxidase, from the first report on the “respiration” of dog leukocytes phagocytizing bacteria (1932) to the contemporary efforts to predict and solve the structure of the enzyme. The main stations on this stellar road are discussed within their historical context, not omitting the occasional wrong turns and dead ends. The first pivotal findings were that the enzyme used NADPH as reducing power and that the primary product was superoxide, a radical differing from molecular oxygen by the mere addition of a single electron. Solving the intricacies of this “modest” chemical reaction rested on basic discoveries made at the laboratory bench, combined with work on the genetic basis and clinical aspects of chronic granulomatous disease. The most significant discoveries were: the flavoprotein nature of the enzyme; identification and purification of cytochrome b558; cloning of Nox2 and p22phox; the bis-heme motif; presence of all redox centers in Nox2; design of the cell-free system; discovery and identification of the cytosolic components; cloning of p47phox and p67phox; involvement of Rac and RhoGDI, and solving the mechanism of the assembly of the functionally active NADPH oxidase complex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this chapter, I used the general term “NADPH oxidase” and the abbreviated form “Nox”, approved by the Human Genome Organization (HUGO) Human Gene Nomenclature Committee (HGNC) (https://www.genenames.org) in 2000. This applies to the Nox homologs (also termed Nox isoforms) Nox1, Nox2, Nox3, Nox4, and Nox5, the “numbered” forms referring to the catalytic subunits, only. The approved abbreviated term for “dual oxidase” is “Duox” and the catalytic subunits are known as Duox1 and Duox2. I used “Noxs” as the plural of “Nox”, for lack of a better term.

  2. 2.

    This chapter discusses principally the history of research focused on the phagocyte NADPH oxidase (phagocyte Nox). This is also known as cytochrome b558, flavocytochrome b558, or cytochrome b-245 and is a heterodimer consisting of two subunits, known since 1991, as gp91phox and p22phox. In accordance to the rules of HGNC, the catalytic subunit gp91phox is also known as Nox2 (somewhat unjustly, considering the fact that it was the first to be discovered and characterized). The cytosolic components, p47phox, p67phox, p40phox, and Rac (1 or 2) are not integral parts of the phagocyte NADPH oxidase but assemble with cytochrome b558, to form the phagocyte NADPH oxidase complex.

References

  1. Holmes B, Quie PG, Windhorst DB, Good RA (1966) Fatal granulomatous disease of childhood. Lancet 1:1225–1228

    Article  CAS  PubMed  Google Scholar 

  2. Baldridge CW, Gerard RW (1932) The extra respiration of phagocytes. Am J Phys 103:235–236

    Article  Google Scholar 

  3. Ado AD (1933) Über den Verlauf der oxidativen und glykolitischen Prozesse in den Leukocyten des entzűndeten Gewebes während der Phagocytose. Z Ges Exp Med 87:473–480

    Article  CAS  Google Scholar 

  4. Stähelin H, Suter E, Karnovsky ML (1956) Studies on the interaction between phagocytes and tubercle bacilli. I. Observations on the metabolism of guinea pig leukocytes and the influence of phagocytosis. J Exp Med 104:121–136

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sbarra AJ, Karnovsky ML (1959) The biochemical basis of phagocytosis. I. Metabolic changes during ingestion of particles by polymorphonuclear leukocytes. J Biol Chem 234:1355–1362

    Article  CAS  PubMed  Google Scholar 

  6. Cohn ZA, Morse SI (1960) Functional and metabolic properties of polymorphonuclear leucocytes. I. Observations on the requirements and consequences of particle ingestion. J Exp Med 111:667–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cagan RH, Karnovsky ML (1964) Enzymatic basis of the respiratory stimulation during phagocytosis. Nature 204:255–257

    Article  CAS  PubMed  Google Scholar 

  8. Segal BH, Leto TL, Gallin JI, Malech HL, Holland SM (2000) Genetic, biochemical, and clinical features of chronic granulomatous disease. Medicine 79:170–200

    Article  CAS  PubMed  Google Scholar 

  9. Karnovsky ML (1973) Chronic granulomatous disease – pieces of a cellular and molecular puzzle. Fed Proc 32:1527–1533

    CAS  PubMed  Google Scholar 

  10. Badwey JA, Curnutte JT, Karnovsky ML (1979) The enzyme of granulocytes that produces superoxide and peroxide. An elusive Pimpernel. N Engl J Med 300:1157–1160

    Article  CAS  PubMed  Google Scholar 

  11. Badwey JA, Karnovsky ML (1986) Production of superoxide by phagocytic leukocytes: a paradigm for stimulus – response phenomena. Curr Top Cell Regul 28:183–208

    Article  CAS  PubMed  Google Scholar 

  12. Iyer GYN, Islam DMF, Quastel JH (1961) Biochemical aspects of phagocytosis. Nature 192:535–541

    Article  CAS  Google Scholar 

  13. Iyer GYN, Quastel JH (1963) NADPH and NADH oxidation by guinea pig polymorphonuclear leucocytes. Can J Biol Physiol 41:427–434

    Article  CAS  Google Scholar 

  14. Kuhn TS (1970) The structure of scientific revolutions, 2nd edn. University of Chicago Press, Chicago

    Google Scholar 

  15. Rossi F, Zatti M (1964) Changes in the metabolic pattern of polymorphonuclear leucocytes during phagocytosis. Br J Exp Pathol 45:548–559

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Rossi F, Zatti M (1964) Biochemical aspects of phagocytosis in polymorphonuclear leucocytes. NADH and NADPH oxidation by the granules of resting and phagocytosing cells. Experientia 20:21–23

    Article  CAS  PubMed  Google Scholar 

  17. Borregaard N, Heiple JM, Simons ER, Clark RA (1983) Subcellular localization of the b-cytochrome component of the human microbicidal oxidase: translocation during activation. J Cell Biol 97:52–61

    Article  CAS  PubMed  Google Scholar 

  18. Clark RA, Leidal KG, Pearson DW, Nauseef WM (1987) NADPH oxidase of human neutrophils. Subcellular localization and characterization of an arachidonate activatable superoxide-generating system. J Biol Chem 262:4065–4074

    Article  CAS  PubMed  Google Scholar 

  19. Karnovsky ML, Wallach DFH (1961) The metabolic basis of phagocytosis. III. Incorporation of inorganic phosphate into various classes of phosphatides during phagocytosis. J Biol Chem 236:1895–1901

    Article  CAS  PubMed  Google Scholar 

  20. Patriarca P, Dri P, Kakinuma K, Tedesco F, Rossi F (1975) Studies on the mechanism of metabolic stimulation in polymorphonuclear leucocytes during phagocytosis. I. Evidence for superoxide anion involvement in the oxidation of NADPH2. Biochim Biophys Acta 385:380–386

    Article  CAS  PubMed  Google Scholar 

  21. Curnutte JT, Karnovsky NL, Babior BM (1975) Manganese-dependent NADPH oxidation by granulocyte particles. The role of superoxide and the nonphysiological nature of the manganese requirement. J Clin Invest 57:1059–1967

    Article  Google Scholar 

  22. Nisimoto Y, Tamura M, Lambeth JD (1998) A menadione-stimulated pyridine nucleotide oxidase from resting bovine neutrophil membranes. Purification, properties, and immunochemical cross-reactivity with the human neutrophil NADPH oxidase. J Biol Chem 263:11657–11663

    Article  Google Scholar 

  23. Fridovich I (1978) The biology of oxygen radicals. Science 201:875–880

    Article  CAS  PubMed  Google Scholar 

  24. McCord JM, Fridovich I (1969) Superoxide dismutase: an enzymatic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055

    Article  CAS  PubMed  Google Scholar 

  25. McCord JM, Fridovich I (1971) An enzyme-based theory of obligate anaerobiosis: the physiological function of superoxide dismutases. Proc Natl Acad Sci U S A 68:1024–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Klebanoff SJ (1967) Iodination of bacteria. A bactericidal mechanism. J Exp Med 126:1063–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lehrer RI, Cline MJ (1969) Leukocyte myeloperoxidase deficiency and disseminated candidiasis: the role of myeloperoxidase in resistance to Candida infections. J Clin Invest 48:1478–1488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Babior BM, Kipnes RS, Curnutte JT (1973) Biological defense mechanism. The production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest 52:741–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Babior BM (1978) Oxygen-dependent microbial killing by phagocytes (First of two parts). N Engl J Med 298:659–668

    Article  CAS  PubMed  Google Scholar 

  30. Segal AW, Meshulam T (1979) Production of superoxide by neutrophils: a reappraisal. FEBS Lett 100:27–32

    Article  CAS  PubMed  Google Scholar 

  31. Babior BM (1979) Superoxide production by phagocytes. Another look at the effect of cytochrome c on oxygen uptake by stimulated neutrophils. Biochem Biophys Res Commun 91:222–226

    Article  CAS  PubMed  Google Scholar 

  32. Root RK, Metcalf JA (1977) H2O2 release from human granulocytes during phagocytosis: Relationship to superoxide anion formation and cellular catabolism of H2O2: studies with normal and cytochalasin B treated cells. J Clin Invest 60:1266–1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Babior BM, Curnutte JT, McMurrich BJ (1976) The particulate superoxide-forming system from human neutrophils. Properties of the system and further evidence supporting its participation in the respiratory burst. J Clin Invest 58:989–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Curnutte JT, Kipnes RB, Babior BM (1975) Defect in pyridine nucleotide dependent superoxide production by a particulate fraction from the granulocytes of patients with chronic granulomatous disease. N Engl J Med 293:628–632

    Article  CAS  PubMed  Google Scholar 

  35. Babior BM, Kipnes RS (1977) Superoxide-forming enzyme from human neutrophils: evidence for a flavin requirement. Blood 50:517–524

    Article  CAS  PubMed  Google Scholar 

  36. Gabig TG, Kipnes RS, Babior BM (1978) Solubilization of the O2- – forming activity responsible for the respiratory burst in human neutrophils. J Biol Chem 253:6663–6665

    Article  CAS  PubMed  Google Scholar 

  37. Gabig TG, Babior BM (1979) The O2- – forming oxidase responsible for the respiratory burst in human neutrophils. Properties of the solubilized enzyme. J Biol Chem 254:9070–9074

    Article  CAS  PubMed  Google Scholar 

  38. Babior BM, Peters WA (1981) The O2- – producing enzyme of human neutrophils. Further properties. J Biol Chem 256:2321–2323

    Article  CAS  PubMed  Google Scholar 

  39. DeChatelet LR, McCall C, Shirley PS (1980) Activation by dialysis of NAD(P)H oxidase (s) from human neutrophils. J Reticuloendothel Soc 28:533–545

    CAS  PubMed  Google Scholar 

  40. Light DR, Walsh C, O’Callaghan AM, Goetzl EJ, Tauber AI (1981) Characteristics of the cofactor requirements for the superoxide-generating NADPH oxidase of human polymorphonuclear leukocytes. Biochemistry 20:1468–1476

    Article  CAS  PubMed  Google Scholar 

  41. Gabig TG (1983) The NADPH-dependent O2- – generating oxidase from human neutrophils. Identification of a flavoprotein component that is deficient in a patient with chronic granulomatous disease. J Biol Chem 258:6352–6356

    Article  CAS  PubMed  Google Scholar 

  42. Gabig TG, Lefker BA (1984) Deficient flavoprotein component of the NADPH-dependent O2- – generating oxidase in neutrophils from three male patients with chronic granulomatous disease. J Clin Invest 73:701–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gabig TG, Lefker BA (1984) Catalytic properties of the resolved flavoprotein and cytochrome b components of the NADPH dependent O2- generating oxidase from human neutrophils. Biochem Biophys Res Commun 118:430–436

    Article  CAS  PubMed  Google Scholar 

  44. Wakeyama H, Takeshige K, Minakami S (1983) NADPH-dependent reduction of 2,6-dichlorophenol-indophenol by the phagocytic vesicles of pig polymorphonuclear leucocytes. Biochem J 210:577–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Murakami M, Nakamura M, Minakami S (1986) 2.6-dichlorophenolindophenol-reducing activity of phagocytosis-associated NADPH oxidase. J Biochem 100:1493–1497

    Article  CAS  PubMed  Google Scholar 

  46. Kakinuma K, Kaneda M, Chiba T, Ohnishi T (1986) Electron spin resonance studies on a flavoprotein in neutrophil plasma membranes. Redox potentials of the flavin and its participation in NADPH oxidase. J Biol Chem 261:9426–9432

    Article  CAS  PubMed  Google Scholar 

  47. Kakinuma K, Fukuhara Y, Kaneda M (1987) The respiratory burst oxidase of neutrophils. Separation of an FAD enzyme and its characterization. J Biol Chem 262:12316–12322

    Article  CAS  PubMed  Google Scholar 

  48. Fleck L (1979) Genesis and development of a scientific fact. The University of Chicago Press, Chicago

    Google Scholar 

  49. Borregaard N, Tauber AI (1984) Subcellular localization of the human neutrophil NADPH oxidase. b-cytochrome and associated flavoprotein. J Biol Chem 259:47–52

    Article  CAS  PubMed  Google Scholar 

  50. Parkinson JF, Gabig TG (1988) Isolation of the respiratory burst oxidase: the role of a flavoprotein component. J Bioenerg Biomembr 20:653–677

    Article  CAS  PubMed  Google Scholar 

  51. Cross AR, Jones OTG, Garcia R, Segal AW (1982) The association of FAD with cytochrome b-245 of human neutrophils. Biochem J 208:759–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Segal AW, Jones OTG (1978) Novel cytochrome b system in phagocytic cells. Nature 276:515–517

    Article  CAS  PubMed  Google Scholar 

  53. Nisimoto Y, Otsuka-Murakami H, Lambeth DJ (1995) Reconstitution of flavin-depleted neutrophil flavocytochrome b558 with 8-mercapto-FAD and characterization of the flavin-reconstituted enzyme. J Biol Chem 270:16428–16434

    Article  CAS  PubMed  Google Scholar 

  54. Crawford DR, Schneider DL (1982) Identification of ubiquinone-50 in human neutrophils and its role in microbicidal events. J Biol Chem 257:6662–6668

    Article  CAS  PubMed  Google Scholar 

  55. Cunningham CC, DeChatelet LR, Spach PI et al (1982) Identification and quantitation of electron transport components in human polymorphonuclear neutrophils. Biochim Biophys Acta 682:430–435

    Article  CAS  PubMed  Google Scholar 

  56. Crawford DR, Schneider DL (1983) Ubiquinone content and respiratory burst activity of latex-filled phagolysosomes isolated from human neutrophils and evidence for the probable involvement of a third granule. J Biol Chem 258:5363–5367

    Article  CAS  PubMed  Google Scholar 

  57. Gabig TG, Lefker BA (1985) Activation of the human neutrophil NADPH oxidase results in coupling of electron carrier function between ubiquinone-10 and cytochrome b559. J Biol Chem 260:3991–3995

    Article  CAS  PubMed  Google Scholar 

  58. Cross AR, Jones OTG, Garcia R, Segal AW (1983) The subcellular localization of ubiquinone in human neutrophils. Biochem J 216:765–768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lutter R, van Zwieten R, Weening RS, Hamers MN, Roos D (1984) Cytochrome b, flavins, and ubiquinone-50 in enucleated human neutrophils (polymorphonuclear leukocyte cytoplasts). J Biol Chem 259:9603–9606

    Article  CAS  PubMed  Google Scholar 

  60. Cross AR, Jones OTG, Harper AM, Segal AW (1981) Oxidation-reduction properties of the cytochrome b found in the plasma membrane fraction of human neutrophils. A possible oxidase in the respiratory burst. Biochem J 194:599–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tauber AI, Goetzl EJ (1979) Structural and catalytic properties of the solubilized superoxide-generating activity of human polymorphonuclear leukocytes. Solubilization, stabilization in solution and partial characterization. Biochemistry 18:5576–5584

    Article  CAS  PubMed  Google Scholar 

  62. Pick E, Bromberg Y, Shpungin S, Gadba R (1987) Activation of the superoxide forming NADPH oxidase in a cell-free system by sodium dodecyl sulfate. Characterization of the membrane-associated component. J Biol Chem 262:16476–16483

    Article  CAS  PubMed  Google Scholar 

  63. Bellavite P, Cross AR, Serra MC, Davoli A, Jones OTG, Rossi F (1983) The cytochrome b and flavin content and properties of the O2- - forming NADPH oxidase solubilized from activated neutrophils. Biochim Biophys Acta 746:40–47

    Article  CAS  PubMed  Google Scholar 

  64. Bellavite P, Jones OTG, Cross AR, Papini E, Rossi F (1984) Composition of partially purified NADPH oxidase from pig neutrophils. Biochem J 223:639–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Serra MC, Bellavite P, Davoli A, Rossi F (1984) Isolation from neutrophil membranes of a complex containing active NADPH oxidase and cytochrome b-245. Biochim Biophys Acta 788:138–146

    Article  CAS  PubMed  Google Scholar 

  66. Berton G, Papini E, Cassatella MA, Bellavite P, Rossi F (1985) Partial purification of the superoxide-generating system of macrophages. Possible association of the NADPH oxidase activity with a low-potential (-245 mV) cytochrome b. Biochim Biophys Acta 810:164–173

    Article  CAS  PubMed  Google Scholar 

  67. Cross AR, Parkinson JF, Jones OTG (1984) The superoxide-generating oxidase of leucocytes. NADPH-dependent reduction of flavin and cytochrome b in solubilized preparations. Biochem J 223:337–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wakeyama H, Takeshige K, Takayanagi R, Minakami S (1982) Superoxide-forming NADPH oxidase preparation of pig polymorphonuclear leucocytes. Biochem J 205:593–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Umei T, Takeshige K, Minakami S (1986) NADPH binding component of neutrophil superoxide-generating oxidase. J Biol Chem 261:5229–5232

    Article  CAS  PubMed  Google Scholar 

  70. Kojima H, Takahashi K, Sakane F, Koyama J (1987) Purification and characterization of a NADPH-cytochrome c reductase from porcine polymorphonuclear leukocytes. J Biochem 102:1083–1088

    Article  CAS  PubMed  Google Scholar 

  71. Sakane F, Kojima H, Takahashi K, Koyama J (1987) Porcine polymorphonuclear leukocyte NADPH-cytochrome c reductase generates superoxide in the presence of cytochrome b559 and phospholipid. Biochem Biophys Res Commun 147:71–77

    Article  CAS  PubMed  Google Scholar 

  72. Doussière J, Vignais PV (1985) Purification and properties of an O2- – generating oxidase from bovine polymorphonuclear neutrophils. Biochemistry 24:7231–7239

    Article  PubMed  Google Scholar 

  73. Morel F, Doussière J, Stasia M-J, Vignais PV (1985) The respiratory burst of bovine neutrophils. Role of a b type cytochrome and coenzyme specificity. Eur J Biochem 152:669–679

    Article  CAS  PubMed  Google Scholar 

  74. Markert M, Glass GA, Babior BM (1985) Respiratory burst oxidase from human neutrophils: Purification and some properties. Proc Natl Acad Sci U S A 82:3144–3148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Glass GA, DeLisle DM, DeTogni P, Gabig TG, Magee BH, Markert M, Babior BM (1986) The respiratory burst oxidase of human neutrophils. Further studies of the purified enzyme. J Biol Chem 261:13247–13251

    Article  CAS  PubMed  Google Scholar 

  76. Bellavite P, Casatella MA, Papini E, Magyeri P, Rossi F (1986) Presence of cytochrome b-245 in NADPH oxidase preparations from human neutrophils. FEBS Lett 199:159–163

    Article  CAS  PubMed  Google Scholar 

  77. Green TR, Pratt KL (1988) Purification of the solubilized NADPH:O2 oxidoreductase of human neutrophils. Isolation of its catalytically inactive cytochrome b and flavoprotein redox centers. J Biol Chem 263:5617–5623

    Article  CAS  PubMed  Google Scholar 

  78. Rae J, Newburger PE, Dinauer MC et al (1998) X-linked chronic granulomatous disease: mutations in the CYBB gene encoding the gp91phox component of the respiratory-burst oxidase. Am J Hum Genet 62:1320–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Debeurme F, Picciochi A, Dagher M-C et al (2010) Regulation of NADPH oxidase activity in phagocytes. Relationship between FAD/NADPH binding and oxidase complex assembly. J Biol Chem 285:33197–33208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Reis J, Massari M, Marchese S et al (2020) A closer look into NADPH oxidase inhibitors: Validation and insight into their mechanism of action. Redox Biol 32:101466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hattori H (1961) Studies on the labile, stable Nadi oxidase and peroxidase staining reactions in the isolated particles of horse granulocyte. Nagoya J Med Sci 23:362–378

    CAS  PubMed  Google Scholar 

  82. Ehrlich P (1877) Beiträge zur Kenntniss der Anilinfärbungen und ihrer Verwendung in der mikroskopischen Technik. Archiv für Mikrosk Anat 13:263–277

    Article  Google Scholar 

  83. Shinagawa Y, Tanaka C, Teraoka A, Shinagawa Y (1966) A new cytochrome in neutrophilic granules of rabbit leukocyte. J Biochem 59:622–624

    Article  CAS  PubMed  Google Scholar 

  84. Segal AW, Jones OTG, Webster D, Allison AC (1978) Absence of a newly described cytochrome b from neutrophils of patients with chronic granulomatous disease. Lancet II:446–449

    Article  Google Scholar 

  85. Borregaard N, Staehr Johansen K, Taudorff E, Wandall JH (1979) Cytochrome b is present in neutrophils from patients with chronic granulomatous disease. Lancet I:949–951

    Article  Google Scholar 

  86. Segal AW, Jones OTG (1979) Neutrophil cytochrome b in chronic granulomatous disease. Lancet I:1036–1037

    Article  Google Scholar 

  87. Segal AW, Jones OTG (1980) Absence of cytochrome b reduction in stimulated neutrophils form both female and male patients with chronic granulomatous disease. FEBS Lett 110:111–114

    Article  CAS  PubMed  Google Scholar 

  88. Roos D, van Leeuwen K, Hsu AP et al (2021) Hematologically important mutations: The autosomal forms of chronic granulomatous disease (third update). Blood Cells Mol Dis 92:102596

    Article  CAS  PubMed  Google Scholar 

  89. Schröder K, Weissmann N, Brandes RP (2017) Organizers and activators: cytosolic proteins impacting on vascular function. Free Radic Biol Med 109:22–32

    Article  PubMed  Google Scholar 

  90. Cross AR, Rae J, Curnutte JT (1995) Cytochrome b-245 of the neutrophil superoxide-generating system contains two nonidentical hemes. Potentiometric studies of a mutant form of gp91phox. J Biol Chem 270:17075–17077

    Article  CAS  PubMed  Google Scholar 

  91. Cross AR, Higson FK, Jones OT, Harper AM, Segal AW (1982) The enzymic reduction and kinetic of oxidation of cytochrome b-245 of neutrophils. Biochem J 204:479–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Cross AR, Parkinson JF, Jones OTG (1985) Mechanism of the superoxide-producing oxidase of neutropils. O2 is necessary for the fast reduction of cytochrome b-254 by NADPH. Biochem J 226:881–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Koshkin V (1995) Aerobic and anaerobic functioning of superoxide-producing cytochrome b-559 reconstituted with phospholipids. Biochim Biophys Acta 1232:225–229

    Article  PubMed  Google Scholar 

  94. Harper AM, Dunne MJ, Segal AW (1984) Purification of cytochrome b-245 from human leukocytes. Biochem J 219:519–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Segal AW (1987) Absence of both cytochrome b-245 subunits from neutrophils in X-linked chronic granulomatous disease. Nature 326:88–91

    Article  CAS  PubMed  Google Scholar 

  96. Harper AM, Chaplin MF, Segal AW (1985) Cytochrome b-245 from human neutrophils is a glycoprotein. Biochem J 227:783–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Jesaitis AJ, Heners PR, Hertel R (1977) Characterization of a membrane fraction containing a b-type cytochrome. Plant Physiol 59:941–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Parkos CA, Allen RA, Cochrane CG, Jesaitis AJ (1987) Purified cytochrome b from human granulocyte plasma membrane is comprised of two polypeptides with relative molecular weights of 91,000 and 22,000. J Clin Invest 80:732–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Parkos CA, Allen RA, Cochrane CG, Jesaitis AJ (1988) The quaternary structure of the plasma membrane b-type cytochrome of human granulocytes. Biochim Biophys Acta 932:71–83

    Article  CAS  PubMed  Google Scholar 

  100. Pember SO, Heyl BL, Kinkade JM Jr, Lambeth JD (1984) Cytochrome b558 from (bovine) granulocytes. Partial purification from Triton X-114 extracts and properties of the isolated cytochrome. J Biol Chem 259:10590–10595

    Article  CAS  PubMed  Google Scholar 

  101. Lutter R, van Schalk MLJ, van Zwieten R, Wever R, Roos D, Hamers MN (1985) Purification and partial characterization of the b-type cytochrome from human polymorphonuclear leukocytes. J Biol Chem 260:2237–2244

    Article  CAS  PubMed  Google Scholar 

  102. Bellavite P, Papini E, Zeni L, Della Bianca V, Rossi F (1985) Studies on the nature and activation of O2- – forming NADPH oxidase of leukocytes. Identification of a phosphorylated component of the active enzyme. Free Radic Res Commun 1:11–29

    Article  CAS  PubMed  Google Scholar 

  103. Morel F, Vignais PV (1987) Purification of cytochrome b558 from bovine polymorphonuclear neutrophils. Biochem Biophys Res Commun 149:46–55

    Article  CAS  PubMed  Google Scholar 

  104. Knoller S, Shpungin S, Pick E (1991) The membrane-associated component of the amphiphile-activated, cytosol-dependent superoxide-forming NADPH oxidase of macrophages is identical to cytochrome b559. J Biol Chem 266:2795–2804

    Article  CAS  PubMed  Google Scholar 

  105. Rotrosen D, Yeung CL, Leto TL, Malech HL, Kwong CH (1992) Cytochrome b558: the flavin-binding component of the phagocyte NADPH oxidase. Science 256:1459–1462

    Article  CAS  PubMed  Google Scholar 

  106. Abo A, Boyhan A, West I, Thrasher AJ, Segal AW (1992) Reconstitution of neutrophil NADPH oxidase activity in the cell-free system by four components: p67phox, p47phox, p21rac1 and cytochrome b-245. J Biol Chem 267:16767–16770

    Article  CAS  PubMed  Google Scholar 

  107. Miki T, Yoshida LS, Kakinuma K (1992) Reconstitution of superoxide-forming NADPH oxidase activity with cytochrome b558 purified from porcine neutrophils. Requirement of a membrane-bound flavin enzyme for reconstitution of activity. J Biol Chem 267:18695–18701

    Article  CAS  PubMed  Google Scholar 

  108. Koshkin V, Pick E (1993) Generation of superoxide by purified and relipidated cytochrome b559 in the absence of cytosolic activators. FEBS Lett 327:57–62

    Article  CAS  PubMed  Google Scholar 

  109. Koshkin V, Pick E (1994) Superoxide production by cytochrome b559. Mechanism of cytosol-independent activation. FEBS Lett 338:285–289

    Article  CAS  PubMed  Google Scholar 

  110. Seifert R, Rosenthal W, Schultz G (1986) Guanine nucleotides stimulate NADPH oxidase in membranes of human neutrophils. FEBS Lett 205:161–165

    Article  CAS  PubMed  Google Scholar 

  111. Gabig TG, English D, Akard LP, Schell MJ (1987) Regulation of neutrophil NADPH oxidase activation in a cell-free system by guanine nucleotides and fluoride. Evidence for participation of a pertussis and cholera toxin sensitive G protein. J Biol Chem 262:1685–1690

    Article  CAS  PubMed  Google Scholar 

  112. Quinn MT, Parkos CA, Walker L, Orkin SH, Dinauer MC, Jesaitis AJ (1989) Association of a Ras-related protein with cytochrome b of human neutrophils. Nature 342:198–200

    Article  CAS  PubMed  Google Scholar 

  113. Bokoch GM, Quilliam LA, Bohl BP, Jesaitis AJ, Quinn MT (1991) Inhibition of Rap1A binding to cytochrome b558 of NADPH oxidase by phosphorylation of Rap1A. Science 254:1794–1796

    Article  CAS  PubMed  Google Scholar 

  114. Quinn MT, Curnutte JT, Parkos CA et al (1992) Reconstitution of defective respiratory burst activity with partially purified human neutrophil cytochrome b in two genetic forms of chronic granulomatous disease: possible role of Rap1A. Blood 79:2438–2445

    Article  CAS  PubMed  Google Scholar 

  115. Eklund EA, Marshall M, Gibbs JB, Crean CD, Gabig TG (1991) Resolution of a low molecular weight G protein in neutrophil cytosol required for NADPH oxidase activation and reconstitution by recombinant Krev-1 protein. J Biol Chem 266:13964–13970

    Article  CAS  PubMed  Google Scholar 

  116. Gabig TG, Crean CD, Mantel PL, Rosli R (1995) Function of wild-type or mutant Rac2 and Rap1a GTPases in differentiated HL60 cell NADPH oxidase activation. Blood 85:804–811

    Article  CAS  PubMed  Google Scholar 

  117. Li Y, Yan J, De P et al (2007) Rap1A null mice have altered myeloid cell functions suggesting distinct roles for the closely related Rap1a and 1b proteins. J Immunol 179:8322–8331

    Article  CAS  PubMed  Google Scholar 

  118. Cross A, Erickson RW, Ellis BA, Curnutte JT (1999) Spontaneous activation of NADPH oxidase in a cell-free system: unexpected multiple effects of magnesium ion concentrations. Biochem J 338:229–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Shiro Y, Isogai Y, Nakamura H, Iizuka T (2002) Physiological functions and molecular structures of new types of hemoproteins. In: Endo I et al (eds) Molecular anatomy of cellular systems. Elsevier, Amsterdam, pp 189–204

    Chapter  Google Scholar 

  120. Iizuka T, Kanegasaki S, Makino R, Tanaka T, Ishimura Y (1985) Studies on neutrophil b- type cytochrome in situ by low temperature absorption spectroscopy. J Biol Chem 260:12049–12053

    Article  CAS  PubMed  Google Scholar 

  121. Hurst JK, Loehr TM, Curnutte JT, Rosen H (1991) Resonance Raman spectra and electron paramagnetic resonance structural investigations of neutrophil cytochrome b558. J Biol Chem 266:1627–1634

    Article  CAS  PubMed  Google Scholar 

  122. Ueno I, Fujii S, Ohya-Nishiguchi H, Iizuka T, Kanegasaki S (1991) Characterization of neutrophil b-type cytochrome on situ by electron paramagnetic spectroscopy. FEBS Lett 281:130–132

    Article  CAS  PubMed  Google Scholar 

  123. Miki T, Fujii H, Kakinuma K (1992) EPR signals of cytochrome b558 purified from porcine neutrophils. J Biol Chem 267:19673–19675

    Article  CAS  PubMed  Google Scholar 

  124. Segal AW, West I, Wientjes F et al (1992) Cytochrome b-245 is a flavocytochrome containing FAD and NADPH-binding site of the microbicidal oxidase of phagocytes. Biochem J 284:781–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Fujii H, Johnson M, Finnegan MG, Miki T, Yoshida LS, Kakinuma K (1995) Electron spin resonance studies on neutrophil cytochrome b558. Evidence that low-spin heme iron is essential for O2- generating activity. J Biol Chem 270:12685–12689

    Article  CAS  PubMed  Google Scholar 

  126. Doussière J, Gaillard J, Vignais PV (1996) Electron transfer across the O2- generating flavocytochrome b of neutrophils. Evidence for a transition from a low-spin state to a high-spin state of the heme iron component. Biochemistry 35:13400–13410

    Article  PubMed  Google Scholar 

  127. Fujii H, Finnegan MG, Johnson MK (1999) The active form of the ferric heme in neutrophil cytochrome b558 is low-spin in the reconstituted cell-free system in the presence of amphophil. J Biochem 126:708–714

    Article  CAS  PubMed  Google Scholar 

  128. Isogai Y, Iizuka T, Makino R, Iyanagi T, Orii Y (1993) Superoxide-producing cytochrome b. Enzymatic and electron paramagnetic resonance properties of cytochrome b558 purified from neutrophils. J Biol Chem 268:4025–4031

    Article  CAS  PubMed  Google Scholar 

  129. Isogai Y, Iizuka T, Shiro T (1995) The mechanism of electron donation to molecular oxygen by phagocytic cytochrome b558. J Biol Chem 270:7853–7857

    Article  CAS  PubMed  Google Scholar 

  130. Magnani F, Nenci S, Fananas EM et al (2017) Crystal structures and atomic model of NADPH oxidase. Proc Natl Acad Sci U S A 114:6764–6769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Orkin SH (1986) Reverse genetics and human disease. Cell 47:845–850

    Article  CAS  PubMed  Google Scholar 

  132. Baehner RL, Kunkel LM, Monaco AP et al (1986) DNA linkage analysis of X chromosome-linked chronic granulomatous disease. Proc Natl Acad Sci U S A 83:3398–3401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Royer-Pokora B, Kunkel LM, Monaco AP et al (1986) Cloning the gene for an inherited human disorder – chronic granulomatous disease – on the basis of its chromosomal location. Nature 322:32–38

    Article  CAS  PubMed  Google Scholar 

  134. Orkin SH (1989) Molecular genetics of chronic granulomatous disease. Annu Rev Immunol 7:277–307

    Article  CAS  PubMed  Google Scholar 

  135. Teahan C, Rowe P, Parker P, Totty N, Segal AW (1987) The X-linked chronic granulomatous disease gene codes for the β-chain of cytochrome b−245. Nature 327:720–721

    Article  CAS  PubMed  Google Scholar 

  136. Dinauer MC, Orkin SH, Brown R, Jesaitis AJ, Parkos CA (1987) The glycoprotein encoded by the X-linked chronic granulomatous disease locus is a component of the neutrophil cytochrome b complex. Nature 327:717–720

    Article  CAS  PubMed  Google Scholar 

  137. Parkos CA, Dinauer MC, Walker LE, Allen RA, Jesaitis AJ, Orkin SH (1988) Primary structure and unique expression of the 22-kilodalton light chain of human neutrophil cytochrome b. Proc Natl Acad Sci U S A 85:3319–3323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Dinauer MC, Pierce EA, Bruns GA, Curnutte JT, Orkin SH (1990) Human neutrophil cytochrome b light chain (p22phox). Gene structure, chromosomal location and mutations in cytochrome-negative autosomal recessive chronic granulomatous disease. J Clin Invest 86:1729–1737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Parkos CA, Dinauer MC, Jesaitis AJ, Orkin SH, Curnutte JT (1989) Absence of both the 91kD and 22kD subunits of human neutrophil cytochrome b in two genetic forms of chronic granulomatous disease. Blood 73:1416–1420

    Article  CAS  PubMed  Google Scholar 

  140. Yu L, Zhen L, Dinauer MC (1997) Biosynthesis of the phagocyte NADPH oxidase cytochrome b558. Role of heme incorporation and heterodimer formation in maturation and stability of gp91phox and p22phox subunits. J Biol Chem 272:27288–27294

    Article  CAS  PubMed  Google Scholar 

  141. DeLeo FR, Burritt JB, Yu L, Jesaitis AJ, Nauseef WM (2000) Processing and maturation of flavocytochrome b558 include incorporation of heme as a prerequisite for heterodimer assembly. J Biol Chem 275:13986–13993

    Article  CAS  PubMed  Google Scholar 

  142. Dinauer MC, Pierce EA, Ericson RW et al (1991) Point mutation in the cytoplasmic domain of the neutrophil p22phox cytochrome b subunit is associated with a nonfunctional NADPH oxidase and chronic granulomatous disease. Proc Natl Acad Sci U S A 88:11231–11235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Sumimoto H, Kage Y, Nunoi H et al (1994) Role of Src homology 3 domains in assembly and activation of the phagocyte NADPH oxidase. Proc Natl Acad Sci U S A 91:5345–5349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Leto TL, Adams AG, De Mendez I (1994) Assembly of the phagocyte NADPH oxidase: binding of Src homology 3 domains to proline-rich targets. Proc Natl Acad Sci U S A 91:10650–10654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Stasia MJ (2016) CYBA encoding p22phox, the cytochrome b558 alpha polypeptide: gene structure, expression, role in physiology. Gene 586:27–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Nugent JHA, Gratzer W, Segal AW (1989) Identification of the haem-binding subunit of cytochrome b-245. Biochem J 264:921–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Quinn MT, Mullen M, Jesaitis AJ (1992) Human neutrophil cytochrome b contains multiple hemes. Evidence for heme associated with both subunits. J Biol Chem 267:7303–7309

    Article  CAS  PubMed  Google Scholar 

  148. Fujii H, Yonetani T, Miki T, Kakinuma K (1995) Modulation of the heme environment of neutrophil cytochrome b558 to a “cytochrome P450-like” structure by pyridine. J Biol Chem 270:3193–3196

    Article  CAS  PubMed  Google Scholar 

  149. Bolscher BGJM, de Boer M, de Klein A, Weening RS, Roos D (1991) Point mutations in the β-subunit of cytochrome b558 leading to X-linked chronic granulomatous disease. Blood 77:2482–2487

    Article  CAS  PubMed  Google Scholar 

  150. Dinauer MC (2019) Insights into the NOX NADPH oxidases using heterologous whole cell assays. In: Knaus UG, Leto TL (eds) NADPH oxidases Methods and protocols. Springer Science+Business Media, New York, pp 139–151

    Chapter  Google Scholar 

  151. Yu L, Quinn MT, Cross AR, Dinauer MC (1998) gp91phox is the heme binding subunit of the superoxide-generating NADPH oxidase. Proc Natl Acad Sci U S A 95:7993–7998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Biberstine-Kinkade KJ, DeLeo FR, Epstein RI, LeRoy BA, Nauseef WM, Dinauer MC (2001) Heme-ligating histidines in flavocytochrome b558. Identification of specific histidines in gp91phox. J Biol Chem 276:31105–31112

    Article  CAS  PubMed  Google Scholar 

  153. Dancis A, Roman DG, Anderson GJ, Hinnebusch AG, Klausner RD (1992) Ferric reductase of Saccharomyces cerevisiae: molecular characterization, role in iron uptake, and transcriptional control by iron. Proc Natl Acad Sci U S A 89:3869–3873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Shatwell KP, Dancis A, Cross AR, Klausner RD, Segal AW (1996) The FRE1 ferric reductase of Saccharomyces cerevisiae is a cytochrome b similar to that of NADPH oxidase. J Biol Chem 271:14240–14244

    Article  CAS  PubMed  Google Scholar 

  155. Finegold AA, Shatwell KP, Segal AW, Klausner RD, Dancis A (1996) Intramembrane bis-heme motif for transmembrane electron transport conserved in a yeast iron reductase and the human NADPH oxidase. J Biol Chem 271:31021–31024

    Article  CAS  PubMed  Google Scholar 

  156. Zhang X, Krause K-H, Xenarios I, Soldati T, Boeckmann B (2013) Evolution of the ferric reductase (FRD) superfamily: modularity, functional diversification, and signature motifs. PLoS One 8:e58126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Oosterheert W, Reis J, Gros P, Mattevi A (2020) An elegant four-helical fold in NOX and STEAP enzymes facilitates electron transport across biomembranes – similar vehicle, different destination. Acc Chem Res 53:1969–1980

    Article  CAS  PubMed  Google Scholar 

  158. Chiba T, Kaneda M, Fujii H, Clark RA, Nauseef WM (1990) Two cytosolic components of the neutrophil NADPH oxidase, p47phox and p67phox, are not flavoproteins. Biochem Biophys Res Commun 173:376–381

    Article  CAS  PubMed  Google Scholar 

  159. Leusen JHW, Meischl C, Eppink MHM et al (2000) Four novel mutations in the gene encoding gp91phox of human NADPH oxidase; consequences for oxidase assembly. Blood 95:666–673

    CAS  PubMed  Google Scholar 

  160. Umei T, Takeshige K, Minakami S (1987) NADPH-binding component of the superoxide-generating oxidase in unstimulated neutrophils and the neutrophils from patients with chronic granulomatous disease. Biochem J 243:467–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Doussière J, Laporte F, Vignais PV (1986) Photolabeling of a O2- generating protein in bovine polymorphonuclear neutrophils by an arylazido NADP+ analog. Biochem Biophys Res Commun 29:85–93

    Article  Google Scholar 

  162. Doussière J, Brandolin G, Derrien V, Vignais PV (1993) Critical assessment of the presence of an NADPH binding site on neutrophil cytochrome b558 by photoaffinity and immunochemical labeling. Biochemistry 32:8880–8887

    Article  PubMed  Google Scholar 

  163. Ravel P, Lederer F (1993) Affinity-labeling of an NADPH-binding site on the heavy subunit of flavocytochrome b558 in particulate NADPH oxidase from activated neutrophils. Biochem Biophys Res Commun 196:543–552

    Article  CAS  PubMed  Google Scholar 

  164. Sha’ag D, Pick E (1988) Macrophage-derived superoxide-generating NADPH in an amphiphile-activated cell-free system; partial purification of the cytosolic component and evidence that it may contain the NADPH binding site. Biochim Biophys Acta 952:213–219

    Article  PubMed  Google Scholar 

  165. Sha’ag D, Pick E (1990) Nucleotide binding properties of cytosolic components required for expression of activity of the superoxide generating NADPH oxidase. Biochim Biophys Acta 1037:405–412

    Article  PubMed  Google Scholar 

  166. Smith RM, Curnutte JT, Babior BM (1989) Affinity labelling of the cytosolic and membrane components of the respiratory burst oxidase by the 2′3′-dialdehyde derivative of NADPH. Evidence for a cytosolic location of the nucleotide-binding site in the resting cell. J Biol Chem 264:1958–1962

    Article  CAS  PubMed  Google Scholar 

  167. Smith RM, Curnutte JT, Mayo LA, Babior BM (1989) Use of an affinity label to probe the function of the NADPH binding component of the respiratory burst oxidase of human neutrophils. J Biol Chem 264:12243–12248

    Article  CAS  PubMed  Google Scholar 

  168. Okamura N, Babior BM, Mayo LA, Peveri P, Smith RM, Curnutte JT (1990) The p67phox cytosolic peptide of the respiratory burst oxidase from human neutrophils. Functional aspects. J Clin Invest 85:1583–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Umei T, Babior BM, Curnutte JT, Smith RM (1991) Identification of the NADPH-binding subunit of the respiratory burst oxidase. J Biol Chem 266:6019–6022

    Article  CAS  PubMed  Google Scholar 

  170. Dang PM-C, Johnson JL, Babior BM (2000) Binding of nicotinamide dinucleotide phosphate to the tetratricopeptide repeat domains at the N-terminus of p67phox, a subunit of the leukocyte nicotinamide adenine dinucleotide phosphate oxidase. Biochemistry 39:3069–3075

    Article  CAS  PubMed  Google Scholar 

  171. Ge F, Guillory RJ (1994) NADPH-binding protein of the neutrophil superoxide-generating oxidase of guinea pigs. Proc Natl Acad Sci U S A 91:8622–8626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Hashida S, Yuzawa S, Suzuki NS et al (2004) Binding of FAD to cytochrome b558 is facilitated during activation of the phagocyte NADPH oxidase, leading to superoxide production. J Biol Chem 279:26378–26386

    Article  CAS  PubMed  Google Scholar 

  173. Sumimoto H, Sakamoto N, Nozaki M, Sakaki Y, Takeshige K, Minakami S (1992) Cytochrome b558, a component of the phagocyte NADPH oxidase, is a flavoprotein. Biochem Biophys Res Commun 186:1368–1375

    Article  CAS  PubMed  Google Scholar 

  174. Doussière J, Buzenet G, Vignais PV (1995) Photoaffinity labeling and photoinactivation of the O2- – generating oxidase of neutrophils by an azido derivative of FAD. Biochemistry 34:1760–1770

    Article  PubMed  Google Scholar 

  175. Karplus PA, Daniels MJ, Herriott JR (1991) Atomic structure of ferredoxin-NADP+ reductase: prototype for a structurally novel flavoenzyme family. Science 251:60–66

    Article  CAS  PubMed  Google Scholar 

  176. Kean KM, Carpenter RA, Pandini V et al (2017) High-resolution studies of hydride transfer in the ferredoxin: NADP+ reductase. FEBS J 284:3302–3319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Dinauer MC, Curnutte JT, Rosen H, Orkin SH (1989) A missense mutation in the neutrophil cytochrome b heavy chain in cytochrome-positive X-linked chronic granulomatous disease. J Clin Invest 84:2012–2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Yoshida LS, Saruta F, Yoshikawa K, Tatsuzawa O, Tsunawaki S (1998) Mutation at histidine 338 of gp91phox depletes FAD and affects expression of cytochrome b558 of the human NADPH oxidase. J Biol Chem 273:27879–27886

    Article  CAS  PubMed  Google Scholar 

  179. Taylor WR, Jones DT, Segal AW (1993) A structural model for the nucleotide binding domains of the flavocytochrome b-245 β-chain. Protein Sci 2:1675–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Beaumel S, Picciocchi A, Debeurne F et al (2017) Down-regulation of Nox2 activity in phagocytes mediated by ATM-kinase dependent phosphorylation. Free Radic Biol Med 113:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Leusen JW, de Boer M, Bolscher BGJM et al (1994) A point mutation in gp91phox of cytochrome b558 of the human NADPH oxidase leading to defective translocation of the cytosolic proteins p47phox and p67phox. J Clin Invest 93:2120–2126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Li XJ, Grunwald D, Mathieu J, Morel F, Stasia M-J (2005) Crucial role of two potential cytosolic regions of Nox2, 191TSSTKTIRRS200 and 484DESQANHFAVHHDEEKD500, on NADPH oxidase activation. J Biol Chem 280:14962–14973

    Article  CAS  PubMed  Google Scholar 

  183. Kleinberg ME, Malech HL, Rotrosen D (1990) The phagocyte 47-kilodalton cytosolic oxidase protein is an early reactant in activation of the respiratory burst. J Biol Chem 265:15577–15583

    Article  CAS  PubMed  Google Scholar 

  184. Magnani F, Mattevi A (2019) Structure and mechanism of ROS generation by NADPH oxidases. Curr Opin Struct Biol 59:91–97

    Article  CAS  PubMed  Google Scholar 

  185. Deng Z, Aliverti A, Zanetti G et al (1999) A productive NADP+ binding mode of ferredoxin-NADP+ reductase revealed by protein engineering and crystallographic studies. Nat Struct Biol 6:847–853

    Article  CAS  PubMed  Google Scholar 

  186. Babior BM (1999) NADPH oxidase: an update. Blood 93:1464–1476

    Article  CAS  PubMed  Google Scholar 

  187. Koshkin V, Lotan O, Pick E (1997) Electron transfer in the superoxide-generating NADPH oxidase complex reconstituted in vitro. Biochim Biophys Acta 1319:139–146

    Article  CAS  PubMed  Google Scholar 

  188. Cross A (1999) The participation of the hemes of flavocytochrome b245 in the electron transfer process in NADPH oxidase (Letter to the Editor). Blood 93:4449

    Article  CAS  PubMed  Google Scholar 

  189. Babior BM (1999) Response (Letter to the Editor). Blood 93:4449

    CAS  Google Scholar 

  190. Nauseef WM, Clark RA (2019) Intersecting stories of the phagocyte NADPH oxidase and chronic granulomatous disease. In: Knaus UG, Leto TL (eds) NADPH oxidases methods and protocols. Springer Science+Business Media, New York, pp 3–16

    Chapter  Google Scholar 

  191. Hamers MN, de Boer M, Meerhof LJ, Weening RS, Roos D (1984) Complementation in monocyte hybrids revealing genetic heterogeneity in chronic granulomatous disease. Nature 307:553–555

    Article  CAS  PubMed  Google Scholar 

  192. Segal AW, Heyworth PG, Cockroft S, Barrowman MM (1985) Stimulated neutrophils from patients with autosomal recessive chronic granulomatous disease fail to phosphorylate a Mr-44,000 protein. Nature 306:547–549

    Article  Google Scholar 

  193. Heyworth PG, Segal AW (1986) Further evidence for the involvement of a phosphoprotein in the respiratory burst oxidase of neutrophils. Biochem J 239:723–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Bromberg Y, Pick E (1984) Unsaturated fatty acids stimulate NADPH- dependent superoxide generation by cell-free system in macrophages. Cell Immunol 88:213–221

    Article  CAS  PubMed  Google Scholar 

  195. Heyneman RA, Vercauteren RE (1984) Activation of a NADPH oxidase from horse poymorphonuclear leukocytes in a cell-free system. J Leukoc Biol 36:751–759

    Article  CAS  PubMed  Google Scholar 

  196. Pick E, Keisari Y (1981) Superoxide anion production and hydrogen peroxide production by chemically elicited macrophages – induction by multiple nonphagocytic stimuli. Cell Immunol 59:301–318

    Article  CAS  PubMed  Google Scholar 

  197. Pick E (2020) Cell-free NADPH oxidase activation assay: a triumph of reductionism. In: Quinn MT, DeLeo FR (eds) Neutrophil methods and protocols, 3rd edn. Springer Science+Business Media, New York, pp 325–411

    Chapter  Google Scholar 

  198. Kakinuma K (1974) Effects of fatty acids on the oxidative metabolism of leukocytes. Biochim Biophys Acta 348:76–85

    Article  CAS  PubMed  Google Scholar 

  199. Kakinuma K, Minakami S (1978) Effects of fatty acids on superoxide radical generation in leukocytes. Biochim Biophys Acta 538:50–59

    Article  CAS  PubMed  Google Scholar 

  200. Badwey JA, Curnutte JT, Karnovsky ML (1981) cis-polyunsaturated fatty acids induce high levels if superoxide production by human neutrophils. J Biol Chem 256:12640–12643

    Article  CAS  PubMed  Google Scholar 

  201. Bromberg Y, Pick E (1983) Unsaturated fatty acids as second messengers of superoxide generation by macrophages. Cell Immunol 79:243–252

    Article  Google Scholar 

  202. Scott WA, Zrike JM, Hamill AL, Kempe J, Cohn ZA (1980) Regulation of arachidonic acid metabolites in macrophages. J Exp Med 152:324–335

    Article  CAS  PubMed  Google Scholar 

  203. Smolen JE, Shohet SB (1974) Remodeling of granulocyte membrane fatty acids during phagocytosis. J Clin Invest 53:726–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. McPhail LC, Clayton CC, Snyderman R (1984) A potential second messenger role for unsaturated fatty acids: activation of Ca2+-dependent protein kinase. Science 224:622–625

    Article  CAS  PubMed  Google Scholar 

  205. Heyneman R (1981) Activation by oleate of a NADPH oxidase from polymorphonuclear leukocytes. Arch Int Physiol Biochim 89:B107

    Google Scholar 

  206. Heyneman RA, Bauwens-Monbaliou D (1981) Kinetics of nicotinamide adenine dinucleotides in oleate-stimulated polymorphonuclear leukocytes. FEBS Lett 127:87–90

    Article  CAS  PubMed  Google Scholar 

  207. Heyneman RA (1983) Subcellular localization and properties of the NAD(P)H oxidase from equine polymorphonuclear leukocytes. Enzyme 29:198–207

    Article  CAS  PubMed  Google Scholar 

  208. Maridonneau-Parini I, Tringale SM, Tauber AI (1986) Identification of distinct activation pathways of the human neutrophil NADPH-oxidase. J Immunol 137:2925–2929

    Article  CAS  PubMed  Google Scholar 

  209. Maridonneau-Parini I, Tauber AI (1986) Activation of NADPH-Oxidase by arachidonic acid involves phospholipase A2 in intact human neutrophils but not in the cell-free system. Biochem Biophys Res Commun 138:1099–1105

    Article  CAS  PubMed  Google Scholar 

  210. Henderson LM, Chappell JB, Jones OTG (1989) Superoxide generation is inhibited by phospholipase A2 inhibitors. Role of phospholipsase A2 in the activation of the NADPH oxidase. Biochem J 264:249–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Sakata A, Ida E, Tominaga M, Onoue K (1987) Arachidonic acid acts as an intracellular activator of NADPH oxidase in Fcγ receptor-mediated superoxide generation in macrophages. J Immunol 138:4353–4359

    Article  CAS  PubMed  Google Scholar 

  212. Dabrai D, van den Bogaart G (2021) The roles of phospholipase A2 in phagocytes. Front Cell Dev Biol 9:673502

    Article  Google Scholar 

  213. Shmelzer Z, Haddad N, Admon E et al (2003) Unique targeting of cytosolic phospholipase A2 to plasma membranes mediated by the NADPH oxidase of phagocytes. J Cell Biol 162:683–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Zhao X, Bey EA, Wientjes FB, Cathcart MK (2002) Cytosolic phospholipase A2 (cPLA2) regulation of human monocyte NADPH oxidase activity. cPLA2 affects translocation but not phosphorylation of p67phox and p47phox. J Biol Chem 277:25385–25392

    Article  CAS  PubMed  Google Scholar 

  215. Petry A, Weitnauer M, Görlach A (2010) Receptor activation of NADPH oxidases. Antioxid Redox Signal 13:467–487

    Article  CAS  PubMed  Google Scholar 

  216. McPhail LC, Snyderman R (1983) Activation of the respiratory burst enzyme in human polymorphonuclear leukocytes by chemoattractants and other soluble stimuli. Evidence that the same oxidase is activated by different transductional mechanisms. J Clin Invest 72:192–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. McPhail LC, Clayton CC, Snyderman R (1984) Evidence that activation of human neutrophil NADPH oxidase involves association of cytosolic factor with membrane components. Clin Res 32:315a

    Google Scholar 

  218. McPhail LC, Shirley PS, Clayton CC, Snyderman R (1985) Activation of the respiratory burst enzyme from human neutrophils in a cell-free system. J Clin Invest 75:1735–1739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Curnutte JT (1984) Activation of human neutrophil NADPH oxidase by arachidonic acid in a cell-free system. Blood 64:66a

    Google Scholar 

  220. Curnutte JT (1985) Activation of human neutrophil nicotinamide adenine dinucleotide phosphate reduced (triphosphopyridine nucleotide, reduced) oxidase by arachidonic acid in a cell-free system. J Clin Invest 75:1740–1743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Curnutte JT, Kuver R, Scott PJ (1987) Activation of neutrophil NADPH oxidase in a cell-free system. Partial purification of the components and characterization of the activation process. J Biol Chem 262:5563–5569

    Article  CAS  PubMed  Google Scholar 

  222. Curnutte JT, Berkow RL, Roberts RL, Shurin SB, Scott PJ (1988) Chronic Granulomatous Disease due to a defect in the cytosolic factor required for nicotinamide dinucleotide phosphate oxidase activation. J Clin Invest 81:606–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Curnutte PJ, Scott PJ, Babior BM (1989) Functional defect in neutrophil cytosols from two patients with autosomal recessive cytochrome-positive Chronic Granulomatous Disease. J Clin Invest 83:1236–1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Tsunawaki S, Nathan CF (1986) Release of arachidonate and reduction of oxygen. Independent metabolic bursts of the mouse peritoneal macrophage. J Biol Chem 261:11563–11570

    Article  CAS  PubMed  Google Scholar 

  225. Badwey JA, Curnutte JT, Robinson JM, Berde CB, Karnovsky MJ, Karnovsky ML (1984) Effects of fatty acids on release of superoxide and on change of shape by human neutrophils. Reversibility by albumin. J Biol Chem 259:7870–7877

    Article  CAS  PubMed  Google Scholar 

  226. Steinbeck MJ, Robinson JM, Karnovsky MJ (1991) Activation of the neutrophil NADPH-oxidase by free fatty acids requires the ionized carboxyl group and partitioning into membrane lipid. J Leukoc Biol 49:360–368

    Article  CAS  PubMed  Google Scholar 

  227. Zatti M, Rossi F (1967) Relationship between glycolysis and respiration in surfactant-treated leucocytes. Biochim Biophys Acta 148:553–555

    Article  CAS  PubMed  Google Scholar 

  228. Graham RC, Karnovsky MJ, Shafer AW, Glass EA, Karnovsky ML (1967) Metabolic and morphological observations on the effect of surface-active agents on leukocytes. J Cell Biol 32:629–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Cohen HJ, Chovaniec ME (1978) Superoxide generation by digitonin-stimulated guinea pig granulocytes. A basis for a continuous assay for monitoring superoxide production and for the study of the activation of the generating system. J Clin Invest 61:1081–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Pick E, Mizel D (1982) Role of transmethylation in the elicitation of an oxidative burst in macrophages. Cell Immunol 72:277–285

    Article  CAS  PubMed  Google Scholar 

  231. Kakinuma K, Hatae T, Minakami S (1976) Effect of ionic sites of surfactants on leukocyte metabolism. J Biochem 79:795–802

    Article  CAS  PubMed  Google Scholar 

  232. Washida N, Sagawa A, Tamoto K, Koyama J (1980) Comparative studies on superoxide production by polymorphonuclear leukocytes stimulated with various agents. Biochim Biophys Acta 631:371–379

    Article  CAS  PubMed  Google Scholar 

  233. Bromberg Y, Pick E (1985) Activation of NADPH-dependent superoxide production in a cell-free system by sodium dodecyl sulfate. J Biol Chem 260:13539–13545

    Article  CAS  PubMed  Google Scholar 

  234. Seifert R, Schultz G (1987) Fatty acid-induced activation of NADPH oxidase in plasma membranes of human neutrophils depends on neutrophil cytosol and is potentiated by stable guanine nucleotides. Eur J Biochem 162:563–569

    Article  CAS  PubMed  Google Scholar 

  235. Tanaka T, Kanegasaki S, Makino R, Iizuka T, Ishimura Y (1987) Saturated and trans-unsaturated fatty acids elicit high levels of superoxide generation in intact and cell-free preparations of neutrophils. Biochem Biophys Res Commun 144:606–612

    Article  CAS  PubMed  Google Scholar 

  236. Tanaka T, Makino R, Iizuka T, Ishimura Y, Kanegasaki S (1988) Activation by saturated and monounsaturated fatty acids of the O2--generating system in a cell-free preparation from neutrophils. J Biol Chem 263:13670–13676

    Article  CAS  PubMed  Google Scholar 

  237. Nishida S, Yoshida LS, Shimoyama T, Nunoi H, Kobayashi T, Tsunawaki S (2005) Fungal metabolite gliotoxin targets flavocytochrome b558 in the activation of the human neutrophil NADPH oxidase. Infect Immun 73:235–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Souabni H, Thoma V, Bizouarn T et al (2012) trans arachidonic acid acid isomers inhibit NADPH-oxidase activity by direct interaction with enzyme components. Biochim Biophys Acta 1818:2314–2324

    Article  CAS  PubMed  Google Scholar 

  239. Yamaguchi T, Kaneda M, Kakinuma K (1986) Effect of saturated and unsaturated fatty acids on the oxidative metabolism of human neutrophils. The role of calcium ion in the extracellular medium. Biochim Biophys Acta 861:440–446

    Article  CAS  PubMed  Google Scholar 

  240. Ligeti E, Doussière J, Vignais PV (1988) Activation of the O2- - generating oxidase in plasma membrane from bovine polymorphonuclear neutrophils by arachidonic acid, a cytosolic factor of protein nature, and nonhydrolyzable analogues of GTP. Biochemistry 27:193–200

    Article  CAS  PubMed  Google Scholar 

  241. Pilloud (Dagher) M-C, Doussière J, Vignais PV (1989) Parameters of activation of the membrane-bound O2- – generating oxidase from bovine neutrophils in a cell-free system. Biochem Biophys Res Commun 159:783–790

    Article  Google Scholar 

  242. Aharoni I, Pick E (1990) Activation of the superoxide-generating NADPH oxidase of macrophages by sodium dodecyl sulfate in a soluble cell-free system: evidence for involvement of a G protein. J Leukoc Biol 48:107–115

    Article  CAS  PubMed  Google Scholar 

  243. Dagher M-C, Pick E (2007) Opening the black box: learning from cell-free systems on the phagocyte NADPH oxidase. Biochimie 89:1123–1132

    Article  CAS  PubMed  Google Scholar 

  244. Souabni H, Wien F, Bizouarn T, Houée-Levin C, Réfrégiers M, Baciou L (2017) The physicochemical properties of membranes correlate with the NADPH oxidase activity. Biochim Biophys Acta 1861:3520–3530

    Article  CAS  Google Scholar 

  245. Massoud R, Bizouarn T, Houée-Levin C (2014) Cholesterol: a modulator of the phagocyte NADPH oxidase – a cell-free study. Redox Biol 3:16–24

    Article  Google Scholar 

  246. Shpungin S, Dotan I, Abo A, Pick E (1989) Activation of the superoxide forming NADPH oxidase in a cell-free system by sodium dodecyl sulfate. Absolute lipid dependence of the solubilized enzyme. J Biol Chem 264:9195–9203

    Article  CAS  PubMed  Google Scholar 

  247. Foubert TR, Burritt JB, Taylor RM, Jesaitis AJ (2002) Structural changes are induced in human neutrophil cytochrome b by NADPH oxidase activators, LDS, SDS and arachidonate: Intermolecular resonance energy transfer between trisulfopyrenyl-wheat germ agglutinin and cytochrome b558. Biochim Biophys Acta 1567:221–231

    Article  CAS  PubMed  Google Scholar 

  248. Taylor RM, Foubert TR, Burritt JB et al (2004) Anionic amphiphile and phospholipid-induced conformational changes in human neutrophil flavocytochrome b observed by fluorescence resonance energy transfer. Biochim Biophys Acta 1663:201–213

    Article  CAS  PubMed  Google Scholar 

  249. Bellavite P, Corso F, Dusi S, Grzeskowiak M, Della-Bianca V, Rossi F (1988) Activation of NADPH-dependent superoxide production in plasma membrane extracts of pig neutrophils by phosphatidic acid. J Biol Chem 263:8210–8214

    Article  CAS  PubMed  Google Scholar 

  250. Leto TL (1999) The respiratory burst oxidase. In: Gallin JI, Snyderman R (eds) Inflammation: basic principles and clinical correlates, 3rd edn. Lippincott Williams and Wilkins, Philadelphia, pp 769–786

    Google Scholar 

  251. Groemping Y, Rittinger K (2005) Activation and assembly of the NADPH oxidase: a structural perspective. Biochem J 386:401–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Sumimoto H (2008) Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species. FEBS J 275:3249–3277

    Article  CAS  PubMed  Google Scholar 

  253. Tauber AI (1987) Protein kinase C and the activation of the human neutrophil NADPH-oxidase. Blood 69:711–720

    Article  CAS  PubMed  Google Scholar 

  254. Volpp BD, Nauseef WM, Clark RA (1988) Two cytosolic neutrophil oxidase components absent in autosomal chronic granulomatous disease. Science 242:1295–1297

    Article  CAS  PubMed  Google Scholar 

  255. Levy R, Rotrosen D, Nagauker O et al (1990) Induction of the respiratory burst in HL-60 cells. Correlation of function and protein expression. J Immunol 145:2595–2601

    Article  CAS  PubMed  Google Scholar 

  256. Fuchs A, Dagher M-C, Jouan A, Vignais PV (1994) Activation of the O2- – generating NADPH oxidase in a semi-recombinant cell-free system. Assessment of the function of Rac in the activation process. Eur J Biochem 226:587–595

    Article  CAS  PubMed  Google Scholar 

  257. Clark RA, Malech HL, Gallin JI et al (1989) Genetic variants of chronic granulomatous disease: prevalence of deficiencies of two cytosolic components of the NADPH oxidase system. N Engl J Med 321:647–652

    Article  CAS  PubMed  Google Scholar 

  258. Nunoi H, Rotrosen D, Gallin JI, Malech HL (1988) Two forms of autosomal chronic granulomatous disease lack distinct neutrophil cytosol factors. Science 242:1298–1301

    Article  CAS  PubMed  Google Scholar 

  259. Clark RA, Volpp BD, Leidal KG, Nauseef WM (1990) Two cytosolic components of the human neutrophil respiratory burst oxidase translocate to the plasma membrane during cell activation. J Clin Invest 85:714–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Bolscher BGJM, van Zwieten R, Kramer IJM, Weening RS, Verhoeven AJ, Roos D (1989) A phosphoprotein of Mr 47,000, defective in autosomal chronic granulomatous disease, copurifies with one of two soluble components required for NADPH:O2 oxidoreductase activity in human neutrophils. J Clin Invest 83:757–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Bolscher BGJM, Denis SW, Verhoeven AJ, Roos D (1990) The activity of one soluble component of the cell-free NADPH:O2 oxidoreductase of human neutrophils depends on guanosine 5’-O-(3-thio)triphosphate. J Biol Chem 265:15782–15787

    Article  CAS  PubMed  Google Scholar 

  262. Teahan CG, Totty N, Casimir CM, Segal AW (1990) Purification of the 47 kDa phosphoprotein associated with the NADPH oxidase of human neutrophils. Biochem J 267:485–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Tanaka T, Makino R, Ishimura Y (1992) Cytosolic components involved in porcine neutrophil oxidase activation. Purification of a 47-kilodalton protein and reconstitution of the activation system. J Biol Chem 267:1239–1244

    Article  CAS  PubMed  Google Scholar 

  264. Pilloud-Dagher M-C, Jouan A, Vignais PV (1992) Purification and properties of a functional 47-kilodalton cytosolic factor required for NADPH-oxidase activation in bovine neutrophils. Biochem Biophys Res Commun 186:731–738

    Article  CAS  PubMed  Google Scholar 

  265. Tanaka T, Imajoh-Ohmi S, Kanegasaki S et al (1990) A 63-kilodalton cytosolic polypeptide involved in superoxide generation in porcine neutrophils. J Biol Chem 265:18717–18720

    Article  CAS  PubMed  Google Scholar 

  266. Pilloud-Dagher M-C, Vignais PV (1991) Purification and characterization of an oxidase activating factor of 63 kilodaltons from bovine neutrophils. Biochemistry 30:2753–2760

    Article  CAS  PubMed  Google Scholar 

  267. Lomax KJ, Leto TL, Nunoi H et al (1989) Recombinant 47-kilodalton cytosol factor restores NADPH oxidase in chronic granulomatous disease. Science 245:409–412

    Article  CAS  PubMed  Google Scholar 

  268. Vogel US, Dixon RA, Schaber MD et al (1988) Cloning of bovine GAP and its interaction with oncogenic ras p21. Nature 335:90–93

    Article  CAS  PubMed  Google Scholar 

  269. Duchesne M, Schweighoffer F, Parker F et al (1993) Identification of the SH3 domain GAP as an essential sequence for Ras-GAP-mediated signaling. Science 259:525–528

    Article  CAS  PubMed  Google Scholar 

  270. Volpp BD, Nauseef WM, Donelson JE et al (1989) Cloning of the cDNA and functional expression of the 47-kilodalton cytosolic component of human neutrophil respiratory burst oxidase. Proc Natl Acad Sci U S A 86:7195–7199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Musacchio A, Gibson T, Lehto V-P, Saraste M (1992) SH3 – an abundant protein domain in search of a function. FEBS Lett 307:55–61

    Article  CAS  PubMed  Google Scholar 

  272. Leto TL, Lomax KJ, Volpp BD et al (1990) Cloning of a 67-kD neutrophil oxidase factor with similarity to a noncatalytic region of p60c-src. Science 248:727–730

    Article  CAS  PubMed  Google Scholar 

  273. Ligeti E, Tardif M, Vignais PV (1989) Activation of O2--generating oxidase of bovine neutrophils in a cell-free system. Interaction of a cytosolic factor with the plasma membrane and control by G nucleotides. Biochemistry 28:7116–7123

    Article  CAS  PubMed  Google Scholar 

  274. Pick E, Kroizman T, Abo A (1989) Activation of the superoxide-forming NADPH oxidase of macrophages requires two cytosolic components – one of them is also present in certain nonphagocytic cells. J Immunol 143:4180–4187

    Article  CAS  PubMed  Google Scholar 

  275. Fujita I, Takeshige K, Minakami S (1987) Characterization of the NADPH-dependent superoxide production activated by sodium dodecyl sulfate in a cell-free system of pig neutrophils. Biochim Biophys Acta 931:41–48

    Article  CAS  PubMed  Google Scholar 

  276. Abo A, Pick E (1991) Purification and characterization of a third cytosolic component of the superoxide-generating NADPH oxidase of macrophages. J Biol Chem 266:23577–23585

    Article  CAS  PubMed  Google Scholar 

  277. Abo A, Pick E, Hall A, Totty N, Teahan CG, Segal AW (1991) Activation of the NADPH oxidase involves the small GTP-binding protein p21 rac 1. Nature 353:668–670

    Article  CAS  PubMed  Google Scholar 

  278. Pick E, Gorzalczany Y, Engel S (1993) Role of the rac1 p21 - rho GDI heterodimer in the activation of the superoxide forming NADPH oxidase of macrophages. Eur J Biochem 217:441–455

    Article  CAS  PubMed  Google Scholar 

  279. Didsbury J, Weber RF, Bokoch GM, Evans T, Snyderman R (1989) rac, a novel ras-related family of proteins that are botulinum toxin substrates. J Biol Chem 264:16378–16382

    Article  CAS  PubMed  Google Scholar 

  280. Ohga N, Kikuchi A, Ueda T et al (1989) Rabbit intestine contains a protein that inhibits the dissociation of GDP from and the subsequent binding of GTP to rhoB p20, a ras p21-like-GTP-binding protein. Biochem Biophys Res Commun 163:1523–1533

    Article  CAS  PubMed  Google Scholar 

  281. Olofsson B (1999) Rho guanine dissociation inhibitors: pivotal molecules in cellular signaling. Cell Signal 1:545–554

    Article  Google Scholar 

  282. Knaus UG, Heyworth PG, Evans T, Curnutte JT, Bokoch GM (1991) Regulation of phagocyte oxygen radical production by the GTP-binding protein Rac 2. Science 254:1512–1515

    Article  CAS  PubMed  Google Scholar 

  283. Knaus UG, Heyworth PG, Kinsella BT, Curnutte JT, Bokoch GM (1992) Purification and characterization of Rac2. A cytosolic GTP-binding protein that regulates human neutrophil oxidase. J Biol Chem 267:23575–23582

    Article  CAS  PubMed  Google Scholar 

  284. Zhao X, Carnevale KA, Cathcart MK (2003) Human monocytes use Rac1, not Rac2, in the NADPH oxidase complex. J Biol Chem 278:40788–40792

    Article  CAS  PubMed  Google Scholar 

  285. Kim C, Dinauer MC (2001) Rac2 is an essential regulator of neutrophil nicotinamide adenine dinucleotide phosphate oxidase activation in response to specific signaling pathways. J Immunol 166:1223–1232

    Article  CAS  PubMed  Google Scholar 

  286. Zhang FL, Casey PJ (1996) Protein prenylation: molecular mechanisms and functional consequences. Annu Rev Biochem 54:241–269

    Article  Google Scholar 

  287. Didsbury JR, Uhling RJ, Snyderman R (1990) Isoprenylation of the low molecular mass GTP-binding proteins Rac1 and Rac2: possible role in membrane localization. Biochem Biophys Res Commun 171:804–812

    Article  CAS  PubMed  Google Scholar 

  288. Kreck ML, Freeman JL, Abo A, Lambeth JD (1996) Membrane association of Rac is required for high activity of the respiratory burst oxidase. Biochemistry 35:15683–15692

    Article  CAS  PubMed  Google Scholar 

  289. Gorzalczany Y, Sigal N, Itan M, Lotan O, Pick E (2000) Targeting of Rac1 to the phagocyte membrane is sufficient for the induction of NADPH oxidase assembly. J Biol Chem 275:40073–40081

    Article  CAS  PubMed  Google Scholar 

  290. Gorzalczany Y, Alloul N, Sigal N, Weinbaum C, Pick E (2002) A prenylated p67phox-Rac1 chimera elicits NADPH-dependent superoxide production by phagocyte membranes in the absence of an activator and p47phox. Conversion of a pagan NADPH oxidase to monotheism. J Biol Chem 277:18605–18610

    Article  CAS  PubMed  Google Scholar 

  291. Sigal N, Gorzalczany Y, Pick E (2003) Two pathways of activation of the superoxide-generating NADPH oxidase of phagocytes in vitro – distinctive effects of inhibitors. Inflammation 27:147–159

    Article  CAS  PubMed  Google Scholar 

  292. Yeung T, Grinstein S (2007) Lipid signaling and the modulation of surface charge during phagocytosis. Immunol Rev 219:17–36

    Article  CAS  PubMed  Google Scholar 

  293. Pick E (2010) Editorial: when charge is in charge – “Millikan” for leukocyte biologists. J Leukoc Biol 87:537–540

    Article  CAS  PubMed  Google Scholar 

  294. Mizuno T, Kaibuchi K, Ando S et al (1992) Regulation of the superoxide-generating NADPH oxidase by a small GTP-binding protein and its stimulatory and inhibitory GDP/GTP exchange proteins. J Biol Chem 267:10215–10218

    Article  CAS  PubMed  Google Scholar 

  295. Ando S, Kaibuchi K, Sasaki T et al (1992) Post-translational processing of rac p21s is important both for their interaction with the GDP/GTP exchange proteins and for their activation of NADPH oxidase. J Biol Chem 267:25709–25713

    Article  CAS  PubMed  Google Scholar 

  296. Shimizu H, Toma-Fukai S, Kontani K et al (2018) GEF mechanism revealed by the structure of SmgGDS-558 and farnesylated RhoA complex and its implication for a chaperone mechanism. Proc Natl Acad Sci U S A 115:9563–9568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Xu X, Wang Y, Barry DC et al (1997) Guanine nucleotide binding properties of Rac2 mutant proteins and analysis of the responsiveness to guanine nucleotide dissociation stimulator. Biochemistry 36:626–632

    Article  CAS  PubMed  Google Scholar 

  298. Mizrahi A, Molshanski-Mor S, Weinbaum C et al (2005) Activation of the phagocyte NADPH oxidase by Rac guanine nucleotide exchange factors in conjunction with ATP and nucleoside diphosphate kinase. J Biol Chem 280:3802–3811

    Article  CAS  PubMed  Google Scholar 

  299. Heyworth PG, Knaus UG, Xu X et al (1993) Requirement for posttranslational processing of Rac GTP-binding proteins for activation of human neutrophil NADPH oxidase. Mol Biol Cell 4:261–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Bokoch GM, Bohl BP, Chuang T-H (1994) Guanine nucleotide exchange regulates membrane translocation of Rac/Rho GTP-binding proteins. J Biol Chem 269:31674–31679

    Article  CAS  PubMed  Google Scholar 

  301. Sigal N, Gorzalczany Y, Sarfstein R et al (2003) The guanine nucleotide exchange factor Trio activates the phagocyte NADPH oxidase in the absence of GDP to GTP exchange – “The emperor’s new clothes”. J Biol Chem 278:4854–4861

    Article  CAS  PubMed  Google Scholar 

  302. Ugolev Y, Berdichevsky Y, Weinbaum C, Pick E (2008) Dissociation of Rac1(GDP)-RhoGDI complexes by the cooperative action of anionic liposomes containing phosphatidylinositol 3,4,5-trisphosphate, Rac guanine nucleotide exchange factor, and GTP. J Biol Chem 283:22257–22271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Zheng Y (2001) Dbl family guanine nucleotide exchange factors. Trends Biochem Sci 26:724–732

    Article  CAS  PubMed  Google Scholar 

  304. Welch HCE, Coadwell WJ, Stephens LR, Hawkins PT (2003) Phosphoinositide 3-kinase-dependent activation of Rac. FEBS Lett 546:93–97

    Article  CAS  PubMed  Google Scholar 

  305. Pick E (2014) Role of the Rho GTPase Rac in the activation of the phagocyte NADPH oxidase. Outsourcing a key task. Small GTPases 5:e-27952:1–e-2795223

    Article  Google Scholar 

  306. Ambruso DR, Knall C, Abell AN, Panepinto J et al (2000) Human neutrophil immunodeficiency syndrome is associated with Rac2 mutation. Proc Natl Acad Sci U S A 97:4654–4659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Williams DA, Tao W, Yang F et al (2000) Dominant negative mutation of the hematopoietic Rho GTPase, Rac2, is associated with human phagocytic immunodeficiency. Blood 96:1646–1654

    CAS  PubMed  Google Scholar 

  308. Hsu A, Donkó A, Arrington ME et al (2019) Dominant activating Rac mutation with lymphopenia, immunodeficiency, and cytoskeletal defects. Blood 133:1977–1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Stebbins CE, Galán JE (2000) Modulation of host signaling by a bacterial mimic: structure of the Salmonella effector SptP bound to Rac1. Mol Cell 6:1449–1460

    Article  CAS  PubMed  Google Scholar 

  310. Chuang T-H, Bohl BP, Bokoch GM (1993) Biologically active lipids are regulators of Rac-GDI complexation. J Biol Chem 268:26206–26211

    Article  CAS  PubMed  Google Scholar 

  311. Dovas A, Couchman JR (2005) RhoGDI: multiple functions in the regulation of Rho family GTPases. Biochem J 390:1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Garcia-Mata R, Boulter E, Burridge K (2011) The “invisible hand”: regulation of Rho GTPases by RHOGDIs. Nat Rev Mol Cell Biol 12:493–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Sasaki T, Kato M, Takai Y (1993) Consequences of weak interaction of rho GDI with the GTP-bound forms of rho p21 and rac p21. J Biol Chem 268:23959–23963

    Article  CAS  PubMed  Google Scholar 

  314. Grizot S, Faure J, Fieschi F et al (2001) Crystal structure of the Rac1-RhoGDI complex involved in NADPH oxidase activation. Biochemistry 40:10007–10013

    Article  CAS  PubMed  Google Scholar 

  315. Di-Poi N, Faure J, Grizot S et al (2001) Mechanism of NADPH oxidase activation by the Rac/Rho-GDI complex. Biochemistry 40:10014–10022

    Article  CAS  PubMed  Google Scholar 

  316. Sawai T, Asada M, Nunoi H et al (1993) Combination of arachidonic acid and guanosine 5’-O-(3-thiotriphosphate) induce translocation of rac p21s to membrane and activation of NADPH oxidase in a cell-free system. Biochem Biophys Res Commun 195:264–269

    Article  CAS  PubMed  Google Scholar 

  317. Abo A, Webb MR, Grogan A, Segal AW (1994) Activation of NADPH oxidase involves the dissociation of p21rac from its inhibitory GDP/GTP exchange protein (rhoGDI) followed by its translocation to the plasma membrane. Biochem J 298:585–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Quinn MT, Evans T, Loetterle LR, Jesaitis AJ, Bokoch GM (1991) Translocation of Rac correlates with NADPH oxidase activation. Evidence for equimolar translocation of oxidase components. J Biol Chem 268:20983–20987

    Article  Google Scholar 

  319. Fauré J, Vignais PV, Dagher M-C (1999) Phosphoinositide-dependent activation of Rho A involves partial opening of the RhoA/Rho-GDI complex. Eur J Biochem 262:879–889

    Google Scholar 

  320. Philips MR, Pillinger MH, Staud R et al (1993) Carboxyl methylation of Ras-related proteins during signal transduction in neutrophils. Science 259:977–980

    Article  CAS  PubMed  Google Scholar 

  321. Heyworth PG, Bohl BP, Bokoch GM, Curnutte JT (1994) Rac translocates independently of the neutrophil NADPH oxzidase components p47phox and p67phox. Evidence for its interaction with flavocytochrome b558. J Biol Chem 269:30749–30752

    Article  CAS  PubMed  Google Scholar 

  322. Robbe K, Otto-Bruc A, Chardin P, Antonny B (2003) Dissociation of GDP dissociation inhibitor and membrane translocation are required for efficient activation of Rac by the Dbl homology-pleckstrin homology region of Tiam. J Biol Chem 278:4756–4762

    Article  CAS  PubMed  Google Scholar 

  323. Dansart E, Olofsson B, Cherfils J (2005) RhoGDI revisited: novel roles in Rho regulation. Traffic 6:957–966

    Article  Google Scholar 

  324. Ugolev Y, Molshanski-Mor S, Weinbaum C, Pick E (2006) Liposomes comprising anionic but not neutral phospholipids cause dissociation of Rac (1 or 2)-RhoGDI complexes and support amphiphile-independent NADPH oxidase activation by such complexes. J Biol Chem 281:19204–19219

    Article  CAS  PubMed  Google Scholar 

  325. Perisic O, Wilson MI, Karathanasis D et al (2004) The role of phosphoinositides and phosphorylation in regulation of NADPH oxidase. Adv Enzyme Regul 44:279–298

    Article  CAS  PubMed  Google Scholar 

  326. Missy K, Van Poucke V, Raynal P et al (1998) Lipid products of phosphoinositide 3-kinase interact with Rac1 GTPase and stimulate GDP dissociation. J Biol Chem 273:30279–30286

    Article  CAS  PubMed  Google Scholar 

  327. Bromberg Y, Shani E, Joseph G et al (1994) The GDP-bound form of the small G protein Rac1 p21 is a potent activator of the superoxide-forming NADPH oxidase of macrophages. J Biol Chem 269:7055–7058

    Article  CAS  PubMed  Google Scholar 

  328. Toporik A, Gorzalczany Y, Hirschberg M et al (1998) Mutational analysis of novel effector domains in Rac1 involved in the activation of nicotinamide adenine dinucleotide phosphate (reduced) oxidase. Biochemistry 37:7147–7156

    Article  CAS  PubMed  Google Scholar 

  329. Rotrosen D, Kleinberg ME, Nunoi H et al (1990) Evidence for a functional cytoplasmic domain of phagocyte oxidase cytochrome b558. J Biol Chem 265:8745–8750

    Article  CAS  PubMed  Google Scholar 

  330. Nakanishi A, Imajoh-Ohmi S, Fujinawa T et al (1992) Direct evidence for interaction between COOH-terminal regions of cytochrome b558 subunits and cytosolic 47-kDa protein during activation of an O2- – generating system in neutrophils. J Biol Chem 267:19072–19074

    Article  CAS  PubMed  Google Scholar 

  331. DeLeo FR, Yu L, Burritt JB et al (1995) Mapping sites of interaction of p47phox and flavocytochrome b with random-sequence peptide phage display libraries. Proc Natl Acad Sci U S A 92:7110–7114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Davis A, Mascolo PL, Bunger PL et al (1998) Cloning and sequencing of the bovine flavocytochrome b subunit proteins, gp91phox and p22phox: comparison with other known flavocytochrome b sequences. J Leukoc Biol 64:114–123

    Article  CAS  PubMed  Google Scholar 

  333. Yu L, Cross AR, Zhen L, Dinauer MC (1999) Functional analysis of NADPH oxidase in granulocytic cells expressing a Δ488-497 gp91phox deletion mutant. Blood 94:2497–2504

    Article  CAS  PubMed  Google Scholar 

  334. Rey FE, Cifuentes ME, Kiarash A et al (2001) Novel competitive inhibitor of NAD(P)H oxidase assembly attenuates vascular O2- and systolic blood pressure in mice. Circ Res 89:408–414

    Article  CAS  PubMed  Google Scholar 

  335. Jackson H, Kawahara T, Nisimoto Y, Smith SME, Lambeth JD (2010) Nox4 B-loop creates an interface between the transmembrane and dehydrogenase domains. J Biol Chem 285:10281–10290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  336. Diebold BA, Bokoch GM (2001) Molecular basis for Rac2 regulation phagocyte NADPH oxidase. Nat Immunol 2:211–215

    Article  CAS  PubMed  Google Scholar 

  337. Kao Y-Y, Gianni D, Bohl B, Taylor RM, Bokoch GM (2008) Identification of a conserved Rac-binding site on NADPH oxidases supports a direct GTPase regulatory mechanism. J Biol Chem 283:12736–12746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Diebold BA, Fowler B, Lu J, Dinauer MC, Bokoch GM (2004) Antagonistic cross-talk between Rac and Cdc42 GTPase regulates generation of reactive oxygen species. J Biol Chem 279:28136–28142

    Article  CAS  PubMed  Google Scholar 

  339. Bokoch GM, Zhao T (2006) Regulation of the phagocyte NADPH oxidase by Rac GTPase. Antioxid Redox Signal 8:1533–1548

    Article  CAS  PubMed  Google Scholar 

  340. Alloul N, Gorzalczany Y, Itan M, Sigal N, Pick E (2001) Activation of the superoxide-generating NADPH oxidase by chimeric proteins consisting of segments of the cytosolic component p67phox and the small GTPase Rac1. Biochemistry 40:14557–14566

    Article  CAS  PubMed  Google Scholar 

  341. Miyano K, Koga H, Minakami R, Sumimoto H (2009) The insert region of the Rac GTPases is dispensable for activation of superoxide-producing NADPH oxidases. Biochem J 422:373–382

    Article  CAS  PubMed  Google Scholar 

  342. Dang PM-C, Cross AR, Babior BM (2001) Assembly of the neutrophil respiratory burst oxidase: A direct interaction between p67phox and cytochrome b558. Proc Natl Acad Sci U S A 98:3001–3005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  343. Dang PM-C, Cross AR, Quinn MT, Babior BM (2002) Assembly of the neutrophil respiratory burst oxidase: a direct interaction between p67phox and cytochrome b558 II. Proc Natl Acad Sci U S A 99:4262–4265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  344. Freeman JL, Lambeth JD (1996) NADPH oxidase activity is independent of p47phox in vitro. J Biol Chem 271:22578–22582

    Article  CAS  PubMed  Google Scholar 

  345. Koshkin V, Lotan O, Pick E (1996) The cytosolic component p47phox is not a sine qua non participant in the activation of NADPH oxidase but is required for optimal superoxide production. J Biol Chem 271:30326–30329

    Article  CAS  PubMed  Google Scholar 

  346. Kuhns DB, Hsu AP, Sun D et al (2019) NCF1 (p47phox)-deficient chronic granulomatous disease: comprehensive genetic and flow cytometric analysis. Blood Adv 3:136–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  347. Patino P, Rae J, Noack D et al (1999) Molecular characterization of autosomal recessive chronic granulomatous disease caused by a defect of the nicotinamide adenine dinucleotide phosphate (reduced form) oxidase component p67phox. Blood 94:2505–2514

    Article  CAS  PubMed  Google Scholar 

  348. Köker MY, Camcioğlu Y, van Leeuwen K et al (2013) Clinical, functional, and genetic characterization of chronic granulomatous disease in 89 Turkish patients. J Allergy Clin Immunol 132:1156–1163

    Article  PubMed  Google Scholar 

  349. Miyano K, Ogasawara S, Han C-H, Fukuda H, Tamura M (2001) A fusion protein between Rac and p67phox (1-210) reconstitutes NADPH oxidase with higher activity and stability than the individual components. Biochemistry 40:14089–14097

    Article  CAS  PubMed  Google Scholar 

  350. Sarfstein R, Gorzalczany Y, Mizrahi A et al (2004) Dual role of Rac in the assembly of NADPH oxidase: Tethering to the membrane and activation of p67phox. A study based on mutagenesis of p67phox-Rac1 chimeras. J Biol Chem 279:16007–16016

    Article  CAS  PubMed  Google Scholar 

  351. Mizrahi A, Berdichevsky Y, Ugolev Y et al (2006) Assembly of the phagocyte NADPH oxidase complex: chimeric constructs derived from the cytosolic components as tools for exploring structure-function relationships. J Leukoc Biol 79:881–895

    Article  CAS  PubMed  Google Scholar 

  352. Bedard K, Krause K-H (2007) The Nox family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    Article  CAS  PubMed  Google Scholar 

  353. Daniels RH, Bokoch GM (1999) p21-activated kinase: a crucial component of morphological signaling? Trends Biochem Sci 24:350–355

    Article  CAS  PubMed  Google Scholar 

  354. Manser E, Leung T, Salihuddin H et al (1994) A brain serine/threonine protein kinase activated by cdc42 and Rac1. Nature 367:40–46

    Article  CAS  PubMed  Google Scholar 

  355. Bagrodia S, Taylor SJ, Creasy CL et al (1995) Identification of a mouse p21Cdc42/Rac activated kinase. J Biol Chem 270:22731–22737

    Article  CAS  PubMed  Google Scholar 

  356. Burbelo PD, Drechsel D, Hall A (1995) A conserved binding motif defines numerous candidate target proteins for both Cdc42 and Rac GTPases. J Biol Chem 270:29071–29074

    Article  CAS  PubMed  Google Scholar 

  357. Aspenström P, Lindberg U, Hall A (1996) Two GTPases, CDC42 and Rac, bind directly to a protein implicated in the immunodeficiency disorder Wiskott-Aldrich syndrome. Curr Biol 6:70–75

    Article  PubMed  Google Scholar 

  358. Kim AS, Kakalis LT, Abdul-Manan N et al (2000) Autoinhibition and activation mechanisms of the Wiskott-Aldrich syndrome protein. Nature 404:151–158

    Article  CAS  PubMed  Google Scholar 

  359. Rudolph MG, Bayer P, Abo A et al (1998) The Cdc42/Rac interactive binding region motif of the Wiskott Aldrich syndrome protein (WASP) is necessary but not sufficient for tight binding to Cdc42 and structure formation. J Biol Chem 273:18067–18076

    Article  CAS  PubMed  Google Scholar 

  360. Diekmann D, Abo A, Johnston C, Segal AW, Hall A (1994) Interaction of Rac with p67phox and regulation of phagocytic NADPH oxidase activity. Science 265:531–533

    Article  CAS  PubMed  Google Scholar 

  361. de Mendez I, Garrett MC, Adams AG, Leto TL (1994) Role of p67phox SH3 domains in assembly of the NADPH oxidase system. J Biol Chem 269:16326–16332

    Article  PubMed  Google Scholar 

  362. Diekmann D, Nobes CD, Burbelo PD, Abo A, Al H (1995) Rac GTPase interacts with GAPs and target proteins through multiple effector sites. EMBO J 14:5297–5305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  363. Pik N, Toporik A, Pugach N, Pick E, Lotan O (1999) The p21-binding domain of p21-activated kinase (PAK-3) inhibits NADPH oxidase activation by competition with p67phox. Eur J Clin Investig 29(Suppl 1):42

    Google Scholar 

  364. Kwong CH, Adams AG, Leto TL (1995) Characterization of the effector-specifying domain of Rac involved in NADPH oxidase activation. J Biol Chem 270:19868–19872

    Article  CAS  PubMed  Google Scholar 

  365. Freeman JLR, Kreck ML, Uhlinger DJ, Lambeth JD (1994) Ras effector-homologue region on Rac regulates protein association in the neutrophil respiratory oxidase complex. Biochemistry 33:13431–13435

    Article  CAS  PubMed  Google Scholar 

  366. Nisimoto Y, Freeman JLR, Motalebi SZ et al (1997) Rac binding to p67phox. Structural basis for interactions of the Rac1 effector region and insert region with components of the respiratory burst oxidase. J Biol Chem 272:18834–18841

    Article  CAS  PubMed  Google Scholar 

  367. Xu X, Barry DC, Settleman J, Schwartz MA, Bokoch GM (1994) Differing structural requirements for GTPase-activating protein responsiveness and NADPH oxidase activation by Rac. J Biol Chem 269:23569–23574

    Article  CAS  PubMed  Google Scholar 

  368. Sehr P, Joseph G, Genth H et al (1998) Glucosylation and ADP ribosylation of Rho proteins: effects on nucleotide binding, GTPase activity, and effector coupling. Biochemistry 37:5296–5304

    Article  CAS  PubMed  Google Scholar 

  369. Prigmore E, Ahmed S, Best A et al (1995) A 68-kDa kinase and NADPH oxidase component p67phox are targets for CDC42Hs and Rac1 in neutrophils. J Biol Chem 270:10717–10722

    Article  CAS  PubMed  Google Scholar 

  370. Ahmed S, Prigmore E, Govind S et al (1998) Cryptic Rac-binding and p21Cdc42HS/Rac-activated kinase phosphorylation sites of NADPH oxidase component p67phox. J Biol Chem 273:15693–15701

    Article  CAS  PubMed  Google Scholar 

  371. Koga H, Terasawa H, Nunoi H, Takeshige K, Inagaki F, Sumimoto H (1999) Tetratricopeptide repeat (TPR) motifs on p67phox participate in interaction with the small GTPase Rac and activation of the NADPH oxidase. J Biol Chem 274:25051–25060

    Article  CAS  PubMed  Google Scholar 

  372. Leusen JHW, de Klein A, Hilarius PM et al (1996) Disturbed interaction of p21-rac with mutated p67phox causes chronic granulomatous disease. J Exp Med 289:1243–1249

    Article  Google Scholar 

  373. Lapouge K, Smith SM, Walker PA et al (2000) Structure of the TPR domain of p67phox in complex with Rac-GTP. Mol Cell 6:899–907

    Article  CAS  PubMed  Google Scholar 

  374. Diekmann D, Hall A (1995) In vitro binding assay for interactions of Rho add Rac with GTPase-activating proteins and effectors. Meth Enzymol 256:207–215

    Article  CAS  Google Scholar 

  375. Grizot S, Fieschi F, Dagher M-C, Pebay-Peyroula E (2001) The active N-terminal region of p67phox. Structure at 1.8 Å resolution and biochemical characterizations of the A128V mutant implicated in chronic granulomatous disease. J Biol Chem 276:21627–21631

    Article  CAS  PubMed  Google Scholar 

  376. Han C-H, Freeman JLR, Le T, Motalebi SA, Lambeth JD (1998) Regulation of the neutrophil respiratory burst oxidase. Identification of an activation domain in p67phox. J Biol Chem 273:16663–16668

    Article  CAS  PubMed  Google Scholar 

  377. Bechor E, Zahavi A, Berdichevsky Y, Pick E (2021) The molecular basis of Rac-GTP action – promoting binding of p67phox to Nox2 by disengaging the β hairpin from downstream residues. J Leukoc Biol 110:219–237

    Article  CAS  PubMed  Google Scholar 

  378. Miyano K, Ueno N, Takeya R, Sumimoto H (2006) Direct involvement of the small GTPase Rac in activation of the superoxide-producing NADPH oxidase Nox1. J Biol Chem 281:21857–21868

    Article  CAS  PubMed  Google Scholar 

  379. Bosco E, Marchioni F, Kumar S et al (2012) Rational design of small molecule inhibitors targeting the Rac GTPase – p67phox signaling axis in inflammation. Chem Biol 19:228–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  380. Diebold BA, Smith SMS, Li Y, Lambeth JD (2015) NOX2 as a target for drug development: indications, possible complications, and progress. Antioxid Redox Signal 23:375–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  381. Sun J (2020) Structures of mouse DUOX1-DUOXA1 provide mechanistic insights into enzyme activation and regulation. Nat Struct Mol Biol 27:1086–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  382. Wu J-X, Liu R, Song K, Chen L (2021) Structures of human dual oxidase 1 complex in low-calcium and high-calcium states. Nat Commun 12:155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  383. Cross AR, Yarchover JL, Curnutte JT (1994) The superoxide-generating system of human neutrophils possesses a novel diaphorase activity. Evidence for distinct regulation of electron flow within NADPH oxidase by p47phox and p67phox. J Biol Chem 269:21448–21454

    Article  CAS  PubMed  Google Scholar 

  384. Cross AR, Curnutte JT (1995) The cytosolic activating factors p47phox and p67phox have distinct roles in the regulation of electron flow in NADPH oxidase. J Biol Chem 270:6543–6548

    Article  CAS  PubMed  Google Scholar 

  385. Nisimoto Y, Motalebi S, Han C-H, Lambeth JD (1999) The p67phox activation domain regulates electron flow from NADPH to flavin in flavocytochrome b558. J Biol Chem 274:22999–23005

    Article  CAS  PubMed  Google Scholar 

  386. Carrichon L, Picciocchi A, Debeurne F et al (2011) Characterization of superoxide overproduction by the D-loopNox4-Nox2 cytochrome b558 in phagocytes – differential sensitivity to calcium and phosphorylation events. Biochim Biophys Acta 1808:78–90

    Article  CAS  PubMed  Google Scholar 

  387. Subramaniam S, Kleywegt GJ (2022) A paradigm shift in structural biology. Nat Methods 19:20–23

    Article  CAS  PubMed  Google Scholar 

  388. Moser CC, Chobot SE, Page CC, Dutton PL (2008) Distance metrics for heme protein electron tunneling. Biochim Biophys Acta 1777:1032–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  389. Moser CM, Anderson JLR, Dutton PL (2010) Guidelines for tunneling in enzymes. Biochim Biophys Acta 1787:1573–1586

    Article  Google Scholar 

  390. Trixler F (2013) Quantum tunneling to the origin and evolution of life. Curr Org Chem 17:1758–1770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  391. Cross AR, Segal AW (2004) The NADPH oxidase of professional phagocytes – prototype of the NOX electron transport system. Biochim Biophys Acta 1657:1–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  392. Wu X, Hénin J, Baciou L et al (2021) Mechanistic insights on heme-to-heme transmembrane electron transfer within NADPH oxydases from atomistic simulations. Front Chem 9:650651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  393. Carlson ML, Young JW, Zhao Z et al (2018) The peptidisc, a simple method for stabilizing membrane proteins in detergent-free solution. elife 7:e34085

    Article  PubMed  PubMed Central  Google Scholar 

  394. Wang M, Roberts DL, Paschke R et al (1997) Three-dimensional structure of NADPH-cytochrome P450 reductase: prototype for FMN- and FAD-containing enzymes. Proc Natl Acad Sci U S A 94:8411–8416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  395. Hubbard PA, Shen AL, Paschke R et al (2001) NADPH-cytochrome P450 oxidoreductase – structural basis for hydride and electron transfer. J Biol Chem 276:29163–29170

    Article  CAS  PubMed  Google Scholar 

  396. Zhen L, Yu L, Dinauer MC (1998) Probing the role of the carboxyl terminus of the gp91phox subunit of neutrophil flavocytochrome b558 using site-directed mutagenesis. J Biol Chem 273:6575–6581

    Article  CAS  PubMed  Google Scholar 

  397. Orellano EG, Calcaterra NB, Carrillo N, Ceccarelli EA (1993) Probing the role of the carboxyl-terminal region of ferredoxin-NADP+ reductase by site-directed mutagenesis and deletion analysis. J Biol Chem 268:19267–19273

    Article  CAS  PubMed  Google Scholar 

  398. Xu W, Harison SC, Eck MJ (1997) Three-dimensional structure of the tyrosine kinase c-Src. Nature 385:595–602

    Article  CAS  PubMed  Google Scholar 

  399. Belambri SA, Rolas L, Raad H et al (2018) NADPH oxidase activation in neutrophils: role of the phosphorylation of its subunits. Eur J Clin Investig 48(Suppl 2):e12951

    Article  Google Scholar 

  400. Mayer BC, Eck MJ (1995) Minding your p’s and q’s. Curr Biol 5:364–367

    Article  CAS  PubMed  Google Scholar 

  401. Finan P, Shimizu Y, Gout I et al (1994) An SH3 domain and proline-rich sequence mediate interaction between two components of the phagocyte NADPH oxidase complex. J Biol Chem 269:13752–13755

    Article  CAS  PubMed  Google Scholar 

  402. Leusen JHW, Bolscher BGJM, Hilarius PM et al (1994) 156Pro → Gln substitution in the light chain of cytochrome b558 of the human NADPH oxidase (p22phox) leads to defective translocation of the cytosolic proteins p47phox and p67phox. J Exp Med 180:2329–2334

    Google Scholar 

  403. Sumimoto H, Hata K, Mizuki K et al (1996) Assembly and activation of the phagocyte NADPH oxidase. Specific interaction of the N-terminal Src homology domain 3 of p47phox with p22phox is required for activation of the NADPH oxidase. J Biol Chem 271:22152–22158

    Article  CAS  PubMed  Google Scholar 

  404. Ago T, Nunoi H, Ito T, Sumimoto H (1999) Mechanism for phosphorylation –induced activation of the phagocyte NADPH oxidase protein p47phox. Triple replacement of serines 303, 304, and 328 with aspartates disrupts the SH3 domain-mediated intramolecular interaction in p47phox, thereby activating the oxidase. J Biol Chem 274:33644–33653

    Article  CAS  PubMed  Google Scholar 

  405. Inanami O, Johnson JL, McAdara JK et al (1998) Activation of the leukocyte NADPH oxidase by phorbol ester requires the phosphorylation pf p47phox on serine 303 or 304. J Biol Chem 273:9539–9543

    Article  CAS  PubMed  Google Scholar 

  406. Huang J, Kleinberg ME (1999) Activation of the phagocyte NADPH oxidase protein p47phox. Phosphorylation controls SH3 domain-dependent binding to p22phox. J Biol Chem 274:19731–19737

    Article  CAS  PubMed  Google Scholar 

  407. Groemping Y, Lapouge K, Smerdon SJ, Rittinger K (2003) Molecular basis of phosphorylation-induced activation of the NADPH oxidase. Cell 113:343–355

    Article  CAS  PubMed  Google Scholar 

  408. Autore F, Pagano B, Fomili A et al (2010) In silico phosphorylation of the autoinhibited form of p47phox: insights into the mechanism of activation. Biophys J 99:3716–3725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  409. Karathanassis D, Stahelin R, Bravo J et al (2002) Binding of the PX domain of p47phox to phosphatidylinositol 3,4-bisphosphate and phosphatidic acid is masked by an intramolecular interaction. EMBO J 21:5057–5068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  410. Hiroaki H, Ago T, Ito T et al (2001) Solution structure of the PX domain, a target of the SH3 domain. Nat Struct Biol 8:526–530

    Article  CAS  PubMed  Google Scholar 

  411. Ago T, Kuribayashi F, Hiroaki H et al (2003) Phosphorylation of p47phox directs phox homology domain from SH3 toward phosphoinositides, leading to phagocyte NADPH oxidase activation. Proc Natl Acad Sci U S A 100:4474–4479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  412. Marcoux J, Man P, Petit-Haertlein I et al (2010) p47phox molecular activation for assembly of the neutrophil NADPH oxidase complex. J Biol Chem 285:28980–28990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  413. Bánfi B, Clark RA, Steger K, Krause K-H (2003) Two novel proteins activate superoxide generation by the NADPH oxidase NOX1. J Biol Chem 278:3510–3513

    Article  PubMed  Google Scholar 

  414. Takeya R, Ueno N, Kami K et al (2003) Novel human homologues of p47phox participate in activation of superoxide-producing NADPH oxidases. J Biol Chem 278:25234–25246

    Article  CAS  PubMed  Google Scholar 

  415. Yamamoto A, Kami K, Takeya R, Sumimoto H (2007) Interaction between the SH3 domains and C-terminal proline-rich region in NADPH oxidase organizer 1 (Noxo1). Biochem Biophys Res Commun 352:560–565

    Article  CAS  PubMed  Google Scholar 

  416. Dutta S, Rittinger K (2010) Regulation of NOXO1 activity through reversible interactions with p22phox and NOXA1. PLoS One 5:e10478

    Article  PubMed  PubMed Central  Google Scholar 

  417. Joseph G, Pick E (1995) “Peptide walking” is a novel method of mapping functional domains in proteins. Its application to the Rac1-dependent activation of NADPH oxidase. J Biol Chem 270:29079–29082

    Article  CAS  PubMed  Google Scholar 

  418. Dahan I, Issaeva I, Gorzalczany Y et al (2002) Mapping of functional domains in the p22phox subunit of flavocytochrome b559 participating in the assembly of the NADPH oxidase complex by “peptide walking”. J Biol Chem 277:8421–8432

    Article  CAS  PubMed  Google Scholar 

  419. Morozov I, Lotan O, Joseph G et al (1998) Mapping of functional domains in p47phox involved in the activation of NADPH oxidase by “pepide walking”. J Biol Chem 273:15435–15444

    Article  CAS  PubMed  Google Scholar 

  420. Pick E (2019) Using synthetic peptides for exploring protein-protein interactions in the assembly of the NADPH oxidase complex. In: Knaus UG, Leto TL (eds) NADPH oxidases methods and protocols. Springer Science+Business Media, New York, pp 377–415

    Chapter  Google Scholar 

  421. Solbak SMØ, Zang J, Narayanan D et al (2020) Developing inhibitors of the p47phox-p22phox protein interaction by fragment-based drug discovery. J Med Chem 63:1156–1177

    Article  CAS  PubMed  Google Scholar 

  422. Garsi JB, Komjáti B, Cullia G et al (2022) Targeting NOX2 via p47/phox - p22/phox inhibition with novel triproline mimetics. ACS Med Chem Lett 13:949–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  423. Cox JA, Jeng AY, Sharkey NA et al (1985) Activation of the human neutrophil nicotinamide dinucleotide phosphate (NADPH)-oxidase by protein kinase C. J Clin Invest 76:1932–1938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  424. Fontayne A, Dang PM-C, Gougerot-Pocidalo MA, El Benna J (2002) Phosphorylation of p47phox sites by PKC α, βII, δ, and ζ: effect on binding to p22phox and on NADPH oxidase activation. Biochemistry 41:7743–7750

    Article  CAS  PubMed  Google Scholar 

  425. Cox J, Jeng AY, Blumberg PM, Tauber AI (1987) Comparison of subcellular activation of the human neutrophil NADPH-oxidase by arachidonic acid, sodium dodecyl sulfate (SDS) and phorbol myristate acetate (PMA). J Immunol 138:1884–1888

    Article  CAS  PubMed  Google Scholar 

  426. Tauber AI, Cox JA, Curnutte JT et al (1989) Activation of human neutrophil NADPH oxidase in vitro by the catalytic fragment of protein kinase C. Biochem Biophys Res Commun 158:884–890

    Article  CAS  PubMed  Google Scholar 

  427. El Benna J, Park J-W, Ruedi JM, Babior BM (1995) Cell-free activation of the respiratory burst oxidase by protein kinase C. Blood Cells Mol Dis 21:201–206

    Article  PubMed  Google Scholar 

  428. Park J-W, Hoyal CR, El Benna J, Babior BM (1997) Kinase-dependent activation of the leukocyte NADPH oxidase in a cell-free system. Phosphorylation of membranes and p47phox during oxidase activation. J Biol Chem 272:11035–11043

    Article  CAS  PubMed  Google Scholar 

  429. Park J-W, Scott KE, Babior BM (1998) Activation of the leukocyte NADPH oxidase in a cell-free system: phosphorylation vs. amphiphiles. Exp Hematol 26:37–44

    CAS  PubMed  Google Scholar 

  430. Faust LRP, El Benna J, Babior BM, Chanock SJ (1995) The phosphorylation targets of p47phox, a subunit of the respiratory burst oxidase. Functions of the individual target serines as evaluated by site-directed mutagenesis. J Clin Invest 96:1499–1505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  431. Meijles DN, Fan LM, Howlin BJ, Li J-M (2014) Molecular insights of p47phox phosphorylation dynamics in the regulation of NADPH oxidase activation and superoxide production. J Biol Chem 289:22759–22770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  432. Rossetti Lopes L, Hoyal CR, Knaus UG, Babior BM (1999) Activation of the leukocyte NADPH oxidase by protein kinase C in a partially recombinant cell-free system. J Biol Chem 274:15533–15537

    Article  Google Scholar 

  433. El Benna J, Faust LRP, Babior BM (1984) The phosphorylation of the respiratory burst oxidase component p47phox during neutrophil activation. Phosphorylation of sites recognized by protein kinase C and by proline-directed kinases. J Biol Chem 269:23431–23436

    Article  Google Scholar 

  434. Swain SD, Helgerson SL, Davis AR, Nelson LK, Quinn MT (1997) Analysis of activation-induced conformational changes in p47phox using tryptophan fluorescence spectroscopy. J Biol Chem 272:29502–29510

    Article  CAS  PubMed  Google Scholar 

  435. Park J-W, Babior BM (1998) Activation of the leukocyte NADPH oxidase subunit p47phox by protein kinase C. A phosphorylation-dependent change in the conformation of the C-terminal end of p47phox. Biochemistry 36:7474–7480

    Article  Google Scholar 

  436. Park H-S, Park J-W (1998) Fluorescent labeling of the leukocyte NADPH oxidase subunit p47phox: evidence for amphiphile-induced conformational changes. Arch Biochem Biophys 360:165–172

    Article  CAS  PubMed  Google Scholar 

  437. Bizouarn T, Karimi G, Masoud R et al (2016) Exploring the arachidonic acid-induced structural changes in phagocyte NADPH oxidase p47phox and p67phox via thiol accessibility and SCRD spectroscopy. FEBS J 283:2896–2910

    Article  CAS  PubMed  Google Scholar 

  438. Shiose A, Sumimoto H (2000) Arachidonic acid and phosphorylation induce a conformational change of p47phox to activate the phagocyte NADPH oxidase. J Biol Chem 275:13793–13801

    Article  CAS  PubMed  Google Scholar 

  439. Burnham DN, Uhlinger DJ, Lambeth JD (1990) Diradylglycerol synergizes with an anionic amphiphile to activate superoxide generation and phosphorylation of p47phox in a cell-free system from human neutrophils. J Biol Chem 265:17550–17559

    Article  CAS  PubMed  Google Scholar 

  440. Hata K, Ito T, Takeshige K, Sumimoto H (1998) Anionic amphiphile-independent activation of the phagocyte NADPH oxidase in a cell-free system by p47phox and p67phox, both in C terminally truncated forms. Implications for regulatory Src homology 3 domain-mediated interactions. J Biol Chem 273:4232–4236

    Article  CAS  PubMed  Google Scholar 

  441. Peng G, Huang J, Boyd M, Kleinberg ME (2003) Properties of phagocyte NADPH oxidase p47phox mutants with unmasked SH3 (Src homology 3) domains: full reconstitution of oxidase activity in a semi-recombinant cell-free system lacking arachidonic acid. Biochem J 373:221–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  442. Mizrahi A, Berdichevsky Y, Casey PJ, Pick E (2010) A prenylated p47phox-p67phox-Rac1 chimera is a quintessential NADPH oxidase activator. Membrane association and functional capacity. J Biol Chem 285:25485–25499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  443. McLaughlin S, Aderem A (1995) The myristoyl-electrostatic switch: a modulator of reversible protein-membrane interactions. Trends Biochem Sci 20:272–276

    Article  CAS  PubMed  Google Scholar 

  444. Ebisu K, Nagasawa T, Watanabe K, Kakinuma K, Miyano K, Tamura M (2001) Fused p47phox and p67phox truncations efficiently reconstitute NADPH oxidase with higher activity than the individual components. J Biol Chem 276:24498–24505

    Article  CAS  PubMed  Google Scholar 

  445. Tamura M, Tamura T, Tyagi SR, Lambeth JD (1988) The superoxide-generating respiratory burst oxidase of human neutrophil plasma membrane. Phosphatidylserine as an effector of the activated enzyme. J Biol Chem 263:17621–17626

    Article  CAS  PubMed  Google Scholar 

  446. Berdichevsky Y, Mizrahi A, Ugolev Y, Molshanski-Mor S, Pick E (2007) Tripartite chimeras comprising functional domains derived from the three cytosolic components p47phox, p67phox and Rac1 elicit activator-independent superoxide production by phagocyte membranes. Role of membrane lipid charge and of specific residues in the chimeras. J Biol Chem 282:22122–22139

    Article  CAS  PubMed  Google Scholar 

  447. Ellson DE, Gobert-Gosse S, Anderson KE et al (2001) PtdIns(3)P regulates the neutrophil oxidase complex by binding to the PX domain of p40phox. Nat Cell Biol 3:679–682

    Article  CAS  PubMed  Google Scholar 

  448. Matute JD, Arias AA, Dinauer MC, Patiño PJ (2005) p40phox: the last NADPH oxidase subunit. Blood Cells Mol Dis 35:291–302

    Article  CAS  PubMed  Google Scholar 

  449. Yeung T, Terebiznik M, Yu L et al (2006) Receptor activation alters inner surface potential during phagocytosis. Science 313:347–351

    Article  CAS  PubMed  Google Scholar 

  450. Debant A, Sera-Pagès C, Seipel K et al (1996) The multidomain protein Trio binds the LAR transmembreane tyrosine phosphatase, contains a protein kinase domain, and has separate rac-specific and rho-specific guanine nucleotide exchange factor domains. Proc Natl Acad Sci U S A 93:5466–5471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  451. Zhang B, Zhang Y, Wang Z-X, Zheng Y (2000) The role of Mg2+ cofactor in the guanine nucleotide exchange and GTP hydrolyisis reactions of Rho family GTP-binding proteins. J Biol Chem 275:25299–25307

    Article  CAS  PubMed  Google Scholar 

  452. Worthylake DK, Rossman KL, Sondek J (2000) Crystal structure of Rac1 in complex with the guanine nucleotide exchange region of Tiam1. Nature 408:682–688

    Article  CAS  PubMed  Google Scholar 

  453. Gao Y, Xing J, Streuli M, Leto TL, Zheng Y (2001) Trp56 specifies interaction with a subset of guanine nucleotide exchange factors. J Biol Chem 276:47530–47541

    Article  CAS  PubMed  Google Scholar 

  454. Dang PM-C, Morel F, Gougerot-Pocidalo M-A, El Benna J (2003) Phosphorylation of the NADPH oxidase component p67phox by ERK2 and P38MAPK: selectivity of phosphorylated sites and existence of an intramolecular regulatory domain in the tetratricopeptide-rich region. Biochemistry 42:4520–4526

    Article  CAS  PubMed  Google Scholar 

  455. Lapouge K, Smith SJM, Groemping Y, Rittinger K (2002) Architecture of the p40-p47-p67phox complex in the resting state of the NADPH oxidase. A central role for p67phox. J Biol Chem 277:10121–10128

    Article  CAS  PubMed  Google Scholar 

  456. Durand D, Vivès C, Cannella D et al (2010) NADPH oxidase activator p67phox behaves in solution as a multidomain protein with semi-flexible linkers. J Struct Biol 169:45–53

    Article  CAS  PubMed  Google Scholar 

  457. Maehara Y, Miyano K, Sumimoto H (2009) Role of the first SH3 domain of p67phox in activation of superoxide-producing NADPH oxidases. Biochem Biophys Res Commun 379:589–593

    Article  CAS  PubMed  Google Scholar 

  458. de Mendez I, Adams AG, Sokolic RA et al (1996) Multiple SH3 domain interactions regulate NADPH oxidase assembly in whole cells. EMBO J 15:1211–1220

    Article  PubMed  PubMed Central  Google Scholar 

  459. Valente AJ, El Jamali A, Epperson TK et al (2007) NOX1 NADPH oxidase regulation by the NOXA1 SH3 domain. Free Radic Biol Med 43:384–396

    Article  CAS  PubMed  Google Scholar 

  460. Kawano M, Miyamoto K, Kaito Y et al (2012) Noxa1 as a moderate activator of Nox2-based NADPH oxidase. Arch Biochem Biophys 519:1–7

    Article  CAS  PubMed  Google Scholar 

  461. Kawano M, Ishii R, Yoshioka Y et al (2013) C-terminal truncation of NoxA1 greatly enhances its ability to activate Nox2 in a pure reconstitution system. Arch Biochem Biophys 538:164–170

    Article  CAS  PubMed  Google Scholar 

  462. Bechor E, Zahavi A, Amichay M et al (2020) p67phox binds to a newly identified site in Nox2 by following disengagement of an intramolecular bond – Canaan sighted? J Leukoc Biol 107:509–528

    Article  CAS  PubMed  Google Scholar 

  463. Dahan I, Smith SME, Pick E (2015) A Cys-Gly-Cys triad in the dehydrogenase region of Nox2 plays a key role in the interaction with p67phox. J Leukoc Biol 98:859–874

    Article  CAS  PubMed  Google Scholar 

  464. Jumper J, Evans R, Pritzel A et al (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596:583–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  465. Varadi M, Anyango S, Deshpande M et al (2022) AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high accuracy models. Nucleic Acids Res 50:D439–D444

    Article  CAS  PubMed  Google Scholar 

  466. El-Bena J, Dang PM-C (2021) Starting-NOX2-Up: Rac unrolls p67phox. J Leukoc Biol 110:213–215

    Article  Google Scholar 

  467. Noreng S, Ota N, Sun Y et al (2022) Structure of the core human NADPH oxidase NOX2. Nat Commun 13:6079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  468. Liu R, Song K, Wu J-X et al (2022) Structure of human phagocyte NADPH oxidase in the resting state. elife 11:e83743

    Article  PubMed  PubMed Central  Google Scholar 

  469. Parkos CA, Quinn MT, Sheets S, Jesaitis AJ (1992) The structure of the human neutrophil plasma membrane b-type cytochrome involved in superoxide production. In: Jesaitis AJ, Dratz EA (eds) Molecular basis of oxidative damage by leukocytes. CRC Press, Boca Raton, FL, pp 45–56

    Google Scholar 

  470. Chou PY, Fasman GD (1974) Prediction of protein conformation. Biochemistry 13:222–245

    Article  CAS  PubMed  Google Scholar 

  471. Wallach T, Segal AW (1997) Analysis of glycosylation sites on gp91phox, the flavocytochrome of the NADPH oxidase, by site-directed mutagenesis and translation in vitro. Biochem J 321:583–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  472. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    Article  CAS  PubMed  Google Scholar 

  473. Taylor RM, Baniulis D, Burritt JB et al (2006) Analysis of human phagocyte flavocytochrome b558 by mass spectrometry. J Biol Chem 281:37045–37056

    Article  CAS  PubMed  Google Scholar 

  474. Vignais P (2002) The superoxide-generating NADPH oxidase: structural aspects and activation mechanism. Cell Mol Life Sci 59:1428–1459

    Article  CAS  PubMed  Google Scholar 

  475. Heyworth PG, Cross AR, Curnutte JT (2003) Chronic granulomatous disease. Curr Opin Immunol 15:578–584

    Article  CAS  PubMed  Google Scholar 

  476. Nozaki M, Takeshige K, Sumimoto H, Minakami S (1990) Reconstitution of the partially purified membrane component of the superoxide-generating NADPH oxidase of pig neutrophils with phospholipid. Eur J Biochem 187:335–340

    Article  CAS  PubMed  Google Scholar 

  477. Cross AR, Heyworth PG, Rae J, Curnutte JT (1995) A variant X-linked chronic granulomatous disease patient (X91+) with partially functionl cytochrome b. J Biol Chem 270:8194–8200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I am using this opportunity to thank the colleagues, postdoctoral fellows, students, and research associates, with whom I had the privilege to work and collaborate in the course of five decades, for their key role in solving some of the mysteries of Nox2. Here is the list in alphabetical order: Arie Abo, Iris Aharoni, Natalie Alloul, Maya Amichay, Edna Bechor, Yevgeny Berdichevsky, Yael Bromberg, Iris Dahan, Valery Diatchuk, Iris Dotan, Sharon Engel, Aya Federman, Tanya Fradin, Maya Freund, Rahamim Gadba, Yara Gorzalczany, Miriam Hirshberg, Irina Issaieva, Michal Itan, Gili Joseph, Yona Keisari, Pablo Kiselstein, Sarah Knoller, Vasilij Koshkin, Taly Kroizman, Ofra Lotan, Ariel Mizrahi, Shahar Molshanski-Mor, Igor Morozov, Yael Nakash, Eyal Ozeri, Nimrod Pik, Meirav Rafalowski, Rive Sarfstein, Doron Sha’ag, Sally Shpungin, Natalia Sigal, Amir Toporik, Yelena Ugolev, and Anat Zahavi. They are, to paraphrase Churchill, “the few to whom I owe so much”. I thank Dr. Sigrid Noreng for most valuable advice on the structural aspects of Nox2 and for help in conceiving the model illustrated in Fig. 1.7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgar Pick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pick, E. (2023). Paradigm Shifts in the History of Nox2 and Its Regulators: An Appreciative Critique. In: Pick, E. (eds) NADPH Oxidases Revisited: From Function to Structure. Springer, Cham. https://doi.org/10.1007/978-3-031-23752-2_1

Download citation

Publish with us

Policies and ethics