Skip to main content

Predicting Drug Treatment for Hospitalized Patients with Heart Failure

  • Conference paper
  • First Online:
Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2022)

Abstract

Heart failure and acute heart failure, the sudden onset or worsening of symptoms related to heart failure, are leading causes of hospital admission in the elderly. Treatment of heart failure is a complex problem that needs to consider a combination of factors such as clinical manifestation and comorbidities of the patient. Machine learning approaches exploiting patient data may potentially improve heart failure patients disease management. However, there is a lack of treatment prediction models for heart failure patients. Hence, in this study, we propose a workflow to stratify patients based on clinical features and predict the drug treatment for hospitalized patients with heart failure. Initially, we train the k-medoids and DBSCAN clustering methods on an extract from the MIMIC III dataset. Subsequently, we carry out a multi-label treatment prediction by assigning new patients to the pre-defined clusters. The empirical evaluation shows that k-medoids and DBSCAN successfully identify patient subgroups, with different treatments in each subgroup. DSBCAN outperforms k-medoids in patient stratification, yet the performance for treatment prediction is similar for both algorithms. Therefore, our work supports that clustering algorithms, specifically DBSCAN, have the potential to successfully perform patient profiling and predict individualized drug treatment for patients with heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/linyi234/patient-clustering.git.

References

  1. Ahmed, A., et al.: Incident heart failure hospitalization and subsequent mortality in chronic heart failure: a propensity-matched study. J. Cardiac Fail. 14(3), 211–218 (2008)

    Article  Google Scholar 

  2. Awan, S.E., Sohel, F., Sanfilippo, F.M., Bennamoun, M., Dwivedi, G.: Machine learning in heart failure: ready for prime time. Curr. Opin. Cardiol. 33(2), 190–195 (2018)

    Article  Google Scholar 

  3. Budiaji, W., Leisch, F.: Simple K-medoids partitioning algorithm for mixed variable data. Algorithms 12(9), 177 (2019)

    Article  Google Scholar 

  4. Chen, R., et al.: Patient stratification using electronic health records from a chronic disease management program. IEEE J. Biomed. Health Inform. (2016)

    Google Scholar 

  5. Choi, E., Schuetz, A., Stewart, W.F., Sun, J.: Using recurrent neural network models for early detection of heart failure onset. J. Am. Med. Inform. Assoc. 24(2), 361–370 (2017)

    Article  Google Scholar 

  6. Damen, J.A., et al.: Prediction models for cardiovascular disease risk in the general population: systematic review. BMJ 353 (2016)

    Google Scholar 

  7. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, vol. 96, no. 34, pp. 226–231 (1996)

    Google Scholar 

  8. Gower, J.C.: A general coefficient of similarity and some of its properties. Biometrics 27(4), 857–871 (1971)

    Article  Google Scholar 

  9. Gupta, A.K., Tomasoni, D., Sidhu, K., Metra, M., Ezekowitz, J.A.: Evidence-based management of acute heart failure. Can. J. Cardiol. 37(4), 621–631 (2021)

    Article  Google Scholar 

  10. Harada, D., Asanoi, H., Noto, T., Takagawa, J.: Different pathophysiology and outcomes of heart failure with preserved ejection fraction stratified by K-means clustering. Front. Cardiovasc. Med. 7, 607760 (2020)

    Article  Google Scholar 

  11. Harutyunyan, H., Khachatrian, H., Kale, D.C., Ver Steeg, G., Galstyan, A.: Multitask learning and benchmarking with clinical time series data. Sci. Data 6(1), 1–18 (2019)

    Article  Google Scholar 

  12. Hruschka, E., Covoes, T.: Feature selection for cluster analysis: an approach based on the simplified silhouette criterion. In: International Conference on CIMCA-IAWTIC 2006, vol. 1, pp. 32–38 (2005)

    Google Scholar 

  13. Johnson, A.E., et al.: MIMIC-III, a freely accessible critical care database. Sci. Data 3(1), 160035 (2016)

    Google Scholar 

  14. Johnson, A.E., Stone, D.J., Celi, L.A., Pollard, T.J.: The MIMIC code repository: enabling reproducibility in critical care research. J. Am. Med. Inform. Assoc. JAMIA 25(1), 32–39 (2018)

    Article  Google Scholar 

  15. Kim, J., Parish, A.L.: Polypharmacy and medication management in older adults. Nurs. Clin. North Am. 52(3), 457–468 (2017)

    Article  Google Scholar 

  16. Kosaraju, A., Goyal, A., Grigorova, Y., Makaryus, A.N.: Left Ventricular Ejection Fraction. In: StatPearls. StatPearls Publishing, Treasure Island (2022)

    Google Scholar 

  17. Kurmani, S., Squire, I.: Acute heart failure: definition, classification and epidemiology. Curr. Heart Fail. Rep. 14(5), 385–392 (2017). https://doi.org/10.1007/s11897-017-0351-y

    Article  Google Scholar 

  18. Li, F., Xin, H., Zhang, J., Fu, M., Zhou, J., Lian, Z.: Prediction model of in-hospital mortality in intensive care unit patients with heart failure: machine learning-based, retrospective analysis of the MIMIC-III database. BMJ Open 11(7), e044779 (2021)

    Article  Google Scholar 

  19. Marill, T., Green, D.M.: On the effectiveness of receptors in recognition systems. IEEE Trans. Inf. Theory 9, 11–17 (1963)

    Article  Google Scholar 

  20. McDonagh, T.A., et al.: 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: developed by the task force for the diagnosis and treatment of acute and chronic heart failure of the European society of cardiology (ESC) with the special contribution of the heart failure association (HFA) of the ESC. Eur. Heart J. 42(36), 3599–3726 (2021)

    Article  Google Scholar 

  21. Ng, K., Steinhubl, S.R., deFilippi, C., Dey, S., Stewart, W.F.: Early detection of heart failure using electronic health records: practical implications for time before diagnosis, data diversity, data quantity, and data density. Circ. Cardiovasc. Qual. Outcomes 9(6), 649–658 (2016)

    Google Scholar 

  22. Panahiazar, M., Taslimitehrani, V., Pereira, N.L., Pathak, J.: Using EHRs for heart failure therapy recommendation using multidimensional patient similarity analytics. Stud. Health Technol. Inform. 210, 369 (2015)

    Google Scholar 

  23. Pollard, T., et al.: MIT-LCP/Mimic-Code: Mimic-III V1.4 (2017)

    Google Scholar 

  24. Purushotham, S., Meng, C., Che, Z., Liu, Y.: Benchmarking deep learning models on large healthcare datasets. J. Biomed. Inform. 83, 112–134 (2018)

    Article  Google Scholar 

  25. Rosano, G.M., et al.: Patient profiling in heart failure for tailoring medical therapy. A consensus document of the heart failure association of the European society of cardiology. Eur. J. Heart Fail. 23(6), 872–881 (2021)

    Google Scholar 

  26. Sarijaloo, F., Park, J., Zhong, X., Wokhlu, A.: Predicting 90 day acute heart failure readmission and death using machine learning-supported decision analysis. Clin. Cardiol. 44(2), 230–237 (2021)

    Article  Google Scholar 

  27. Sax, D.R., et al.: Use of machine learning to develop a risk-stratification tool for emergency department patients with acute heart failure. Ann. Emerg. Med. 77(2), 237–248 (2021)

    Article  Google Scholar 

  28. Shah, S.J., et al.: Phenomapping for novel classification of heart failure with preserved ejection fraction. Circulation 131(3), 269–279 (2015)

    Article  Google Scholar 

  29. Tan, B.Y., Gu, J.Y., Wei, H.Y., Chen, L., Yan, S.L., Deng, N.: Electronic medical record-based model to predict the risk of 90-day readmission for patients with heart failure. BMC Med. Inform. Decis. Mak. 19(1), 193 (2019)

    Google Scholar 

  30. Tarekegn, A.N., Michalak, K., Giacobini, M.: Cross-validation approach to evaluate clustering algorithms: an experimental study using multi-label datasets. SN Comput. Sci. 1(5), 1–9 (2020). https://doi.org/10.1007/s42979-020-00283-z

    Article  Google Scholar 

  31. Taslimitehrani, V., Dong, G., Pereira, N.L., Panahiazar, M., Pathak, J.: Developing EHR-driven heart failure risk prediction models using CPXR(Log) with the probabilistic loss function. J. Biomed. Inform. 60, 260–269 (2016)

    Article  Google Scholar 

  32. van der Maaten, L.J.P., Hinton, G.E.: Visualizing high-dimensional data using t-SNE. J. Mach. Learn. Res. 9(Nov), 2579–2605 (2008)

    Google Scholar 

  33. Virani, S.S., et al.: Heart disease and stroke statistics-2020 update: a report from the American heart association. Circulation 141(9), e139–e596 (2020)

    Article  Google Scholar 

  34. Wang, X., et al.: Predicting treatment selections for individuals with major depressive disorder according to functional connectivity subgroups. Brain Connect. 0153 (2021)

    Google Scholar 

  35. Yancy, C.W., et al.: 2013 ACCF/AHA guideline for the management of heart failure: a report of the american college of cardiology foundation/American heart association task force on practice guidelines. Circulation 128(16), 1810–1852 (2013)

    Article  Google Scholar 

  36. Zheng, B., Zhang, J., Yoon, S.W., Lam, S.S., Khasawneh, M., Poranki, S.: Predictive modeling of hospital readmissions using metaheuristics and data mining. Expert Syst. Appl. 42(20), 7110–7120 (2015)

    Article  Google Scholar 

  37. Čerlinskaitė, K., Javanainen, T., Cinotti, R., Mebazaa, A.: Acute heart failure management. Korean Circ. J. 48(6), 463 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioanna Miliou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, L., Miliou, I. (2023). Predicting Drug Treatment for Hospitalized Patients with Heart Failure. In: Koprinska, I., et al. Machine Learning and Principles and Practice of Knowledge Discovery in Databases. ECML PKDD 2022. Communications in Computer and Information Science, vol 1753. Springer, Cham. https://doi.org/10.1007/978-3-031-23633-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23633-4_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23632-7

  • Online ISBN: 978-3-031-23633-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics