Abstract
The scarcity of information about benthic marine litter especially in developing countries hampers the implementation of targeted actions to minimize the extent of its impacts. This study developed a system using image processing and deep learning methods for detecting/tracking marine macro litter that can efficiently identify and quantify its amount in benthic environments in shallow coastal areas. Shallow underwater litter detection poses several challenges. First is the low quality of images. Second is the difficulty in recognizing litter brought by their varying visual characteristics. Third is the lack of available data for training. Underwater images of litter were collected from marine litter hotspots in coastal areas in southern Philippines. This study experimented with various object detection algorithms. The best object detection model is then paired with various image enhancement techniques to determine the optimal combination. Among the combinations that were tested, YOLOv5n combined with CLAHE gave the best performance for simple binary task (litter or not litter) with a mAP@0.5 of 0.704. Furthermore, the results showed that applying underwater image enhancement techniques provides noticeable improvement for object detection models on detecting marine litter.
Keywords
- Yolov5
- Image enhancement
- Marine litter
- Object detection
This is a preview of subscription content, access via your institution.
Buying options




Notes
References
Bochkovskiy, A. et al.: YOLOv4: optimal speed and accuracy of object detection. arXiv:2004.10934 [cs, eess] (2020)
Chen, K. et al.: MMDetection: open MMLab detection toolbox and benchmark. arXiv:1906.07155 (2019). https://doi.org/10.48550/arXiv.1906.07155
Consoli, P., et al.: Composition and abundance of benthic marine litter in a coastal area of the central Mediterranean Sea. Mar. Pollut. Bull. 136, 243–247 (2018). https://doi.org/10.1016/j.marpolbul.2018.09.033
Deidun, A., et al.: Optimising beached litter monitoring protocols through aerial imagery. Mar. Pollut. Bull. 131, 212–217 (2018). https://doi.org/10.1016/j.marpolbul.2018.04.033
Fallati, L., et al.: Anthropogenic Marine Debris assessment with Unmanned Aerial Vehicle imagery and deep learning: a case study along the beaches of the Republic of Maldives. Sci. Total Environ. 693, 133581 (2019). https://doi.org/10.1016/j.scitotenv.2019.133581
Fulton, M. et al.: Robotic detection of marine litter using deep visual detection models. Presented at the 2019 International Conference on Robotics and Automation (ICRA), Montreal, Canada (2019)
Bergmann, M., Gutow, L., Klages, M. (eds.): Marine Anthropogenic Litter. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16510-3
Gonçalves, G., et al.: Mapping marine litter with unmanned aerial systems: a showcase comparison among manual image screening and machine learning techniques. Mar. Pollut. Bull. 155, 111158 (2020). https://doi.org/10.1016/j.marpolbul.2020.111158
Gonçalves, G., et al.: Quantifying marine macro litter abundance on a sandy beach using unmanned aerial systems and object-oriented machine learning methods. Remote Sens. 12(16), 2599 (2020). https://doi.org/10.3390/rs12162599
Huang, D., Wang, Y., Song, W., Sequeira, J., Mavromatis, S.: Shallow-water image enhancement using relative global histogram stretching based on adaptive parameter acquisition. In: Schoeffmann, K., et al. (eds.) MMM 2018. LNCS, vol. 10704, pp. 453–465. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73603-7_37
Hummel, R.: Image enhancement by histogram transformation. Comput. Graphics Image Process. 6(2), 184–195 (1977). https://doi.org/10.1016/S0146-664X(77)80011-7
Iqbal, K. et al.: Enhancing the low quality images using unsupervised colour correction method. In: 2010 IEEE International Conference on Systems, Man and Cybernetics, pp. 1703–1709 (2010). https://doi.org/10.1109/ICSMC.2010.5642311
Iqbal, K., et al.: Underwater image enhancement using an integrated colour model. IAENG Int. J. Comput. Sci. 34, 2 (2007)
Kako, S., et al.: Estimation of plastic marine debris volumes on beaches using unmanned aerial vehicles and image processing based on deep learning. Mar. Pollut. Bull. 155, 111127 (2020). https://doi.org/10.1016/j.marpolbul.2020.111127
Kylili, K., Kyriakides, I., Artusi, A., Hadjistassou, C.: Identifying floating plastic marine debris using a deep learning approach. Environ. Sci. Pollut. Res. 26(17), 17091–17099 (2019). https://doi.org/10.1007/s11356-019-05148-4
Lebreton, L.C.M., et al.: Numerical modelling of floating debris in the world’s oceans. Mar. Pollut. Bull. 64, 653–661 (2012). https://doi.org/10.1016/j.marpolbul.2011.10.027
Martin, C., et al.: Enabling a large-scale assessment of litter along Saudi Arabian red sea shores by combining drones and machine learning. Environ. Pollut. 277, 116730 (2021). https://doi.org/10.1016/j.envpol.2021.116730
Martin, C., et al.: Use of unmanned aerial vehicles for efficient beach litter monitoring. Mar. Pollut. Bull. 131, 662–673 (2018). https://doi.org/10.1016/j.marpolbul.2018.04.045
Omeyer, L.C.M., et al.: Priorities to inform research on marine plastic pollution in Southeast Asia. Sci. Total Environ. 841, 156704 (2022). https://doi.org/10.1016/j.scitotenv.2022.156704
Onink, V., et al.: Global simulations of marine plastic transport show plastic trapping in coastal zones. Environ. Res. Lett. 16(6), 064053 (2021). https://doi.org/10.1088/1748-9326/abecbd
Panetta, K., et al.: Human-visual-system-inspired underwater image quality measures. IEEE J. Oceanic Eng. 41(3), 541–551 (2016). https://doi.org/10.1109/JOE.2015.2469915
Pham, C.K., et al.: Marine litter distribution and density in European Seas, from the shelves to deep basins. PLoS ONE 9(4), e95839 (2014). https://doi.org/10.1371/journal.pone.0095839
Politikos, D.V., et al.: Automatic detection of seafloor marine litter using towed camera images and deep learning. Mar. Pollut. Bull. 164, 111974 (2021). https://doi.org/10.1016/j.marpolbul.2021.111974
Redmon, J. et al.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)
Redmon, J., Farhadi, A.: YOLOv3: An incremental improvement. arXiv:1804.02767 [cs] (2018)
Spengler, A., Costa, M.F.: Methods applied in studies of benthic marine debris. Mar. Pollut. Bull. 56(2), 226–230 (2008). https://doi.org/10.1016/j.marpolbul.2007.09.040
Tekman, M.B., et al.: Marine litter on deep Arctic seafloor continues to increase and spreads to the North at the HAUSGARTEN observatory. Deep Sea Res. Part I 120, 88–99 (2017). https://doi.org/10.1016/j.dsr.2016.12.011
Valdenegro-Toro, M.: Submerged marine debris detection with autonomous underwater vehicles. In: Proceedings of the 2016 International Conference on Robotics and Automation for Humanitarian Applications (RAHA), pp. 1–7 (2016). https://doi.org/10.1109/RAHA.2016.7931907
Wang, Y., et al.: An experimental-based review of image enhancement and image restoration methods for underwater imaging. IEEE Access 7, 140233–140251 (2019). https://doi.org/10.1109/ACCESS.2019.2932130
Wenneker, B., Oosterbaan, L.: Guideline for monitoring marine litter on the beaches in the OSPAR maritime area. OSPAR Commission (2010). https://doi.org/10.25607/OBP-968
Wolf, M., et al.: Machine learning for aquatic plastic litter detection, classification and quantification (APLASTIC-Q). Environ. Res. Lett. 15(11), 114042 (2020). https://doi.org/10.1088/1748-9326/abbd01
Yang, M., Sowmya, A.: An underwater color image quality evaluation metric. IEEE Trans. Image Process. 24(12), 6062–6071 (2015). https://doi.org/10.1109/TIP.2015.2491020
Zuiderveld, K.: Contrast limited adaptive histogram equalization. In: Graphics Gems, pp. 474–485 (1994)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bancud, G.E., Labanon, A.J., Abreo, N.A., Kobayashi, V. (2023). Combining Image Enhancement Techniques and Deep Learning for Shallow Water Benthic Marine Litter Detection. In: , et al. Machine Learning and Principles and Practice of Knowledge Discovery in Databases. ECML PKDD 2022. Communications in Computer and Information Science, vol 1752. Springer, Cham. https://doi.org/10.1007/978-3-031-23618-1_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-23618-1_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-23617-4
Online ISBN: 978-3-031-23618-1
eBook Packages: Computer ScienceComputer Science (R0)