Skip to main content

Combining Image Enhancement Techniques and Deep Learning for Shallow Water Benthic Marine Litter Detection

  • 235 Accesses

Part of the Communications in Computer and Information Science book series (CCIS,volume 1752)

Abstract

The scarcity of information about benthic marine litter especially in developing countries hampers the implementation of targeted actions to minimize the extent of its impacts. This study developed a system using image processing and deep learning methods for detecting/tracking marine macro litter that can efficiently identify and quantify its amount in benthic environments in shallow coastal areas. Shallow underwater litter detection poses several challenges. First is the low quality of images. Second is the difficulty in recognizing litter brought by their varying visual characteristics. Third is the lack of available data for training. Underwater images of litter were collected from marine litter hotspots in coastal areas in southern Philippines. This study experimented with various object detection algorithms. The best object detection model is then paired with various image enhancement techniques to determine the optimal combination. Among the combinations that were tested, YOLOv5n combined with CLAHE gave the best performance for simple binary task (litter or not litter) with a mAP@0.5 of 0.704. Furthermore, the results showed that applying underwater image enhancement techniques provides noticeable improvement for object detection models on detecting marine litter.

Keywords

  • Yolov5
  • Image enhancement
  • Marine litter
  • Object detection

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-031-23618-1_9
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-031-23618-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Notes

  1. 1.

    https://supervise.ly/.

References

  1. Bochkovskiy, A. et al.: YOLOv4: optimal speed and accuracy of object detection. arXiv:2004.10934 [cs, eess] (2020)

  2. Chen, K. et al.: MMDetection: open MMLab detection toolbox and benchmark. arXiv:1906.07155 (2019). https://doi.org/10.48550/arXiv.1906.07155

  3. Consoli, P., et al.: Composition and abundance of benthic marine litter in a coastal area of the central Mediterranean Sea. Mar. Pollut. Bull. 136, 243–247 (2018). https://doi.org/10.1016/j.marpolbul.2018.09.033

    CrossRef  Google Scholar 

  4. Deidun, A., et al.: Optimising beached litter monitoring protocols through aerial imagery. Mar. Pollut. Bull. 131, 212–217 (2018). https://doi.org/10.1016/j.marpolbul.2018.04.033

    CrossRef  Google Scholar 

  5. Fallati, L., et al.: Anthropogenic Marine Debris assessment with Unmanned Aerial Vehicle imagery and deep learning: a case study along the beaches of the Republic of Maldives. Sci. Total Environ. 693, 133581 (2019). https://doi.org/10.1016/j.scitotenv.2019.133581

    CrossRef  Google Scholar 

  6. Fulton, M. et al.: Robotic detection of marine litter using deep visual detection models. Presented at the 2019 International Conference on Robotics and Automation (ICRA), Montreal, Canada (2019)

    Google Scholar 

  7. Bergmann, M., Gutow, L., Klages, M. (eds.): Marine Anthropogenic Litter. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16510-3

    CrossRef  Google Scholar 

  8. Gonçalves, G., et al.: Mapping marine litter with unmanned aerial systems: a showcase comparison among manual image screening and machine learning techniques. Mar. Pollut. Bull. 155, 111158 (2020). https://doi.org/10.1016/j.marpolbul.2020.111158

    CrossRef  Google Scholar 

  9. Gonçalves, G., et al.: Quantifying marine macro litter abundance on a sandy beach using unmanned aerial systems and object-oriented machine learning methods. Remote Sens. 12(16), 2599 (2020). https://doi.org/10.3390/rs12162599

    CrossRef  Google Scholar 

  10. Huang, D., Wang, Y., Song, W., Sequeira, J., Mavromatis, S.: Shallow-water image enhancement using relative global histogram stretching based on adaptive parameter acquisition. In: Schoeffmann, K., et al. (eds.) MMM 2018. LNCS, vol. 10704, pp. 453–465. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73603-7_37

    CrossRef  Google Scholar 

  11. Hummel, R.: Image enhancement by histogram transformation. Comput. Graphics Image Process. 6(2), 184–195 (1977). https://doi.org/10.1016/S0146-664X(77)80011-7

    CrossRef  Google Scholar 

  12. Iqbal, K. et al.: Enhancing the low quality images using unsupervised colour correction method. In: 2010 IEEE International Conference on Systems, Man and Cybernetics, pp. 1703–1709 (2010). https://doi.org/10.1109/ICSMC.2010.5642311

  13. Iqbal, K., et al.: Underwater image enhancement using an integrated colour model. IAENG Int. J. Comput. Sci. 34, 2 (2007)

    Google Scholar 

  14. Kako, S., et al.: Estimation of plastic marine debris volumes on beaches using unmanned aerial vehicles and image processing based on deep learning. Mar. Pollut. Bull. 155, 111127 (2020). https://doi.org/10.1016/j.marpolbul.2020.111127

    CrossRef  Google Scholar 

  15. Kylili, K., Kyriakides, I., Artusi, A., Hadjistassou, C.: Identifying floating plastic marine debris using a deep learning approach. Environ. Sci. Pollut. Res. 26(17), 17091–17099 (2019). https://doi.org/10.1007/s11356-019-05148-4

    CrossRef  Google Scholar 

  16. Lebreton, L.C.M., et al.: Numerical modelling of floating debris in the world’s oceans. Mar. Pollut. Bull. 64, 653–661 (2012). https://doi.org/10.1016/j.marpolbul.2011.10.027

    CrossRef  Google Scholar 

  17. Martin, C., et al.: Enabling a large-scale assessment of litter along Saudi Arabian red sea shores by combining drones and machine learning. Environ. Pollut. 277, 116730 (2021). https://doi.org/10.1016/j.envpol.2021.116730

    CrossRef  Google Scholar 

  18. Martin, C., et al.: Use of unmanned aerial vehicles for efficient beach litter monitoring. Mar. Pollut. Bull. 131, 662–673 (2018). https://doi.org/10.1016/j.marpolbul.2018.04.045

    CrossRef  Google Scholar 

  19. Omeyer, L.C.M., et al.: Priorities to inform research on marine plastic pollution in Southeast Asia. Sci. Total Environ. 841, 156704 (2022). https://doi.org/10.1016/j.scitotenv.2022.156704

    CrossRef  Google Scholar 

  20. Onink, V., et al.: Global simulations of marine plastic transport show plastic trapping in coastal zones. Environ. Res. Lett. 16(6), 064053 (2021). https://doi.org/10.1088/1748-9326/abecbd

    CrossRef  Google Scholar 

  21. Panetta, K., et al.: Human-visual-system-inspired underwater image quality measures. IEEE J. Oceanic Eng. 41(3), 541–551 (2016). https://doi.org/10.1109/JOE.2015.2469915

    CrossRef  Google Scholar 

  22. Pham, C.K., et al.: Marine litter distribution and density in European Seas, from the shelves to deep basins. PLoS ONE 9(4), e95839 (2014). https://doi.org/10.1371/journal.pone.0095839

    CrossRef  Google Scholar 

  23. Politikos, D.V., et al.: Automatic detection of seafloor marine litter using towed camera images and deep learning. Mar. Pollut. Bull. 164, 111974 (2021). https://doi.org/10.1016/j.marpolbul.2021.111974

    CrossRef  Google Scholar 

  24. Redmon, J. et al.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  25. Redmon, J., Farhadi, A.: YOLOv3: An incremental improvement. arXiv:1804.02767 [cs] (2018)

  26. Spengler, A., Costa, M.F.: Methods applied in studies of benthic marine debris. Mar. Pollut. Bull. 56(2), 226–230 (2008). https://doi.org/10.1016/j.marpolbul.2007.09.040

    CrossRef  Google Scholar 

  27. Tekman, M.B., et al.: Marine litter on deep Arctic seafloor continues to increase and spreads to the North at the HAUSGARTEN observatory. Deep Sea Res. Part I 120, 88–99 (2017). https://doi.org/10.1016/j.dsr.2016.12.011

    CrossRef  Google Scholar 

  28. Valdenegro-Toro, M.: Submerged marine debris detection with autonomous underwater vehicles. In: Proceedings of the 2016 International Conference on Robotics and Automation for Humanitarian Applications (RAHA), pp. 1–7 (2016). https://doi.org/10.1109/RAHA.2016.7931907

  29. Wang, Y., et al.: An experimental-based review of image enhancement and image restoration methods for underwater imaging. IEEE Access 7, 140233–140251 (2019). https://doi.org/10.1109/ACCESS.2019.2932130

    CrossRef  Google Scholar 

  30. Wenneker, B., Oosterbaan, L.: Guideline for monitoring marine litter on the beaches in the OSPAR maritime area. OSPAR Commission (2010). https://doi.org/10.25607/OBP-968

  31. Wolf, M., et al.: Machine learning for aquatic plastic litter detection, classification and quantification (APLASTIC-Q). Environ. Res. Lett. 15(11), 114042 (2020). https://doi.org/10.1088/1748-9326/abbd01

    CrossRef  Google Scholar 

  32. Yang, M., Sowmya, A.: An underwater color image quality evaluation metric. IEEE Trans. Image Process. 24(12), 6062–6071 (2015). https://doi.org/10.1109/TIP.2015.2491020

    CrossRef  MATH  Google Scholar 

  33. Zuiderveld, K.: Contrast limited adaptive histogram equalization. In: Graphics Gems, pp. 474–485 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gil Emmanuel Bancud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Bancud, G.E., Labanon, A.J., Abreo, N.A., Kobayashi, V. (2023). Combining Image Enhancement Techniques and Deep Learning for Shallow Water Benthic Marine Litter Detection. In: , et al. Machine Learning and Principles and Practice of Knowledge Discovery in Databases. ECML PKDD 2022. Communications in Computer and Information Science, vol 1752. Springer, Cham. https://doi.org/10.1007/978-3-031-23618-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23618-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23617-4

  • Online ISBN: 978-3-031-23618-1

  • eBook Packages: Computer ScienceComputer Science (R0)