Skip to main content

A Workflow for Generating Patient Counterfactuals in Lung Transplant Recipients

  • Conference paper
  • First Online:
Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2022)

Abstract

Lung transplantation is a critical procedure performed in end-stage pulmonary patients. The number of lung transplantations performed in the USA in the last decade has been rising, but the survival rate is still lower than that of other solid organ transplantations. First, this study aims to employ machine learning models to predict patient survival after lung transplantation. Additionally, the aim is to generate counterfactual explanations based on these predictions to help clinicians and patients understand the changes needed to increase the probability of survival after the transplantation and better comply with normative requirements. We use data derived from the UNOS database, particularly the lung transplantations performed in the USA between 2019 and 2021. We formulate the problem and define two data representations, with the first being a representation that describes only the lung recipients and the second the recipients and donors. We propose an explainable ML workflow for predicting patient survival after lung transplantation. We evaluate the workflow based on various performance metrics, using five classification models and two counterfactual generation methods. Finally, we demonstrate the potential of explainable ML for resource allocation, predicting patient mortality, and generating explainable predictions for lung transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://unos.org/data/.

  2. 2.

    https://unos.org/data/.

References

  1. Balch, J.A., et al.: Machine learning applications in solid organ transplantation and related complications. Front. Immunol. 3707 (2021). https://doi.org/10.3389/fimmu.2021.739728

  2. Barbosa Jr, E.J.M., et al.: Machine learning algorithms utilizing quantitative CT features may predict eventual onset of bronchiolitis obliterans syndrome after lung transplantation. Acad. Radiol. 25(9), 1201–1212 (2018). https://doi.org/10.1016/j.acra.2018.01.013

    Article  Google Scholar 

  3. Berra, G., et al.: Association between the renin-angiotensin system and chronic lung allograft dysfunction. Eur. Respir. J. 58(4) (2021). https://doi.org/10.1183/13993003.02975-2020

  4. Berrevoets, J., Alaa, A., Qian, Z., Jordon, J., Gimson, A.E.S., van der Schaar, M.: Learning queueing policies for organ transplantation allocation using interpretable counterfactual survival analysis. In: Meila, M., Zhang, T. (eds.) Proceedings of the 38th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 139, pp. 792–802. PMLR (2021)

    Google Scholar 

  5. Cantu, E., et al.: Preprocurement in situ donor lung tissue gene expression classifies primary graft dysfunction risk. Am. J. Respir. Crit. Care Med. 202(7), 1046–1048 (2020). https://doi.org/10.1164/rccm.201912-2436LE

    Article  Google Scholar 

  6. Colvin, M., et al.: OPTN/SRTR 2019 annual data report: heart. Am. J. Transplant. 21(S2), 356–440 (2021). https://doi.org/10.1111/ajt.16492

    Article  Google Scholar 

  7. Connor, K.L., O’Sullivan, E.D., Marson, L.P., Wigmore, S.J., Harrison, E.M.: The future role of machine learning in clinical transplantation. Transplantation 105(4), 723–735 (2021). https://doi.org/10.1097/TP.0000000000003424

    Article  Google Scholar 

  8. Dandl, S., Molnar, C., Binder, M., Bischl, B.: Multi-objective counterfactual explanations. In: Bäck, T., et al. (eds.) PPSN 2020. LNCS, vol. 12269, pp. 448–469. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58112-1_31

    Chapter  Google Scholar 

  9. Davis, H., Glass, C., Davis, R., Glass, M., Pavlisko, E.: Detecting acute cellular rejection in lung transplant biopsies by artificial intelligence: a novel deep learning approach. J. Heart Lung Transplant. 39(4), S501–S502 (2020). https://doi.org/10.1016/j.healun.2020.01.100

    Article  Google Scholar 

  10. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002). https://doi.org/10.1109/4235.996017

    Article  Google Scholar 

  11. Dueñas-Jurado, J., et al.: New models for donor-recipient matching in lung transplantations. PLoS ONE 16(6), e0252148 (2021). https://doi.org/10.1371/journal.pone.0252148

    Article  Google Scholar 

  12. Goodman, B., Flaxman, S.: European union regulations on algorithmic decision-making and a “right to explanation”. AI Mag. 38(3), 50–57 (2017). https://doi.org/10.1609/aimag.v38i3.2741

  13. Gottlieb, J.: Lung allocation. J. Thorac. Dis. 9(8), 2670 (2017). https://doi.org/10.21037/jtd.2017.07.83

  14. Halloran, K., et al.: Molecular phenotyping of rejection-related changes in mucosal biopsies from lung transplants. Am. J. Transplant. 20(4), 954–966 (2020). https://doi.org/10.1111/ajt.15685

    Article  Google Scholar 

  15. Kwong, A.J., et al.: OPTN/SRTR 2019 annual data report: liver. Am. J. Transplant. 21(S2), 208–315 (2021). https://doi.org/10.1111/ajt.16494

    Article  Google Scholar 

  16. Mothilal, R.K., Sharma, A., Tan, C.: Explaining machine learning classifiers through diverse counterfactual explanations. In: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, pp. 607–617 (2020). https://doi.org/10.1145/3351095.3372850

  17. Oztekin, A., Al-Ebbini, L., Sevkli, Z., Delen, D.: A decision analytic approach to predicting quality of life for lung transplant recipients: a hybrid genetic algorithms-based methodology. Eur. J. Oper. Res. 266(2), 639–651 (2018). https://doi.org/10.1016/j.ejor.2017.09.034

    Article  MATH  Google Scholar 

  18. Shahmoradi, L., Abtahi, H., Amini, S., Gholamzadeh, M.: Systematic review of using medical informatics in lung transplantation studies. Int. J. Med. Inform. 136, 104096 (2020). https://doi.org/10.1016/j.ijmedinf.2020.104096

    Article  Google Scholar 

  19. Spann, A., et al.: Applying machine learning in liver disease and transplantation: a comprehensive review. Hepatology 71(3), 1093–1105 (2020). https://doi.org/10.1002/hep.31103

    Article  Google Scholar 

  20. Valapour, M., et al.: OPTN/SRTR 2019 annual data report: lung. Am. J. Transplant. 21(S2), 441–520 (2021). https://doi.org/10.1111/ajt.16495

    Article  Google Scholar 

  21. Vitali, F.: A survey on methods and metrics for the assessment of explainability under the proposed AI act. In: Legal Knowledge and Information Systems: JURIX 2021: The Thirty-fourth Annual Conference, Vilnius, Lithuania, 8–10 December 2021, vol. 346, p. 235. IOS Press (2022). https://doi.org/10.3233/FAIA210342

  22. Wachter, S., Mittelstadt, B., Russell, C.: Counterfactual explanations without opening the black box: automated decisions and the GDPR. Harv. J. Law Technol. 31(2), 841 (2018)

    Google Scholar 

  23. Watson, D.S., et al.: Clinical applications of machine learning algorithms: beyond the black box. BMJ 364 (2019). https://doi.org/10.1136/bmj.l886

  24. Xu, C., Alaa, A., Bica, I., Ershoff, B., Cannesson, M., van der Schaar, M.: Learning matching representations for individualized organ transplantation allocation. In: Banerjee, A., Fukumizu, K. (eds.) Proceedings of the 24th International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 130, pp. 2134–2142. PMLR (2021)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Health Resources and Services Administration contract 234-2005-370011C, the Digital Futures EXTREMUM project on “Explainable and Ethical Machine Learning for Knowledge Discovery from Medical Data Sources”, as well as by the Horizon2020 ASME project on “Using Artificial Intelligence for Predicting the Treatment Outcome of Melanoma Patients”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Rugolon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rugolon, F., Bampa, M., Papapetrou, P. (2023). A Workflow for Generating Patient Counterfactuals in Lung Transplant Recipients. In: Koprinska, I., et al. Machine Learning and Principles and Practice of Knowledge Discovery in Databases. ECML PKDD 2022. Communications in Computer and Information Science, vol 1753. Springer, Cham. https://doi.org/10.1007/978-3-031-23633-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23633-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23632-7

  • Online ISBN: 978-3-031-23633-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics