Skip to main content

Frequency-Domain Generalized Phase Transform Method in Pipeline Leaks Locating

  • Conference paper
  • First Online:
High-Performance Computing Systems and Technologies in Scientific Research, Automation of Control and Production (HPCST 2022)

Abstract

This article considers the problem of instrumental-assisted determination of the location of leaks in water pipes using acoustic correlation leak detectors (correlators). The aim of the work is to adapt the algorithm of time delay estimation (TDE) in the frequency domain to use it as part of the correlator’s software. The significance of the problem of effective and fast locating of the leak is significant and obvious. That is why there is a large variability of instrumental solutions designed to solve it. Correlators, which are characterized by high accuracy and portability, occupy an important niche among the hardware leak-finding tools. We analyze the factors that affect the accuracy of correlators, in particular their software. The article reviews various TDE techniques used in correlators, including time domain, frequency domain, time-frequency domain, and those based on adaptive regression models. Despite the lack of clear advantages in terms of accuracy, the TDE in the frequency domain provides an additional information channel to the leak detector operator. We propose and describe an adapted algorithm for generalized TDE in the frequency domain with the least squares regression model. The prototype of the program is implemented in Mathcad and is used to analyze signals received with a correlator in the field. The presented results testify to the applicability of the method both in combination with the traditional correction technique and independently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mashford, J., De Silva, D., Marney, D., Burn, S.: An approach to leak detection in pipe networks using analysis of monitored pressure values by support vector machine. In: 2009 Third International Conference on Network and System Security, pp. 534–539 (2009). https://doi.org/10.1109/NSS.2009.38

  2. Farley, M., Wyeth, G., Ghazali, Z.B., Istandar, A., Singh, S.: The Manager’s Non-Revenue Water Handbook: A Guide to Understanding Water Losses. United States Agency for International Development (USAID), Bangkok (2008)

    Google Scholar 

  3. Poryadin, A.V.: Water Supply and Sanitation in Russia [Vodosnabzhenie i vodootvedenie v Rossii]. Sanitarnay Tekhnika. 3–2, 31–34 (2013)

    Google Scholar 

  4. Masakova, I., Vlasenko, N.: peд: Housing in Russia: Statistical Collection 2019. Moscow

    Google Scholar 

  5. Shlychkov, D.M.: Problems of the technical condition of present pipeline systems [Problemy tekhnicheskogo sostoyaniya dejstvuyushchih truboprovodnyh sistem]. Inpvatsii i Investitsii. 4, 207–210 (2020)

    Google Scholar 

  6. Puust, R., Kapelan, Z., Savic, D.A., Koppel, T.: A review of methods for leakage management in pipe networks. Urban Water J. 7(1), 25–45 (2010). https://doi.org/10.1080/15730621003610878

    Article  Google Scholar 

  7. Mohd Ismail, M.I., et al.: A review of vibration detection methods using accelerometer sensors for water pipeline leakage. IEEE Access. 7, 51965–51981 (2019). https://doi.org/10.1109/ACCESS.2019.2896302

    Article  Google Scholar 

  8. Wang, X., Lambert, M.F., Simpson, A.R.: Leak detection in pipeline systems and networks: a review. B: Conference on Hydraulics in Civil Engineering. pp. 1–10. The Institution of Engineers, Australia, Hobart (2001)

    Google Scholar 

  9. Glentis, G.O., Angelopoulos, K.: Leakage detection using leak noise correlation techniques – Overview and implementation aspects. B: PCI’19: 23rd Pan-Hellenic Conference on Informatics, pp. 50–57. ACM, New York (2019)

    Google Scholar 

  10. Fuchs, H.V., Riehle, R.: Ten years of experience with leak detection by acoustic signal analysis. Appl. Acoust. 33, 1–19 (1991). https://doi.org/10.1016/0003-682X(91)90062-J

    Article  Google Scholar 

  11. Bracken, M., Hunaidi, O.: Practical aspects of acoustical leak location on plastic and large diameter pipe. B: Leakage 2005 Conference Proceedings. pp. 448–452. NRCC, Halifax (2005)

    Google Scholar 

  12. Lapshin, B.M., Ovchinnikov, A.L., Chekalin, A.S.: Development and application of acoustic emission leak detectors [Razrabotka i primenenie akustiko-emissionnyh techeiskatelej]. V Mire NK 44, 18–22 (2009)

    Google Scholar 

  13. Ozevin, D., Harding, J.: Novel leak localization in pressurized pipeline networks using acoustic emission and geometric connectivity. Int. J. Press. Vessels Pip. 92, 63–69 (2012). https://doi.org/10.1016/j.ijpvp.2012.01.001

    Article  Google Scholar 

  14. Faerman, V., Sharkova, S., Avramchuk, V., Shkunenko, V.: Towards applicability of wavelet-based cross-correlation in locating leaks in steel water supply pipes. J. Phys.: Conf. Ser. 2176(1), 012067 (2022). https://doi.org/10.1088/1742-6596/2176/1/012067

    Article  Google Scholar 

  15. Iwanaga, M.K., Brennan, M.J., Almeida, F.C.L., Scussel, O., Cezar, S.O.: A laboratory-based leak noise simulator for buried water pipes. Appl. Acoust. 185, 108346 (2022). https://doi.org/10.1016/j.apacoust.2021.108346

    Article  Google Scholar 

  16. Acoustical tomograph KASKAD-3 [Akusticheskij tomograf «KASKAD-3»] (2020). https://watersound.ru/products/akusticheskiy-tomograf-kaskad-3-s-funktsiey-korrelyatsionnogo-techeiskatelya.php

  17. Papastefanou, A.S., Joseph, P.F., Brennan, M.J.: Experimental investigation into the characteristics of in-pipe leak noise in plastic water filled pipes. Acta Acust. Acust. 98, 847–856 (2012). https://doi.org/10.3813/AAA.918568

    Article  Google Scholar 

  18. Almeida, F., Brennan, M., Joseph, P., Whitfield, S., Dray, S., Paschoalini, A.: On the acoustic filtering of the pipe and sensor in a buried plastic water pipe and its effect on leak detection: an experimental investigation. Sensors (Switzerland). 14, 5595–5610 (2014). https://doi.org/10.3390/s140305595

    Article  Google Scholar 

  19. Scussel, O., Seçgin, A., Brennan, M.J., Muggleton, J.M., Almeida, F.C.L.: A stochastic model for the velocity of leak noise propagation in plastic water pipes. J. Sound Vib. 501, 116057 (2021). https://doi.org/10.1016/j.jsv.2021.116057

    Article  Google Scholar 

  20. Glentis, G.O., Angelopoulos, K.: Using generalized cross-correlation estimators for leak signal velocity estimation and spectral region of operation selection. In: Conference Record – IEEE Instrumentation and Measurement Technology Conference (2022). https://doi.org/10.1109/I2MTC48687.2022.9806476

  21. Glentis, G.O., Angelopoulos, K.: Sound velocity measurement in acoustic leak noise correlation systems. In: Conference Record – IEEE Instrumentation and Measurement Technology Conference (2021). https://doi.org/10.1109/I2MTC50364.2021.9459921

  22. Faerman, V.A., Avramchuk, V.S.: Comparative study of basic time domain time-delay estimators for locating leaks in pipelines. Int. J. Netw. Distrib. Comput. 8, 49–57 (2020). https://doi.org/10.2991/IJNDC.K.200129.001

    Article  Google Scholar 

  23. Ma, Y., Gao, Y., Cui, X., Brennan, M., Almeida, F., Yang, J.: Adaptive phase transform method for pipeline leakage detection. Sensors 19(2), 310 (2019). https://doi.org/10.3390/s19020310

    Article  Google Scholar 

  24. Kousiopoulos, G.-P., Papastavrou, G.-N., Kampelopoulos, D., Karagiorgos, N., Nikolaidis, S.: Comparison of time delay estimation methods used for fast pipeline leak localization in high-noise environment. Technologies 8, 27 (2020). https://doi.org/10.3390/technologies8020027

    Article  Google Scholar 

  25. Gao, Y., Brennan, M.J., Joseph, P.F.: A comparison of time delay estimators for the detection of leak noise signals in plastic water distribution pipes. J. Sound Vib. 292, 552–570 (2006). https://doi.org/10.1016/j.jsv.2005.08.014

    Article  Google Scholar 

  26. Becker, D.: Leak detection in water distribution networks by correlation: Sound velocity as a possible source of error. Guttersloh (2015)

    Google Scholar 

  27. Chen, T.: Highlights of statistical signal and array processing. IEEE Signal Process. Mag. 15, 21–64 (1998). https://doi.org/10.1109/79.708539

    Article  Google Scholar 

  28. Knapp, C.H., Carter, G.C.: The generalized correlation method for estiation of time delay. IEEE Trans. Acoust. Speech Signal Process. 24, 320–327 (1976)

    Article  Google Scholar 

  29. Zhen, Z., Zi-qiang, H.: The generalized phase spectrum method for time delay estimation. In: ICASSP’84. IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 459–462. IEEE, San Diego, CA (1984)

    Google Scholar 

  30. Brennan, M.J., Gao, Y., Joseph, P.F.: On the relationship between time and frequency domain methods in time delay estimation for leak detection in water distribution pipes. J. Sound Vib. 304, 213–223 (2007). https://doi.org/10.1016/j.jsv.2007.02.023

    Article  Google Scholar 

  31. Ting, L.L., Tey, J.Y., Tan, A.C., King, Y.J., Faidz, A.R.: Improvement of acoustic water leak detection based on dual tree complex wavelet transform-correlation method. IOP Conf. Ser.: Earth and Environ. Sci. 268(1), 012025 (2019). https://doi.org/10.1088/1755-1315/268/1/012025

    Article  Google Scholar 

  32. Ahadi, M., Bakhtiar, M.S.: Leak detection in water-filled plastic pipes through the application of tuned wavelet transforms to Acoustic Emission signals. Appl. Acoust. 71, 634–639 (2010). https://doi.org/10.1016/j.apacoust.2010.02.006

    Article  Google Scholar 

  33. Wen, Y., Li, P., Yang, J., Zhou, Z.: Adaptive leak detection and location in underground buried pipelines. Int. J. Inform. Acquisition 01, 269–277 (2004). https://doi.org/10.1142/s0219878904000240

    Article  Google Scholar 

  34. Guo, C., Wen, Y., Li, P., Wen, J.: Adaptive noise cancellation based on EMD in water-supply pipeline leak detection. Measurement 79, 188–197 (2016). https://doi.org/10.1016/j.measurement.2015.09.048

    Article  Google Scholar 

  35. Na, S., Liu, J., Li, Q., Liu, Y., Tie, Y.: An adaptive method for water pipeline leak localization. In: 4th Workshop on Advanced Research and Technology in Industry Applications (WARTIA 2018), vol. 173, pp. 146–153 (2018). https://doi.org/10.2991/wartia-18.2018.24

  36. Bykerk, L., Miro, J.V.: Vibro-acoustic distributed sensing for large-scale data-driven leak detection on urban distribution mains. Sensors 22, 6897 (2022). https://doi.org/10.3390/s22186897

    Article  Google Scholar 

  37. Ovchinnikov, A.L., Lapshin, B.M., Chekalin, A.S., Evsikov, A.S.: Experience of using the TAK-2005 leak detector for pipeline monitoring [Opyt primeneniya techeiskatelya TAK-2005 v gorodskom truboprovodnom hozyajstve], pp. 196–202 (2008)

    Google Scholar 

  38. Piersol, A.G.: Time delay estimation using phase data. IEEE Trans. Acoust. Speech Signal Process. 29, 471–477 (1981). https://doi.org/10.1109/TASSP.1981.1163555

    Article  Google Scholar 

  39. Firsov, A.A., Terentiev, D.A.: An algorithm for improving the accuracy of location in correlation leak detection based on the analysis of the phase function of the mutual spectrum. Test. Diagn. 8, 23–27 (2014)

    Google Scholar 

  40. Faerman, V., Avramchuk, V., Voevodin, K., Sidorov, I., Kostyuchenko, E.: Study of generalized phase spectrum time delay estimation method for source positioning in small room acoustic environment. Sensors 22(3), 965 (2022). https://doi.org/10.3390/s22030965

    Article  Google Scholar 

  41. Carter, G.C.: Coherence and time delay estimation. Proc. IEEE 75, 236–255 (1987). https://doi.org/10.1109/PROC.1987.13723

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Faerman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Faerman, V., Voevodin, K., Avramchuk, V. (2023). Frequency-Domain Generalized Phase Transform Method in Pipeline Leaks Locating. In: Jordan, V., Tarasov, I., Shurina, E., Filimonov, N., Faerman, V. (eds) High-Performance Computing Systems and Technologies in Scientific Research, Automation of Control and Production. HPCST 2022. Communications in Computer and Information Science, vol 1733. Springer, Cham. https://doi.org/10.1007/978-3-031-23744-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23744-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23743-0

  • Online ISBN: 978-3-031-23744-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics