Skip to main content

Pediatric Vascular Malformations

  • Chapter
  • First Online:
Pediatric Neurosurgery Board Review

Abstract

Vascular malformations of the central nervous system (CNS) occur in both the brain and spinal cord. Brain vascular malformations are the leading cause of hemorrhagic stroke in the pediatric population (Tsze and Valente, Emerg. Med. Int. 2011:1–10, 2011). They are a heterogeneous group of abnormal arterial, capillary, or venous malformations that are characterized as fast-flow or slow-flow lesions, with or without arteriovenous (AV) shunting. They may occur sporadically or in association with familial syndromes including hereditary hemorrhagic telangiectasia (HHT), cerebral cavernous malformation (CCM), and capillary malformation-arteriovenous malformation (CM-AVM) (Table 10.1).

High-flow lesions include arteriovenous malformations (AVMs), vein of Galen malformations (VOGMs), dural arteriovenous fistulas (dAVFs), pial arteriovenous fistulas (pAVF), cerebral proliferative angiopathy (CPA), and dural sinus malformations (DSMs). Low-flow lesions include cerebral cavernous malformations (CCMs), capillary telangiectasias, and dural venous anomalies (DVAs). Most high-flow lesions demonstrate shunting from arterial to venous systems.

AVMs are high-flow vascular lesions consisting of a nidus of tangled blood vessels with a direct arterial-to-venous connection and no normal intervening parenchyma. AVFs are high-flow lesions characterized by direct arteriovenous connections without an intervening capillary network or nidus. dAVFs are supplied by dural arteries and often involve the extracranial circulation. pAVFs are rare intracranial AVFs that are supplied by cortical arterial feeders with direct connection to a single draining vein and no intervening nidus. DSMs are rare lesions with either a large dural lake that involves the posterior sinuses with or without torcular involvement or a single mural arteriovenous fistula involving the jugular bulb. CPA is a rare disease characterized by a diffuse vascular network that differs from AVM by exhibiting normal intervening brain parenchyma and slow arteriovenous shunting often involving multiple lobes or an entire hemisphere.

CCMs are slow-flow, angiographically occult lesions consisting of compact clusters of tangled veins without intervening parenchyma or neural tissue. They have a popcorn-like or “mulberry” appearance often surrounded by gliotic tissue and/or a hemosiderin ring. CNS capillary telangiectasias are small, low-flow vascular lesions that are typically asymptomatic. In contrast to CMs, capillary telangiectasias are composed of dilated capillaries interspersed with normal brain parenchyma. DVAs are a collection of small veins converging into a dilated venous trunk. They may be isolated or associated with CCMs.

Aneurysms are a distinct entity and not malformations, so they are not covered here. Moyamoya is an arteriopathy of unknown etiology that is characterized by stenosis of the distal internal carotid arteries and results in ischemic or, rarely, hemorrhagic injury to the brain and therefore is also not included in further discussion in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Perry A, Brat DJ. Practical surgical neuropathology: a diagnostic approach. Philadelphia: Churchill Livingstone/Elsevier; 2010.

    Google Scholar 

  2. Derdeyn CP, Zipfel GJ, Albuquerque FC, Cooke DL, Feldmann E, Sheehan JP, Torner JC. Management of brain arteriovenous malformations: a scientific statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2017;48:e200–24.

    Article  PubMed  Google Scholar 

  3. Jordan LC, Kleinman JT, Hillis AE. Intracerebral hemorrhage volume predicts poor neurologic outcome in children. Stroke. 2009;40:1666–71.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hernesniemi JA, Dashti R, Juvela S, Väärt K, Niemelä M, Laakso A. Natural history of brain arteriovenous malformations: a long-term follow-up study of risk of hemorrhage in 238 patients. Neurosurgery. 2008;63:823–9.

    Article  PubMed  Google Scholar 

  5. Can A, Gross BA, Du R. The natural history of cerebral arteriovenous malformations. Handb Clin Neurol. 2017;143:15–24.

    Article  PubMed  Google Scholar 

  6. Gross BA, Du R. Natural history of cerebral arteriovenous malformations: a meta-analysis. J Neurosurg. 2013;118:437–43.

    Article  PubMed  Google Scholar 

  7. Stapf C, Mast H, Sciacca RR, Choi JH, Khaw AV, Connolly ES, Pile-Spellman J, Mohr JP. Predictors of hemorrhage in patients with untreated brain arteriovenous malformation. Neurology. 2006;66:1350–5.

    Article  CAS  PubMed  Google Scholar 

  8. Kim H, Al-Shahi Salman R, McCulloch CE, Stapf C, Young WL. Untreated brain arteriovenous malformation: patient-level meta-analysis of hemorrhage predictors. Neurology. 2014;83:590–7.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Garzelli L, Shotar E, Blauwblomme T, Sourour N, Alias Q, Stricker S, Mathon B, Kossorotoff M, Gariel F, Boddaert N, et al. Risk factors for early brain AVM rupture: cohort study of pediatric and adult patients. Am J Neuroradiol. 2020;41:2358–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Redekop G, Terbrugge K, Montanera W, Wwillinsky R. Arterial aneurysms associated with cerebral arteriovenous malformations: classification, incidence, and risk of hemorrhage. J Neurosurg. 1998;89:539–46.

    Article  CAS  PubMed  Google Scholar 

  11. Platz J, Berkefeld J, Singer OC, Wolff R, Seifert V, Konczalla J, Güresir E. Frequency, risk of hemorrhage and treatment considerations for cerebral arteriovenous malformations with associated aneurysms. Acta Neurochir (Wien). 2014;156:2025–34.

    Article  PubMed  Google Scholar 

  12. Mast H, Young WL, Koennecke H-C, Sciacca RR, Osipov A, Pile-Spellman J, Hacein-Bey L, Duong H, Stein BM, Mohr JP. Risk of spontaneous haemorrhage after diagnosis of cerebral arteriovenous malformation. Lancet. 1997;350:1065–8.

    Article  CAS  PubMed  Google Scholar 

  13. Gross BA, Du R. Rate of re-bleeding of arteriovenous malformations in the first year after rupture. J Clin Neurosci. 2012;19:1087–8.

    Article  PubMed  Google Scholar 

  14. Gross BA, Frerichs KU, Du R. Sensitivity of CT angiography, T2-weighted MRI, and magnetic resonance angiography in detecting cerebral arteriovenous malformations and associated aneurysms. J Clin Neurosci. 2012;19:1093–5.

    Article  PubMed  Google Scholar 

  15. Lin N, Smith ER, Scott RM, Orbach DB. Safety of neuroangiography and embolization in children: complication analysis of 697 consecutive procedures in 394 patients. J Neurosurg Pediatr. 2015;16:432–8.

    Article  PubMed  Google Scholar 

  16. Mossa-Basha M, Chen J, Gandhi D. Imaging of cerebral arteriovenous malformations and dural arteriovenous fistulas. Neurosurg Clin N Am. 2012;23:27–42.

    Article  PubMed  Google Scholar 

  17. Elhadi AM, Zabramski JM, Almefty KK, Mendes GAC, Nakaji P, McDougall CG, Albuquerque FC, Preul MC, Spetzler RF. Spontaneous subarachnoid hemorrhage of unknown origin: hospital course and long-term clinical and angiographic follow-up. J Neurosurg. 2015;122:663–70.

    Article  PubMed  Google Scholar 

  18. Gross BA, Moon K, Mcdougall CG. Endovascular management of arteriovenous malformations. Handb Clin Neurol. 2017;143:59–68.

    Article  PubMed  Google Scholar 

  19. Borst AJ, Nakano TA, Blei F, Adams DM, Duis J. A primer on a comprehensive genetic approach to vascular anomalies. Front Pediatr. 2020;8:634.

    Article  Google Scholar 

  20. Krings T, Ozanne A, Chng SM, Alvarez H, Rodesch G, Lasjaunias PL. Neurovascular phenotypes in hereditary haemorrhagic telangiectasia patients according to age. Review of 50 consecutive patients aged 1 day-60 years. Neuroradiology. 2005;47:711–20.

    Article  CAS  PubMed  Google Scholar 

  21. Krings T, Kim H, Power S, Nelson J, Faughnan ME, Young WL, terBrugge KG. Neurovascular manifestations in hereditary hemorrhagic telangiectasia: imaging features and genotype-phenotype correlations. AJNR Am J Neuroradiol. 2015;36:863–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brinjikji W, Starke RM, Murad MH, Fiorella D, Pereira VM, Goyal M, Kallmes DF. Impact of balloon guide catheter on technical and clinical outcomes: a systematic review and meta-analysis. J Neurointerv Surg. 2018;10:335–9.

    Article  PubMed  Google Scholar 

  23. Bharatha A, Faughnan ME, Young WL, Terbrugge KG, Kim H, Pourmohamad T, Krings T, Bayrak-Toydemir P, Pawlikowska L, Mcculloch CE, et al. Brain arteriovenous malformation multiplicity predicts the diagnosis of hereditary hemorrhagic telangiectasia: quantitative assessment. Stroke. 2012;43:72–8.

    Article  PubMed  Google Scholar 

  24. Nishida T, Faughnan ME, Krings T, Chakinala M, Gossage JR, Young WL, Kim H, Pourmohamad T, Henderson KJ, Schrum SD, et al. Brain arteriovenous malformations associated with hereditary hemorrhagic telangiectasia: gene-phenotype correlations. Am J Med Genet A. 2012;158A:2829–34.

    Article  PubMed  Google Scholar 

  25. Faughnan ME, Mager JJ, Hetts SW, Palda VA, Lang-Robertson K, Buscarini E, Deslandres E, Kasthuri RS, Lausman A, Poetker D, et al. Second international guidelines for the diagnosis and management of hereditary hemorrhagic telangiectasia. Ann Intern Med. 2020;173:989–1001.

    Article  PubMed  Google Scholar 

  26. Kim H, Nelson J, Krings T, TerBrugge KG, McCulloch CE, Lawton MT, Young WL, Faughnan ME. Hemorrhage rates from brain arteriovenous malformation in hereditary hemorrhagic telangiectasia patients. Stroke. 2015;46:1362–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Latino GA, Al-Saleh S, Carpenter S, Ratjen F. The diagnostic yield of rescreening for arteriovenous malformations in children with hereditary hemorrhagic telangiectasia. J Pediatr. 2014;165:197–9.

    Article  PubMed  Google Scholar 

  28. Amyere M, Revencu N, Helaers R, Pairet E, Baselga E, Cordisco M, Chung W, Dubois J, Lacour J-P, Martorell L, et al. Germline loss-of-function mutations in EPHB4 cause a second form of capillary malformation-arteriovenous malformation (CM-AVM2) deregulating RAS-MAPK signaling. Circulation. 2017;136:1037–48.

    Article  CAS  PubMed  Google Scholar 

  29. Miyamoto S, Hashimoto N, Nagata I, Nozaki K, Morimoto M, Taki W, Kikuchi H. Posttreatment sequelae of palliatively treated cerebral arteriovenous malformations. Neurosurgery. 2000;46:589–94.

    Article  CAS  PubMed  Google Scholar 

  30. Darsaut TE, Guzman R, Marcellus ML, Edwards MS, Tian L, Do HM, Chang SD, Levy RP, Adler JR, Marks MP, et al. Management of pediatric intracranial arteriovenous malformations: experience with multimodality therapy. Neurosurgery. 2011;69:540–56.

    Article  PubMed  Google Scholar 

  31. Lee B-B, Do YS, Yakes W, Kim DI, Mattassi R, Hyon WS. Management of arteriovenous malformations: a multidisciplinary approach. J Vasc Surg. 2004;39:590–600.

    Article  PubMed  Google Scholar 

  32. Lv X, Wu Z, Li Y, Yang X, Jiang C. Hemorrhage risk after partial endovascular NBCA and ONYX embolization for brain arteriovenous malformation. Neurol Res (New York). 2012;34:552–6.

    Article  CAS  Google Scholar 

  33. Karlsson B, Lax I, Söderman M. Risk for hemorrhage during the 2-year latency period following gamma knife radiosurgery for arteriovenous malformations. Int J Radiat Oncol Biol Phys. 2001;49:1045–51.

    Article  CAS  PubMed  Google Scholar 

  34. Winkler EA, Lu A, Morshed RA, Yue JK, Rutledge WC, Burkhardt J-K, Patel AB, Ammanuel SG, Braunstein S, Fox CK, et al. Bringing high-grade arteriovenous malformations under control: clinical outcomes following multimodality treatment in children. J Neurosurg Pediatr. 2020;26:1–10.

    Article  Google Scholar 

  35. Mohr JP, Parides MK, Stapf C, Moquete E, Moy CS, Overbey JR, Salman RA-S, Vicaut E, Young WL, Houdart E, et al. Medical management with or without interventional therapy for unruptured brain arteriovenous malformations (ARUBA): a multicentre, non-blinded, randomised trial. Lancet (British Ed). 2014;383:614–21.

    Article  CAS  Google Scholar 

  36. van Beijnum J, van der Worp HB, Buis DR, Salman RA-S, Kappelle LJ, Rinkel GJE, van der Sprenkel JWB, Vandertop WP, Algra A, Klijn CJM. Treatment of brain arteriovenous malformations: a systematic review and meta-analysis. JAMA. 2011;306:2011–9.

    Article  PubMed  Google Scholar 

  37. Russin J, Spetzler R. Commentary: the ARUBA trial. Neurosurgery. 2014;75:E96–7.

    Article  PubMed  Google Scholar 

  38. Vlak MH, Algra A, Brandenburg R, Rinkel GJ. Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis. Lancet Neurol. 2011;10:626–36.

    Article  PubMed  Google Scholar 

  39. Chen C-J, Lee C-C, Kano H, Kearns KN, Ding D, Tzeng S-W, Atik AF, Joshi K, Huang PP, Kondziolka D, et al. Radiosurgery for unruptured intervention-Naïve pediatric brain arteriovenous malformations. Neurosurgery. 2020;87:368–76.

    Article  PubMed  Google Scholar 

  40. Ma X, Tong X, Wu J, Cao Y, Wang S. Seizure control following treatment of brain arteriovenous malformations in pediatric patients. Childs Nerv Syst. 2016;32:2387–94.

    Article  PubMed  Google Scholar 

  41. Reynolds MR, Lanzino G, Zipfel GJ. Intracranial dural arteriovenous fistulae. Stroke. 2017;48:1424–31.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yasargil MG. Microneurosurgery, Volume IIIA. AVM of the brain, history, embryology, pathological considerations, hemodynamics, diagnostic studies, microsurgical anatomy. 1987, Thieme, ISBN-10: 9780865772588.

    Google Scholar 

  43. Lasjaunias P, Manelfe C, Chiu M. Angiographic architecture of intracranial vascular malformations and fistulas-pretherapeutic aspects. Neurosurg Rev. 1986;9:253–63.

    Article  CAS  PubMed  Google Scholar 

  44. Newman CB, Hu YC, McDougall CG, Albuquerque FC. Balloon-assisted Onyx embolization of cerebral single-channel pial arteriovenous fistulas: technical note. J Neurosurg Pediatr. 2011;7:637–42.

    Article  PubMed  Google Scholar 

  45. Borden JA, Wu JK, Shucart WA. A proposed classification for spinal and cranial dural arteriovenous fistulous malformations and implications for treatment. J Neurosurg. 1995;82:166–79.

    Article  CAS  PubMed  Google Scholar 

  46. Cognard C, Gobin YP, Pierot L, Bailly A-L, Houdart E, Casasco A, Chiras J, Merland J-J. Cerebral dural arteriovenous fistulas: clinical and angiographic correlation with a revised classification of venous drainage. Radiology. 1995;194:671–80.

    Article  CAS  PubMed  Google Scholar 

  47. Zipfel GJ, Shah MN, Refai D, Dacey Ralph GJ, Derdeyn CP. Cranial dural arteriovenous fistulas: modification of angiographic classification scales based on new natural history data. Neurosurg Focus. 2009;26:E14.

    Article  PubMed  Google Scholar 

  48. Garcia-Monaco R, Taylor W, Rodesch G, Alvarez H, Burrows P, Coubes P, Lasjaunias P. Pial arteriovenous fistula in children as presenting manifestation of Rendu-Osler-Weber disease. Neuroradiology. 1995;37:60–4.

    Article  CAS  PubMed  Google Scholar 

  49. Walcott BP, Smith ER, Scott RM, Orbach DB. Pial arteriovenous fistulae in pediatric patients: associated syndromes and treatment outcome. J Neurointerv Surg. 2013;5:10–4.

    Article  PubMed  Google Scholar 

  50. Lawton MT, Jacobowitz R, Spetzler RF. Redefined role of angiogenesis in the pathogenesis of dural arteriovenous malformations. J Neurosurg. 1997;87:267–74.

    Article  CAS  PubMed  Google Scholar 

  51. Ferro JM, Coutinho JM, Jansen O, Bendszus M, Dentali F, Kobayashi A, van der Veen B, Miede C, Caria J, Huisman H, et al. Dural arteriovenous fistulae after cerebral venous thrombosis. Stroke. 2020;51:3344–7.

    Article  PubMed  Google Scholar 

  52. Hoh BL, Putman CM, Budzik RF, Ogilvy CS. Surgical and endovascular flow disconnection of intracranial pial single-channel arteriovenous fistulae. Neurosurgery. 2001;49:1351–64.

    Article  CAS  PubMed  Google Scholar 

  53. Zenteno M, Lee A, Satyarthee GD, Moscote-Salazar LR. Endovascular management of intracranial pial arteriovenous fistulas: experience of largest series at a single center over six years. J Neurosci Rural Pract. 2018;9:406–9.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Alurkar A, Karanam L, Nayak S, Ghanta R. Intracranial pial arteriovenous fistulae: diagnosis and treatment techniques in pediatric patients with review of literature. J Clin Imaging Sci. 2016;6:2.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Cuoco JA, Guilliams EL, Apfel LS, Marvin EA, Patel BM. Incidental pediatric high-flow nongalenic giant pial arteriovenous fistula. Neuropediatrics. 2021;52:65–8.

    Article  PubMed  Google Scholar 

  56. Jabbour P, Tjoumakaris S, Chalouhi N, Randazzo C, Gonzalez LF, Dumont A, Rosenwasser R. Endovascular treatment of cerebral dural and pial arteriovenous fistulas. Neuroimaging Clin N Am. 2013;23:625–36.

    Article  PubMed  Google Scholar 

  57. Hetts SW, Keenan K, Fullerton HJ, Young WL, English JD, Gupta N, Dowd CF, Higashida RT, Lawton MT, Halbach VV. Pediatric intracranial nongalenic pial arteriovenous fistulas: clinical features, angioarchitecture, and outcomes. AJNR Am J Neuroradiol. 2012;33:1710–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Walcott BP, Smith ER, Scott RM, Orbach DB. Dural arteriovenous fistulae in pediatric patients: associated conditions and treatment outcomes. J Neurointerv Surg. 2013;5:6–9.

    Article  PubMed  Google Scholar 

  59. Kraneburg UM, Nga VDW, Ting EYS, Hui FKH, Lwin S, Teo C, Chou N, Yeo TT. Intracranial pial arteriovenous fistula in infancy: a case report and literature review. Childs Nerv Syst. 2014;30:365–9.

    Article  CAS  PubMed  Google Scholar 

  60. Long DM, Seljeskog EL, Chou SN, French LA. Giant arteriovenous malformations of infancy and childhood. J Neurosurg. 1974;40:304–12.

    Article  CAS  PubMed  Google Scholar 

  61. Duran D, Karschnia P, Gaillard JR, Karimy JK, Youngblood MW, DiLuna ML, Matouk CC, Aagaard-Kienitz B, Smith ER, Orbach DB, et al. Human genetics and molecular mechanisms of vein of Galen malformation. J Neurosurg Pediatr. 2018;21:367–74.

    Article  PubMed  Google Scholar 

  62. Lasjaunias PL, Chng SM, Sachet M, Alvarez H, Rodesch G, Garcia-Monaco R. The management of vein of Galen aneurysmal malformations. Neurosurgery. 2006;59:S184–94.

    Article  PubMed  Google Scholar 

  63. Duran D, Zeng X, Jin SC, Choi J, Nelson-Williams C, Yatsula B, Gaillard J, Furey CG, Lu Q, Timberlake AT, et al. Mutations in chromatin modifier and ephrin signaling genes in vein of Galen malformation. Neuron. 2019;101:429–443.e4.

    Article  CAS  PubMed  Google Scholar 

  64. Brinjikji W, Krings T, Murad MH, Rouchaud A, Meila D. Endovascular treatment of vein of Galen malformations: a systematic review and meta-analysis. AJNR Am J Neuroradiol. 2017;38:2308–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Arko L, Lambrych M, Montaser A, Zurakowski D, Orbach DB. Fetal and neonatal MRI predictors of aggressive early clinical course in vein of Galen malformation. AJNR Am J Neuroradiol. 2020;41:1105–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chang D, Babadjouni R, Nisson P, Chan JL, Quintero-Consuegra M, Toscano JF, Gonzalez NR. Transvenous pressure monitoring guides endovascular treatment of vein of Galen malformation: a technical note. Pediatr Neurosurg. 2021;56:401–6.

    Article  PubMed  Google Scholar 

  67. Quisling RG, Mickle JP. Venous pressure measurements in vein of Galen aneurysms. AJNR Am J Neuroradiol. 1989;10:411–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Hoang S, Choudhri O, Edwards M, Guzman R. Vein of Galen malformation. Neurosurg Focus. 2009;27:E8.

    Article  PubMed  Google Scholar 

  69. Zeng X, Hunt A, Jin SC, Duran D, Gaillard J, Kahle KT. EphrinB2-EphB4-RASA1 signaling in human cerebrovascular development and disease. Trends Mol Med. 2019;25:265–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Revencu N, Boon LM, Mendola A, Cordisco MR, Dubois J, Clapuyt P, Hammer F, Amor DJ, Irvine AD, Baselga E, et al. RASA1 mutations and associated phenotypes in 68 families with capillary malformation-arteriovenous malformation. Hum Mutat. 2013;34:1632–41.

    Article  CAS  PubMed  Google Scholar 

  71. Chida A, Shintani M, Wakamatsu H, Tsutsumi Y, Iizuka Y, Kawaguchi N, Furutani Y, Inai K, Nonoyama S, Nakanishi T. ACVRL1 gene variant in a patient with vein of Galen aneurysmal malformation. J Pediatr Genet. 2013;2:181–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Tsutsumi Y, Kosaki R, Itoh Y, Tsukamoto K, Matsuoka R, Shintani M, Nosaka S, Masaki H, Iizuka Y. Vein of Galen aneurysmal malformation associated with an endoglin gene mutation. Pediatrics. 2011;128:e1307–10.

    Article  PubMed  Google Scholar 

  73. Kundishora A, Zeng X, Duran D, Allocco AA, Choi J, Jin SC, Conine SB, Nelson-Williams C, Gaillard J, Furey CG, et al. Exome sequencing defines the molecular pathogenesis of vein of Galen malformation. Neurosurgery. 2019;66:310.

    Article  Google Scholar 

  74. Hoffman HJ, Chuang S, Hendrick EB, Humphreys RP. Aneurysms of the vein of Galen. Experience at The Hospital for Sick Children, Toronto. J Neurosurg. 1982;57:316–22.

    Article  CAS  PubMed  Google Scholar 

  75. Sato S, Niimi Y, Mochizuki T, Shima S, Inoue T, Kawamata T, Okada Y. Umbilical vessel catheter retro-exchange technique (U-RET) for repeat use of the umbilical artery for neonatal vascular intervention: technical note. Interv Neuroradiol. 2021;28(4):386–90. https://doi.org/10.1177/15910199211041445.

    Article  PubMed  Google Scholar 

  76. Lasjaunias P. Vascular diseases in neonates, infants and children: interventional neuroradiology management. Berlin, Heidelberg: Springer; 1997.

    Book  Google Scholar 

  77. Lasjaunias P, Rodesch G, Terbrugge K, Pruvost P, Devictor D, Comoy J, Landrieu P. Vein of Galen aneurysmal malformations: report of 36 cases managed between 1982 and 1988. Acta Neurochir (Wien). 1989;99:26–37.

    Article  CAS  PubMed  Google Scholar 

  78. Paladini D, Deloison B, Rossi A, Chalouhi GE, Gandolfo C, Sonigo P, Buratti S, Millischer AE, Tuo G, Ville Y, et al. Vein of Galen aneurysmal malformation (VGAM) in the fetus: retrospective analysis of perinatal prognostic indicators in a two-center series of 49 cases. Ultrasound Obstet Gynecol. 2017;50:192–9.

    Article  CAS  PubMed  Google Scholar 

  79. Gopalan V, Rennie A, Robertson F, Kanagarajah L, Toolis C, Bhate S, Ganesan V. Presentation, course, and outcome of postneonatal presentations of vein of Galen malformation: a large, single-institution case series. Dev Med Child Neurol. 2018;60:424–9.

    Article  PubMed  Google Scholar 

  80. Lecce F, Robertson F, Rennie A, Heuchan A, Lister P, Bhate S, Bhattacharya J, Brew S, Kanagarajah L, Kuczynski A, et al. Cross-sectional study of a United Kingdom cohort of neonatal vein of Galen malformation. Ann Neurol. 2018;84:547–55.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Lasjaunias P, Magufis G, Goulao A, Piske R, Suthipongchai S, Rodesch R, Alvarez H. Anatomoclinical aspects of dural arteriovenous shunts in children: review of 29 cases. Interv Neuroradiol. 1996;2:179–91.

    Article  CAS  PubMed  Google Scholar 

  82. Morita A, Meyer FB, Nichols DA, Patterson MC. Childhood dural arteriovenous fistulae of the posterior dural sinuses: three case reports and literature review. Neurosurgery. 1995;37:1193–200.

    Article  CAS  PubMed  Google Scholar 

  83. Barbosa M, Mahadevan J, Weon YC, Yoshida Y, Ozanne A, Rodesch G, Alvarez H, Lasjaunias P. Dural Sinus Malformations (DSM) with Giant Lakes, in neonates and infants. Review of 30 consecutive cases. Interv Neuroradiol. 2003;9:407–24.

    Article  CAS  PubMed  Google Scholar 

  84. Albright AL, Latchaw RE, Price RA. Posterior dural arteriovenous malformations in infancy. Neurosurgery. 1983;13:129–35.

    Article  CAS  PubMed  Google Scholar 

  85. Garcia-Monaco R, Rodesch G, Terbrugge K, Burrows P, Lasjaunias P. Multifocal dural arteriovenous shunts in children. Childs Nerv Syst. 1991;7:425–31.

    Article  CAS  PubMed  Google Scholar 

  86. Lasjaunias PL, Landrieu P, Rodesch G, Alvarez H, Ozanne A, Holmin S, Zhao W-Y, Geibprasert S, Ducreux D, Krings T. Cerebral proliferative angiopathy: clinical and angiographic description of an entity different from cerebral AVMs. Stroke. 2008;39:878–85.

    Article  PubMed  Google Scholar 

  87. Yamaki VN, Solla DJF, Telles JPM, Liem GLJ, da Silva SA, Caldas JGMP, Teixeira MJ, Paschoal EHA, Figueiredo EG. The current clinical picture of cerebral proliferative angiopathy: systematic review. Acta Neurochir (Wien). 2020;162:1727–33.

    Article  PubMed  Google Scholar 

  88. Fierstra J, Spieth S, Tran L, Conklin J, Tymianski M, Ter Brugge KG, Fisher JA, Mikulis DJ, Krings T. Severely impaired cerebrovascular reserve in patients with cerebral proliferative angiopathy: clinical article. J Neurosurg Pediatr. 2011;8:310–5.

    Article  PubMed  Google Scholar 

  89. Ducreux D, Petit-Lacour MC, Marsot-Dupuch K, Bittoun J, Lasjaunias P. MR perfusion imaging in a case of cerebral proliferative angiopathy. Eur Radiol. 2002;12:2717–22.

    Article  CAS  PubMed  Google Scholar 

  90. Vargas MC, Castillo M. Magnetic resonance perfusion imaging in proliferative cerebral angiopathy. J Comput Assist Tomogr. 2011;35:33–8.

    Article  PubMed  Google Scholar 

  91. Kimiwada T, Hayashi T, Shirane R, Tominaga T. 123I-IMP-SPECT in a patient with cerebral proliferative angiopathy: a case report. J Stroke Cerebrovasc Dis. 2013;22:1432–5.

    Article  PubMed  Google Scholar 

  92. Ochoa A, Mantese B, Requejo F. Hemorrhagic cerebral proliferative angiopathy in two pediatric patients: case reports. Childs Nerv Syst. 2021;38:789.

    Article  PubMed  Google Scholar 

  93. Lawton MT, Rutledge WC, Kim H, Stapf C, Whitehead KJ, Li DY, Krings T, terBrugge K, Kondziolka D, Morgan MK, et al. Brain arteriovenous malformations. Nat Rev Dis Primers. 2015;1:15008.

    Article  PubMed  Google Scholar 

  94. Liu P, Lv X, Lv M, Li Y. Cerebral proliferative angiopathy: clinical, angiographic features and literature review. Interv Neuroradiol. 2016;22:101–7.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Maekawa H, Terada A, Ishiguro T, Komiyama M, Lenck S, Renieri L, Krings T. Recurrent periventricular hemorrhage in cerebral proliferative angiopathy: case report. Interv Neuroradiol. 2018;24:713–7.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Kumar S, Srivastava T, Tejwani S, Khilnani K. Cerebral proliferative angiopathy with papilledema. Clin Neurol Neurosurg. 2015;139:12–5.

    Article  PubMed  Google Scholar 

  97. Mansmann U, Meisel J, Brock M, Rodesch G, Alvarez H, Lasjaunias P. Factors associated with intracranial hemorrhage in cases of cerebral arteriovenous malformation. Neurosurgery. 2000;46:272–80.

    Article  CAS  PubMed  Google Scholar 

  98. Somji M, McEachern J, Silvaggio J. Cerebral revascularization in cerebral proliferative angiopathy: a systematic review. Neurosurg Focus. 2019;46:E11.

    Article  PubMed  Google Scholar 

  99. Srivastava T, Mathur T, Jain R, Sannegowda RB. Cerebral proliferative angiopathy: a rare clinical entity with peculiar angiographic features. Ann Indian Acad Neurol. 2013;16:674–5.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Kumar S, Sharma M, Srivastava T, Sinha VD. Infratentorial hemorrhagic cerebral proliferative angiopathy: a rare presentation of a rare disease. Asian J Neurosurg. 2015;10:240–2.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Gold JJ, Crawford JR. Acute hemiparesis in a child as a presenting symptom of hemispheric cerebral proliferative angiopathy. Case Rep Neurol Med. 2013;2013:920853–9.

    Google Scholar 

  102. Meisel HJ, Mansmann U, Alvarez H, Rodesch G, Brock M, Lasjaunias P. Effect of partial targeted N-butyl-cyano-acrylate embolization in brain AVM. Acta Neurochir (Wien). 2002;144:879–88.

    Article  CAS  PubMed  Google Scholar 

  103. Ellis MJ, Armstrong D, Dirks PB. Large vascular malformation in a child presenting with vascular steal phenomenon managed with pial synangiosis. J Neurosurg Pediatr. 2011;7:15–21.

    Article  PubMed  Google Scholar 

  104. Kono K, Terada T. Encephaloduroarteriosynangiosis for cerebral proliferative angiopathy with cerebral ischemia. J Neurosurg. 2014;121:1411–5.

    Article  PubMed  Google Scholar 

  105. Sakata H, Fujimura M, Sato K, Niizuma K, Endo H, Tominaga T. Development of abnormal hemispheric vascular networks mimicking cerebral proliferative angiopathy in a child originally diagnosed with deep-seated arteriovenous fistula. J Stroke Cerebrovasc Dis. 2016;25:e200–4.

    Article  PubMed  Google Scholar 

  106. Puerta P, Guillén A, Muchart J, González V, Ferrer E. Cerebral proliferative angiopathy in a child. Pediatr Neurosurg. 2017;52:214–6.

    Article  PubMed  Google Scholar 

  107. Smith ER, Scott RM. Cavernous malformations. Neurosurg Clin N Am. 2010;21:483–90.

    Article  PubMed  Google Scholar 

  108. Morris Z, Whiteley WN, Longstreth WT, Weber F, Lee Y-C, Tsushima Y, Alphs H, Ladd SC, Warlow C, Wardlaw JM, et al. Incidental findings on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ. 2009;339:194–550.

    Article  Google Scholar 

  109. Al-Holou WN, O’Lynnger TM, Pandey AS, Gemmete JJ, Thompson BG, Muraszko KM, Garton HJL, Maher CO. Natural history and imaging prevalence of cavernous malformations in children and young adults: clinical article. J Neurosurg Pediatr. 2012;9:198–205.

    Article  PubMed  Google Scholar 

  110. Al-Shahi R, Bhattacharya JJ, Currie DG, Papanastassiou V, Ritchie V, Roberts RC, Sellar RJ, Warlow CP. Prospective, population-based detection of intracranial vascular malformations in adults: the Scottish Intracranial Vascular Malformation Study (SIVMS). Stroke. 2003;34:1163–9.

    Article  PubMed  Google Scholar 

  111. Gastelum E, Sear K, Hills N, Roddy E, Randazzo D, Chettout N, Hess C, Cotter J, Haas-Kogan DA, Fullerton H, et al. Rates and characteristics of radiographically detected intracerebral cavernous malformations after cranial radiation therapy in pediatric cancer patients. J Child Neurol. 2015;30:842–9.

    Article  PubMed  Google Scholar 

  112. Horne MA, Flemming KD, Su I-C, Stapf C, Jeon JP, Li D, Maxwell SS, White P, Christianson TJ, Agid R, et al. Clinical course of untreated cerebral cavernous malformations: a meta-analysis of individual patient data. Lancet Neurol. 2016;15:166–73.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Al-Shahi RS, Hall JM, Horne MA, Moultrie F, Josephson CB, Bhattacharya JJ, Counsell CE, Murray GD, Papanastassiou V, Ritchie V, et al. Untreated clinical course of cerebral cavernous malformations: a prospective, population-based cohort study. Lancet Neurol. 2012;11:217–24.

    Article  Google Scholar 

  114. Gross BA, Du R, Orbach DB, Scott RM, Smith ER. The natural history of cerebral cavernous malformations in children. J Neurosurg Pediatr. 2016;17:123–8.

    Article  PubMed  Google Scholar 

  115. Akers A, Al-Shahi Salman R, Awad IA, Dahlem K, Flemming K, Hart B, Kim H, Jusue-Torres I, Kondziolka D, Lee C, et al. Synopsis of guidelines for the clinical management of cerebral cavernous malformations: consensus recommendations based on systematic literature review by the Angioma Alliance Scientific Advisory Board Clinical Experts Panel. Neurosurgery. 2017;80:665–80.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Riant F, Bergametti F, Ayrignac X, Boulday G, Tournier-Lasserve E. Recent insights into cerebral cavernous malformations: the molecular genetics of CCM. FEBS J. 2010;277:1070–5.

    Article  CAS  PubMed  Google Scholar 

  117. Cavalcanti DD, Kalani MYS, Martirosyan NL, Eales J, Spetzler RF, Preul MC. Cerebral cavernous malformations: from genes to proteins to disease. J Neurosurg. 2012;116:122–32.

    Article  CAS  PubMed  Google Scholar 

  118. Barker FG 2nd, Amin-Hanjani S, Butler WE, Lyons S, Ojemann RG, Chapman PH, Ogilvy CS. Temporal clustering of hemorrhages from untreated cavernous malformations of the central nervous system. Neurosurgery. 2001;49:15–25.

    PubMed  Google Scholar 

  119. Chen B, Herten A, Saban D, Rauscher S, Radbruch A, Schmidt B, Zhu Y, Jabbarli R, Wrede KH, Kleinschnitz C, et al. Hemorrhage from cerebral cavernous malformations: the role of associated developmental venous anomalies. Neurology. 2020;95:e89–96.

    Article  CAS  PubMed  Google Scholar 

  120. Petersen TA, Morrison LA, Schrader RM, Hart BL. Familial versus sporadic cavernous malformations: differences in developmental venous anomaly association and lesion phenotype. AJNR Am J Neuroradiol. 2010;31:377–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Smith ER, Michael Scott R. Surgical treatment of cavernous malformations in children. 2011;135–42.

    Google Scholar 

  122. Chang EF, Gabriel RA, Potts MB, Berger MS, Lawton MT. Supratentorial cavernous malformations in eloquent and deep locations: surgical approaches and outcomes: clinical article. J Neurosurg. 2011;114:814–27.

    Article  PubMed  Google Scholar 

  123. Englot DJ, Han SJ, Lawton MT, Chang EF. Predictors of seizure freedom in the surgical treatment of supratentorial cavernous malformations: clinical article. J Neurosurg. 2011;115:1169–74.

    Article  PubMed  Google Scholar 

  124. Baumann CR, Acciarri N, Bertalanffy H, Devinsky O, Elger CE, Lo Russo G, Cossu M, Sure U, Singh A, Stefan H, et al. Seizure outcome after resection of supratentorial cavernous malformations: a study of 168 patients. Epilepsia. 2007;48:559–63.

    Article  PubMed  Google Scholar 

  125. Li D, Hao S-Y, Tang J, Xiao X-R, Jia G-J, Wu Z, Zhang L-W, Zhang J-T. Surgical management of pediatric brainstem cavernous malformations. J Neurosurg Pediatr. 2014;13:484–502.

    Article  PubMed  Google Scholar 

  126. Brinjikji W, El-Rida El-Masri A, Wald JT, Lanzino G. Prevalence of developmental venous anomalies increases with age. Stroke. 2017;48:1997–9.

    Article  PubMed  Google Scholar 

  127. Pearl M, Gregg L, Gandhi D. Cerebral venous development in relation to developmental venous anomalies and vein of Galen aneurysmal malformations. Semin Ultrasound CT MRI. 2011;32:252–63.

    Article  Google Scholar 

  128. Santucci GM, Leach JL, Ying J, Leach SD, Tomsick TA. Brain parenchymal signal abnormalities associated with developmental venous anomalies: detailed MR imaging assessment. AJNR Am J Neuroradiol. 2008;29:1317–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lasjaunias P, Burrows P, Planet C. Developmental venous anomalies (DVA): the so-called venous angioma. Neurosurg Rev. 1986;9:233–42.

    Article  CAS  PubMed  Google Scholar 

  130. San Millán Ruíz D, Yilmaz H, Gailloud P. Cerebral developmental venous anomalies: current concepts. Ann Neurol. 2009;66:271–83.

    Article  Google Scholar 

  131. Wurm G, Schnizer M, Fellner FA. Cerebral cavernous malformations associated with venous anomalies: surgical considerations. Neurosurgery. 2007;61:358–90.

    Article  Google Scholar 

  132. Pereira VM, Geibprasert S, Krings T, Aurboonyawat T, Ozanne A, Toulgoat F, Pongpech S, Lasjaunias PL. Pathomechanisms of symptomatic developmental venous anomalies. Stroke. 2008;39:3201–15.

    Article  PubMed  Google Scholar 

  133. Okahara M, Kiyosue H, Mori H, Tanoue S, Sainou M, Nagatomi H. Anatomic variations of the cerebral arteries and their embryology: a pictorial review. Eur Radiol. 2002;12:2548–61.

    Article  PubMed  Google Scholar 

  134. Kiroglu Y, Oran I, Dalbasti T, Karabulut N, Calli C. Thrombosis of a drainage vein in developmental venous anomaly (DVA) leading venous infarction: a case report and review of the literature. J Neuroimaging. 2011;21:197–201.

    Article  PubMed  Google Scholar 

  135. Im S-H, Han MH, Kwon BJ, Ahn JY, Jung C, Park S-H, Oh CW, Han DH. Venous-predominant parenchymal arteriovenous malformation: a rare subtype with a venous drainage pattern mimicking developmental venous anomaly. J Neurosurg. 2008;108:1142–7.

    Article  PubMed  Google Scholar 

  136. Murai S, Hiramatsu M, Suzuki E, Ishibashi R, Takai H, Miyazaki Y, Takasugi Y, Yamaoka Y, Nishi K, Takahashi Y, et al. Trends in incidence of intracranial and spinal arteriovenous shunts: hospital-based surveillance in Okayama, Japan. Stroke. 2021;52:1455–9.

    Article  CAS  PubMed  Google Scholar 

  137. Du J, Ling F, Chen M, Zhang H. Clinical characteristic of spinal vascular malformation in pediatric patients. Childs Nerv Syst. 2008;25:473–8.

    Article  PubMed  Google Scholar 

  138. Rodesch G, Hurth M, Alvarez H, Ducot B, Tadie M, Lasjaunias P. Angio-architecture of spinal cord arteriovenous shunts at presentation. Clinical correlations in adults and children. The Bicêtre experience on 155 consecutive patients seen between 1981-1999. Acta Neurochir (Wien). 2004;146:217–26.

    Article  CAS  PubMed  Google Scholar 

  139. Pal P, Ray S, Chakraborty S, Dey S, Talukdar A. Cobb syndrome: a rare cause of paraplegia. Ann Neurosci. 2015;22:191–3.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Kim LJ, Spetzler RF. Classification and surgical management of spinal arteriovenous lesions: arteriovenous fistulae and arteriovenous malformations. Neurosurgery. 2006;59:S195–201.

    Article  PubMed  Google Scholar 

  141. Spetzler RF, Detwiler PW, Riina HA, Porter RW. Modified classification of spinal cord vascular lesions. J Neurosurg. 2002;96:145–56.

    PubMed  Google Scholar 

  142. Rodesch G, Pongpech S, Alvarez H, Zerah M, Hurth M, Sebire G, Lasjaunias P. Spinal cord arteriovenous malformations in a pediatric population children below 15 years of age the place of endovascular management. Interv Neuroradiol. 1995;1:29–42.

    Article  CAS  PubMed  Google Scholar 

  143. Cho W-S, Wang K-C, Phi JH, Lee JY, Chong S, Kang H-S, Han MH, Kim S-K. Pediatric spinal arteriovenous malformations and fistulas: a single institute’s experience. Childs Nerv Syst. 2016;32:811–8.

    Article  PubMed  Google Scholar 

  144. Nikolaev SI, Vetiska S, Bonilla X, Boudreau E, Jauhiainen S, Rezai Jahromi B, Khyzha N, DiStefano PV, Suutarinen S, Kiehl T-R, et al. Somatic activating KRAS mutations in arteriovenous malformations of the brain. N Engl J Med. 2018;378:250–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Goss JA, Huang AY, Smith E, Konczyk DJ, Smits PJ, Sudduth CL, Stapleton C, Patel A, Alexandrescu S, Warman ML, et al. Somatic mutations in intracranial arteriovenous malformations. PLoS One. 2019;14:e0226852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Grimmond SM, Raghavan D, Russell PJ. Detection of a rare point mutation in Ki-ras of a human bladder cancer xenograft by polymerase chain reaction and direct sequencing. Urol Res. 1992;20:121–6.

    Article  CAS  PubMed  Google Scholar 

  147. Nakano H, Yamamoto F, Neville C, Evans D, Mizuno T, Perucho M. Isolation of transforming sequences of two human lung carcinomas: structural and functional analysis of the activated c-K-ras oncogenes. Proc Natl Acad Sci U S A. 1984;81:71–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Lee KH, Lee JS, Suh C, Kim SW, Kim SB, Lee JH, Lee MS, Park MY, Sun HS, Kim SH. Clinicopathologic significance of the K-ras gene codon 12 point mutation in stomach cancer. An analysis of 140 cases. Cancer. 1995;75:2794–801.

    Article  CAS  PubMed  Google Scholar 

  149. Bollag G, Adler F, elMasry N, McCabe PC, Conner EJ, Thompson P, McCormick F, Shannon K. Biochemical characterization of a novel KRAS insertion mutation from a human leukemia. J Biol Chem. 1996;271:32491–4.

    Article  CAS  PubMed  Google Scholar 

  150. Niihori T, Aoki Y, Narumi Y, Neri G, Cavé H, Verloes A, Okamoto N, Hennekam RCM, Gillessen-Kaesbach G, Wieczorek D, et al. Germline KRAS and BRAF mutations in cardio-facio-cutaneous syndrome. Nat Genet. 2006;38:294–6.

    Article  CAS  PubMed  Google Scholar 

  151. Al-Olabi L, Polubothu S, Dowsett K, Andrews KA, Stadnik P, Joseph AP, Knox R, Pittman A, Clark G, Baird W, et al. Mosaic RAS/MAPK variants cause sporadic vascular malformations which respond to targeted therapy. J Clin Invest. 2018;128:1496–508.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Naoki K, Chen T-H, Richards WG, Sugarbaker DJ, Meyerson M. Missense mutations of the BRAF gene in human lung adenocarcinoma. Cancer Res. 2002;62:7001–3.

    CAS  PubMed  Google Scholar 

  153. Rajagopalan H, Bardelli A, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE. Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature. 2002;418:934.

    Article  CAS  PubMed  Google Scholar 

  154. Brose MS, Volpe P, Feldman M, Kumar M, Rishi I, Gerrero R, Einhorn E, Herlyn M, Minna J, Nicholson A, et al. Mutations in human lung cancer and melanoma. Cancer Res. 2002;62:6997–7000.

    CAS  PubMed  Google Scholar 

  155. Lee JW, Yoo NJ, Soung YH, Kim HS, Park WS, Kim SY, Lee JH, Park JY, Cho YG, Kim CJ, et al. BRAF mutations in non-Hodgkin’s lymphoma. Br J Cancer. 2003;89:1958–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Sarkozy A, Carta C, Moretti S, Zampino G, Digilio MC, Pantaleoni F, Scioletti AP, Esposito G, Cordeddu V, Lepri F, et al. Germline BRAF mutations in Noonan, LEOPARD, and cardiofaciocutaneous syndromes: molecular diversity and associated phenotypic spectrum. Hum Mutat. 2009;30:695–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Couto JA, Huang AY, Konczyk DJ, Goss JA, Fishman SJ, Mulliken JB, Warman ML, Greene AK. Somatic MAP2K1 mutations are associated with extracranial arteriovenous malformation. Am J Hum Genet. 2017;100:546–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Kang H, Jha S, Deng Z, Fratzl-Zelman N, Cabral WA, Ivovic A, Meylan F, Hanson EP, Lange E, Katz J, et al. Somatic activating mutations in MAP2K1 cause melorheostosis. Nat Commun. 2018;9:1390.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Ng SB, Bigham AW, Buckingham KJ, Hannibal MC, McMillin MJ, Gildersleeve HI, Beck AE, Tabor HK, Cooper GM, Mefford HC, et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet. 2010;42:790–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Van Houdt JKJ, Nowakowska BA, Sousa SB, van Schaik BDC, Seuntjens E, Avonce N, Sifrim A, Abdul-Rahman OA, van den Boogaard M-JH, Bottani A, et al. Heterozygous missense mutations in SMARCA2 cause Nicolaides-Baraitser syndrome. Nat Genet. 2012;44:445–9, S1.

    Article  PubMed  Google Scholar 

  161. Arboleda VA, Lee H, Dorrani N, Zadeh N, Willis M, Macmurdo CF, Manning MA, Kwan A, Hudgins L, Barthelemy F, et al. De novo nonsense mutations in KAT6A, a lysine acetyl-transferase gene, cause a syndrome including microcephaly and global developmental delay. Am J Hum Genet. 2015;96:498–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Wilcox ER, Burton QL, Naz S, Riazuddin S, Smith TN, Ploplis B, Belyantseva I, Ben-Yosef T, Liburd NA, Morell RJ, et al. Mutations in the gene encoding tight junction claudin-14 cause autosomal recessive deafness DFNB29. Cell. 2001;104:165–72.

    Article  CAS  PubMed  Google Scholar 

  163. Peyre M, Miyagishima D, Bielle F, Chapon F, Sierant M, Venot Q, Lerond J, Marijon P, Abi-Jaoude S, Le Van T, et al. Somatic PIK3CA mutations in sporadic cerebral cavernous malformations. N Engl J Med. 2021;385:996–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Orloff MS, He X, Peterson C, Chen F, Chen J-L, Mester JL, Eng C. Germline PIK3CA and AKT1 mutations in Cowden and Cowden-like syndromes. Am J Hum Genet. 2013;92:76–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Dumont AS, Lanzino G, Sheehan JP. Brain arteriovenous malformations and arteriovenous fistulas. New York: Thieme Medical Publishers; 2017.

    Book  Google Scholar 

  166. Halim AX, Johnston SC, Singh V, McCulloch CE, Bennett JP, Achrol AS, Sidney S, Young WL. Longitudinal risk of intracranial hemorrhage in patients with arteriovenous malformation of the brain within a defined population. Stroke. 2004;35:1697–702.

    Article  PubMed  Google Scholar 

  167. Ríus C, Smith JD, Almendro N, Langa C, Botella LM, Marchuk DA, Vary CP, Bernabéu C. Cloning of the promoter region of human endoglin, the target gene for hereditary hemorrhagic telangiectasia type 1. Blood. 1998;92:4677–90.

    Article  PubMed  Google Scholar 

  168. Ighani M, Aboulafia AJ. Cobb syndrome (cutaneomeningospinal angiomatosis). BMJ Case Rep. 2018;2018:bcr2018225208.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Mishra R, Kaw R. Foix-Alajouanine syndrome: an uncommon cause of myelopathy from an anatomic variant circulation. South Med J. 2005;98:567–9.

    Article  PubMed  Google Scholar 

  170. Stefanov-Kiuri S, Fernandez-Heredero A. Images in clinical medicine. Parkes Weber syndrome. N Engl J Med. 2014;371:2114.

    Article  PubMed  Google Scholar 

  171. Revencu N, Boon LM, Mulliken JB, Enjolras O, Cordisco MR, Burrows PE, Clapuyt P, Hammer F, Dubois J, Baselga E, et al. Parkes Weber syndrome, vein of Galen aneurysmal malformation, and other fast-flow vascular anomalies are caused by RASA1 mutations. Hum Mutat. 2008;29:959–65.

    Article  CAS  PubMed  Google Scholar 

  172. Frikha R. Klippel-Feil syndrome: a review of the literature. Clin Dysmorphol. 2020;29:35–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward R. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kappel, A.D., See, A.P., Smith, E.R. (2023). Pediatric Vascular Malformations. In: Shimony, N., Jallo, G. (eds) Pediatric Neurosurgery Board Review. Springer, Cham. https://doi.org/10.1007/978-3-031-23687-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23687-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23686-0

  • Online ISBN: 978-3-031-23687-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics