Skip to main content

An Evaluation of Agent-Based Models for Simulating E-Scooter Sharing Services in Urban Areas

  • Conference paper
  • First Online:
Smart Energy for Smart Transport (CSUM 2022)

Abstract

The electric scooter (e-scooter) is an increasingly popular transport mode in urban areas at global level. As an alternative form of shared micromobility in cities, e-scooter sharing systems were first introduced in the United States in 2017. Since then, they have spread in Europe, Asia, and Australia. In order to evaluate their sustainability performance, shared e-scooters should be simulated or/and measure their real-life impacts; however, a universal evaluation process for selecting a simulation platform does not exist. This study seeks to better understand the impacts of micromobility and simulation platforms for urban areas. To achieve this a two-stage evaluation process is performed. At first, the study reviews and analyzes the most common simulation models (i.e., traffic simulation and Agent-based Model (ABM) platforms). Seven ABM platforms are identified as suitable for simulating transportation modes. The seven identified ABM platforms are explored and evaluated based on a set of indicators representing four dimensions: 1) Functionality, 2) Capabilities, 3) Data, and 4) Operational Capacity. In the second-stage evaluation the seven ABM platforms are further evaluated for simulating micromobility against ten proposed criteria. The ABM platform Multi-Agent Transport Simulation Toolkit (MATSim) emerges as the most prevalent for simulating e-scooters in urban areas as it meets nine of the ten introduced criteria and it has the potential to be adapted effectively in the simulation of new innovative transport services.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oeschger, G., Carroll, P., Caulfield, B.: Micromobility and public transport integration: the current state of knowledge. Transp. Res. Part D: Transp. Environ. 89 (2020)

    Google Scholar 

  2. Yanocha, D., Allan, M., Krishna, V., et al.: The Electric Assist: Leveraging E-Bikes and E-Scooters for More Livable Cities (2019)

    Google Scholar 

  3. NACTO Shared Micromobility in the U.S.: 2019. National Association of City Transportation Officials. https://nacto.org/shared-micromobility-2019/. Last accessed 9 Dec 2021

  4. Hoogendoorn, S.P., Bovy, P.H.L.: State-of-the-art of vehicular traffic flow modelling. Proc. Inst. Mech. Eng., Part I: J. Syst. Control Eng. 215 (2001)

    Google Scholar 

  5. Tzouras, P.G., Karolemeas, C., Bakogiannis, E., Kepaptsoglou, K.: A concept agent-based simulation model to evaluate the impacts of a shared space network. Procedia Comput. Sci., 680–685 (2021)

    Google Scholar 

  6. Charypar, D., Balmer, M., Axhausen, K.W.: A High-Performance Traffic Flow Microsimulation for Large Problems. ETH Zurich (2009)

    Google Scholar 

  7. Li, J., Rombaut, E., Vanhaverbeke, L.: A systematic review of agent-based models for autonomous vehicles in urban mobility and logistics: possibilities for integrated simulation models. Comput. Environ. Urb. Syst. 89 (2021)

    Google Scholar 

  8. Bloomberg, L., Dale, J.: A Comparison of the VISSIM and CORSIM Traffic Simulation Models (2000)

    Google Scholar 

  9. Boxill, S.A., Yu, L.: An Evaluation of Traffic Simulation Models for Supporting ITS Development (2000)

    Google Scholar 

  10. Prevedouros, P.D., Wang, Y.: Simulation of large freeway and arterial network with CORSIM, INTEGRATION, and WATSim. Transp. Res. Rec.: J. Transp. Res. Board 1678(1), 197–207 (1999)

    Article  Google Scholar 

  11. Mitropoulos, L., Tzouras, P., Stavropoulou, E., et al.: Traffic simulation models for urban areas: characteristics and best practices. In: Deliverable 1.1, SIM4MTRAN (2021)

    Google Scholar 

  12. Rousset, A., Herrmann, B., Lang, C., Philippe, L.: A survey on parallel and distributed multi-agent systems for high performance computing simulations. Comput. Sci. Rev. 22, 27–46 (2016)

    Article  MathSciNet  Google Scholar 

  13. Gupta, R., Kansal, G.: A survey on comparative study of mobile agent platforms. Int. J. Eng. Sci. Technol. 3 (2011)

    Google Scholar 

  14. Braubach, L., Pokahr, A., Lamersdorf, W.: A Universal Criteria Catalog for Evaluation of Heterogeneous Agent Development Artifacts. From Agent Theory to Agent Implementation (AT2AI-6) (2008)

    Google Scholar 

  15. Eiter, T., Mascardi, V.: Comparing environments for developing soft-ware agents. AI Commun. 15, 169–197 (2002)

    Google Scholar 

  16. Zou, Z., Younes, H., Erdoğan, S., Wu, J.: Exploratory analysis of real-time e-scooter trip data in Washington, D.C. Transp. Res. Rec. 2674, 285–299 (2020)

    Google Scholar 

  17. Zuniga-Garcia, N., Ruiz Juri, N., Perrine, K.A., Machemehl, R.B.: E-scooters in urban infrastructure: understanding sidewalk, bike lane, and roadway usage from trajectory data. Case Stud. Transp. Policy (2021)

    Google Scholar 

  18. Zhang, W., Buehler, R., Broaddus, A., Sweeney, T.: What type of infrastructures do e-scooter riders prefer? A route choice model. Transp. Res. Part D: Transp. Environ. 94, 102761 (2021)

    Article  Google Scholar 

  19. Ma, Q., Yang, H., Mayhue, A., et al.: E-scooter safety: the riding risk analysis based on mobile sensing data. Accident Anal. Prevention 151 (2021)

    Google Scholar 

  20. Bai, L., Liu, P., Chan, C.-Y., Li, Z.: Estimating level of service of mid-block bicycle lanes considering mixed traffic flow. Transp. Res. Part A: Policy Pract. 101 (2017)

    Google Scholar 

  21. Almannaa, M.H., Alsahhaf, F.A., Ashqar, H.I., et al.: Perception analysis of e-scooter riders and non-riders in Riyadh, Saudi Arabia: survey outputs. Sustainability 13, 863 (2021)

    Article  Google Scholar 

  22. Inturri, G., le Pira, M., Giuffrida, N., et al.: Multi-agent simulation for planning and designing new shared mobility services. Res. Transp. Econ. 73, 34–44 (2019)

    Article  Google Scholar 

  23. Bischoff, J., Kaddoura, I., Maciejewski, M., Nagel, K.: Simulation-based optimization of service areas for pooled ride-hailing operators. Procedia Comput. Sci. 130, 816–823 (2018)

    Article  Google Scholar 

  24. Bischoff, J., Maciejewski, M.: Simulation of City-wide replacement of private cars with autonomous taxis in Berlin. Procedia Comput. Sci., 237–244 (2016)

    Google Scholar 

  25. Bösch, P.M.: Autonomous Vehicles-The next Revolution in Mobility (2018)

    Google Scholar 

  26. Meng, Z., Le, D.-T., Zegras, P.C., Ferreira, J.: Impacts of automated mobility on demand on long-term mobility choices: a case study of Singapore. In: IEEE Intelligent Transportation Systems Conference (ITSC), pp. 1908–1913 (2019)

    Google Scholar 

  27. Scheltes, A., de Almeida Correia, G.H.: Exploring the use of automated vehicles as last mile connection of train trips through an agent-based simulation model: an application to Delft, Netherlands. Int. J. Transp. Sci. Technol. 6, 28–41 (2017)

    Article  Google Scholar 

  28. Salah, I.H., Mukku, V.D., Kania, M., Assmann, T.: Towards sustainable liveable city: management operations of shared autonomous cargo-bike fleets. Future Transp. 1, 505–532 (2021)

    Article  Google Scholar 

  29. Gurumurthy, K.M., de Souza, F., Enam, A., Auld, J.: Integrating supply and demand perspectives for a large-scale simulation of shared autonomous vehicles. Transp. Res. Rec. 2674, 181–192 (2020)

    Article  Google Scholar 

  30. Galland, S., Knapen, L., Yasar, A.U.H., et al.: Multi-agent simulation of individual mobility behavior in carpooling. Transp. Res. Part C: Emerg. Technol. 45, 83–98 (2014)

    Google Scholar 

  31. Jeihani, M., Sherali, H.D., Hobeika, A.G.: Computing dynamic user equilibria for large-scale transportation networks. Transportation (Amst), 589–604 (2006)

    Google Scholar 

  32. Lee, K.S., Eom, J.K., Moon, D.S.: Applications of TRANSIMS in transportation: a literature review. Procedia Comput. Sci. 32, 769–773 (2014)

    Article  Google Scholar 

  33. Querini, F., Benetto, E.: Agent-based modelling for assessing hybrid and electric cars deployment policies in Luxembourg and Lorraine. Transp. Res. Part A: Policy Pract. 70, 149–161 (2014)

    Google Scholar 

  34. Ziemke, D., Kaddoura, I., Nagel, K.: The MATSim Open Berlin Scenario: a multimodal agent-based transport simulation scenario based on synthetic demand modeling and open data. Procedia Comput. Sci. 151, 870–877 (2019)

    Article  Google Scholar 

  35. Becker, H., Balac, M., Ciari, F., Axhausen, K.W.: Assessing the welfare impacts of Shared Mobility and Mobility as a Service (MaaS). Transp. Res. Part A: Policy Pract. 131, 228–243 (2020)

    Google Scholar 

  36. Azevedo, C.L., Deshmukh, N.M., Marimuthu, B., et al.: SimMobility short-term: an integrated microscopic mobility simulator. Transp. Res. Rec. 2622, 13–23 (2017)

    Article  Google Scholar 

  37. Auld, J., Hope, M., Ley, H., et al.: POLARIS: agent-based modeling framework development and implementation for integrated travel demand and network and operations simulations. Transp. Res. Part C: Emerg. Technol. 64, 101–116 (2016)

    Article  Google Scholar 

  38. Briem, L., Mallig, N., Vortisch, P.: Creating an integrated agent-based travel demand model by combining mobiTopp and MATSim. Procedia Comput. Sci. 151, 776–781 (2019)

    Article  Google Scholar 

  39. Zhuge, C., Shao, C., Gao, J., et al.: Agent-based joint model of residential location choice and real estate price for land use and transport model. Comput. Environ. Urban Syst. 57, 93–105 (2016)

    Article  Google Scholar 

  40. Hörl, S., Balac, M.: Synthetic population and travel demand for Paris and Île-de-France based on open and publicly available data. Transp. Res. Part C: Emerg. Technol. 130, 103291 (2021)

    Article  Google Scholar 

  41. Adnan, M., Pereira, F.C., Azevedo, C.L., Basak, K.: SimMobility: a Multi-scale integrated agent-based simulation platform urban behavior and decision-making View project iDREAMS-safety tolerance zone calculation and interventions for driver-vehicle-environment interactions under challenging conditions. View project (2015)

    Google Scholar 

  42. Wallentin, G., Loidl, M.: Agent-based bicycle traffic model for Salzburg City. GI_Forum: J. Geogr. Inf. Sci. 3, 558–566 (2015)

    Google Scholar 

  43. Ziemke, D., Metzler, S., Nagel, K.: Bicycle traffic and its interaction with motorized traffic in an agent-based transport simulation framework. Fut. Gener. Comput. Syst. 97 (2019)

    Google Scholar 

  44. Agarwal, A., Ziemke, D., Nagel, K.: Bicycle superhighway: an environmentally sustainable policy for urban transport. Transp. Res. Part A: Policy Pract. 137, 519–540 (2020)

    Google Scholar 

  45. Buisson, J., Galland, S., Gaud, N., et al.: Real-time collision avoidance for pedestrian and bicyclist simulation: a smooth and predictive approach. Procedia Comput. Sci. 19, 815–820 (2013)

    Article  Google Scholar 

  46. Chiou, Y.S., Bayer, A.Y.: Microscopic modeling of pedestrian movement in a shida night market street segment: using vision and destination attractiveness. Sustainability (Switzerland) 13 (2021)

    Google Scholar 

  47. Xi, H., Son, Y.J.: Two-level modeling framework for pedestrian route choice and walking behaviors. Simul. Model. Pract. Theory 22, 28–46 (2012)

    Article  Google Scholar 

  48. Agarwal, A., Lämmel, G.: Modeling seepage behavior of smaller vehicles in mixed traffic conditions using an agent based simulation. Transp. Dev. Econ. 2, 8 (2016)

    Article  Google Scholar 

  49. Sakai, T., Romano, A.A., Bhavathrathan, B.K., et al.: SimMobility freight: an agent-based urban freight simulator for evaluating logistics solutions. Transp. Res. Part E: Logist. Transp. Rev. 141, 102017 (2020)

    Article  Google Scholar 

  50. Zhao, F., Fu, L., Zhong, M., et al.: Development and validation of improved impedance functions for roads with mixed traffic using taxi GPS trajectory data and simulation. J. Adv. Transp. (2020)

    Google Scholar 

  51. Hörl, S., Balac, M., Axhausen, K.W.: A first look at bridging discrete choice modeling and agent-based microsimulation in MATSim. Procedia Comput. Sci. 130, 900–907 (2018)

    Article  Google Scholar 

  52. Azevedo, C.L., Marczuk, K., Raveau, S., et al.: Microsimulation of demand and supply of autonomous mobility on demand. Transp. Res. Rec. 2564, 21–30 (2016)

    Article  Google Scholar 

  53. Meng, L., Somenahalli, S., Berry, S.: Policy implementation of multi-modal (shared) mobility: review of a supply-demand value proposition canvas. Transp. Rev. 40, 670–684 (2020)

    Article  Google Scholar 

  54. Simon, P.M., Esser, J., Nagel, K.: Simple queueing model applied to the city of Portland. Int. J. Mod. Phys. C 10, 941–960 (1999)

    Article  Google Scholar 

Download references

Funding

This research has been co-financed by the European Union and Greece, National Strategic Reference Framework 2014–2020 (NSRF), through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH – CREATE –INNOVATE (project code: T2EDK-02494).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eirini Stavropoulou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stavropoulou, E., Mitropoulos, L., Tzouras, P.G., Karolemeas, C., Kepaptsoglou, K. (2023). An Evaluation of Agent-Based Models for Simulating E-Scooter Sharing Services in Urban Areas. In: Nathanail, E.G., Gavanas, N., Adamos, G. (eds) Smart Energy for Smart Transport. CSUM 2022. Lecture Notes in Intelligent Transportation and Infrastructure. Springer, Cham. https://doi.org/10.1007/978-3-031-23721-8_79

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23721-8_79

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23720-1

  • Online ISBN: 978-3-031-23721-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics