Skip to main content

Evaluation of RGB-D SLAM in Large Indoor Environments

  • Conference paper
  • First Online:
Interactive Collaborative Robotics (ICR 2022)

Abstract

Simultaneous localization and mapping (SLAM) is one of the key components of a control system that aims to ensure autonomous navigation of a mobile robot in unknown environments. In a variety of practical cases, a robot might need to travel long distances in order to accomplish its mission. This requires long-term work of SLAM methods and building large maps. Consequently, the computational burden (including high memory consumption for map storage) becomes a bottleneck. Indeed, state-of-the-art SLAM algorithms include specific techniques and optimizations to tackle this challenge; still their performance in long-term scenarios needs proper assessment. To this end, we perform an empirical evaluation of two widespread state-of-the-art RGB-D SLAM methods, suitable for long-term navigation, i.e. RTAB-Map and Voxgraph. We evaluate them in a large simulated indoor environment, consisting of corridors and halls, while varying the odometer noise for a more realistic setup. We provide both qualitative and quantitative analysis of both methods uncovering their strengths and weaknesses. We find that both methods build a high-quality map with low odometry noise but tend to fail with high odometry noise. Voxgraph has lower relative trajectory estimation error and memory consumption than RTAB-Map, while its absolute error is higher.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gonzalez, A.G., Alves, M.V., Viana, G.S., Carvalho, L.K., Basilio, J.C.: Supervisory control-based navigation architecture: a new framework for autonomous robots in Industry 4.0 environments. IEEE Trans. Ind. Inform. 14(4), 1732–1743 (2017). https://doi.org/10.1109/TII.2017.2788079

  2. Papachristos, C., Khattak, S., Mascarich, F., Alexis, K.: Autonomous navigation and mapping in underground mines using aerial robots. In: 2019 IEEE Aerospace Conference, pp. 1–8. IEEE (2019). https://doi.org/10.1109/AERO.2019.8741532

  3. Tang, L., Wang, Y., Ding, X., Yin, H., Xiong, R., Huang, S.: Topological localmetric framework for mobile robots navigation: a long term perspective. Auton. Robot. 43(1), 197–211 (2019). https://doi.org/10.1007/s10514-018-9724-7

    Article  Google Scholar 

  4. Choi, J., Park, J., Jung, J., Lee, Y., Choi, H.T.: Development of an autonomous surface vehicle and performance evaluation of autonomous navigation technologies. Int. J. Control. Autom. Syst. 18(3), 535–545 (2020). https://doi.org/10.1007/s12555-019-0686-0

    Article  Google Scholar 

  5. Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Trans. Robot. 31(5), 1147–1163 (2015). https://doi.org/10.1109/TRO.2015.2463671

    Article  Google Scholar 

  6. Engel, J., Schops, T., Cremers, D.: LSD-SLAM: Large-scale direct monocular SLAM. In: European Conference on Computer Vision, pp. 834–849. Springer (2014). https://doi.org/10.1007/978-3-319-10605-2_54

  7. Teed, Z., Deng, J.: DROID-SLAM: Deep visual SLAM for monocular, stereo, and RGB-D cameras. Adv. Neural Inf. Process. Syst. 34, 16558–16569 (2021). https://doi.org/10.48550/arXiv.2108.10869

    Article  Google Scholar 

  8. Labbe, M., Michaud, F.: RTAB-map as an open-source Lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. J. Field Robot. 36(2), 416–446 (2019). https://doi.org/10.1002/rob.21831

    Article  Google Scholar 

  9. Reijgwart, V., Millane, A., Oleynikova, H., Siegwart, R., Cadena, C., Nieto, J.: Voxgraph: Globally consistent, volumetric mapping using signed distance function submaps. IEEE Robot. Autom. Lett. 5(1), 227–234 (2019). https://doi.org/10.1109/lra.2019.2953859

    Article  Google Scholar 

  10. Savva, M., Kadian, A., Maksymets, O., Zhao, Y., Wijmans, E., Jain, B., Straub, J., Liu, J., Koltun, V., Malik, J.: Habitat: a platform for embodied AI research. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9339–9347 (2019). https://doi.org/10.48550/arXiv.1904.01201

  11. Smith, R., Self, M., Cheeseman, P.: A stochastic map for uncertain spatial relationships. In: Proceedings of the 4th International Symposium on Robotics Research, pp. 467–474 (1988)

    Google Scholar 

  12. Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234. IEEE (2007). https://doi.org/10.1109/ISMAR.2007.4538852

  13. Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment – a modern synthesis. In: International Workshop on Vision Algorithms, pp. 298–372. Springer (1999). https://doi.org/10.1007/3-540-44480-7_21

  14. Mur-Artal, R., Tardos, J.D.: ORB-SLAM2: An open-source SLAM system for monocular, stereo, and RGB-D cameras. IEEE Trans. Robot. 33(5), 1255–1262 (2017). https://doi.org/10.48550/arXiv.1610.06475

    Article  Google Scholar 

  15. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. 32(11), 1231–1237 (2013). https://doi.org/10.1177/0278364913491297

    Article  Google Scholar 

  16. Min, Z., Dunn, E.: VOLDOR-SLAM: For the times when feature-based or direct methods are not good enough. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 13813–13819. IEEE (2021). https://doi.org/10.48550/arXiv.2104.06800

  17. Gomez, C., Fehr, M., Millane, A., Hernandez, A.C., Nieto, J., Barber, R., Siegwart, R.: Hybrid topological and 3D dense mapping through autonomous exploration for large indoor environments. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 9673–9679. IEEE (2020). https://doi.org/10.1109/ICRA40945.2020.9197226

  18. Oleynikova, H., Taylor, Z., Fehr, M., Siegwart, R., Nieto, J.: Voxblox: Incremental 3D Euclidean signed distance fields for on-board MAV planning. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1366–1373. IEEE (2017). https://doi.org/10.48550/arXiv.1611.03631

  19. Besl, P.J., McKay, N.D.: Method for registration of 3-D shapes. In: Sensor fusion IV: control paradigms and data structures, vol. 1611, pp. 586–606. Spie (1992). DOI: https://doi.org/10.1109/34.121791

  20. Schmid, L., Reijgwart, V., Ott, L., Nieto, J., Siegwart, R., Cadena, C.: A unified approach for autonomous volumetric exploration of large scale environments under severe odometry drift. IEEE Robot. Autom. Lett. 6(3), 4504–4511 (2021). https://doi.org/10.1109/LRA.2021.3068954

    Article  Google Scholar 

  21. Niijima, S., Umeyama, R., Sasaki, Y., Mizoguchi, H.: City-scale grid-topological hybrid maps for autonomous mobile robot navigation in urban area. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2065–2071. IEEE (2020). https://doi.org/10.1109/IROS45743.2020.9340990

  22. Schmuck, P., Scherer, S.A., Zell, A.: Hybrid metric-topological 3D occupancy grid maps for large-scale mapping. IFAC-PapersOnLine 49(15), 230–235 (2016). https://doi.org/10.1016/j.ifacol.2016.07.738

    Article  Google Scholar 

  23. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of RGB-D SLAM systems. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 573–580. IEEE (2012). https://doi.org/10.1109/IROS.2012.6385773

  24. Burri, M., Nikolic, J., Gohl, P., Schneider, T., Rehder, J., Omari, S., Achtelik, M.W., Siegwart, R.: The EuRoC micro aerial vehicle datasets. Int. J. Robot. Res. 35(10), 1157–1163 (2016). https://doi.org/10.1177/0278364915620033

    Article  Google Scholar 

  25. Bokovoy, A., Muraviev, K.: Assessment of map construction in vSLAM. In: 2021 International Siberian Conference on Control and Communications (SIBCON), pp. 1–6. IEEE (2021). https://doi.org/10.1109/SIBCON50419.2021.9438884

  26. Mingachev, E., Lavrenov, R., Magid, E., Svinin, M.: Comparative analysis of monocular SLAM algorithms using TUM and EuRoC benchmarks. In: Proceedings of 15th International Conference on Electromechanics and Robotics “Zavalishin’s Readings”, pp. 343–355. Springer (2021). https://doi.org/10.1007/978-981-15-5580-0_28

  27. Zhang, S., Zheng, L., Tao, W.: Survey and evaluation of RGB-D SLAM. IEEE Access 9, 21367–21387 (2021). https://doi.org/10.1109/ACCESS.2021.3053188

    Article  Google Scholar 

  28. Shi, X., Li, D., Zhao, P., Tian, Q., Tian, Y., Long, Q., Zhu, C., Song, J., Qiao, F., Song, L.: Are we ready for service robots? The openloris-scene datasets for lifelong SLAM. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 3139–3145. IEEE (2020). https://doi.org/10.1109/ICRA40945.2020.9196638

  29. Hong, Z., Petillot, Y., Wallace, A., Wang, S.: Radar SLAM: a robust SLAM system for all weather conditions. arXiv preprint arXiv:2104.05347 (2021). https://doi.org/10.48550/arXiv.2104.0534

  30. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: Brief: binary robust independent elementary features. In: European Conference on Computer Vision, pp. 778–792. Springer (2010). https://doi.org/10.1007/978-3-642-15561-1_56

  31. Brachmann, E., Krull, A., Nowozin, S., Shotton, J., Michel, F., Gumhold, S., Rother, C.: DSAC-differentiable RANSAC for camera localization. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 6684–6692 (2017). https://doi.org/10.1109/CVPR.2017.267

  32. Zhang, Z., Shan, Y.: Incremental motion estimation through local bundle adjustment (2001).

    Google Scholar 

  33. Bay, H., Tuytelaars, T., Gool, L.V.: SURF: speeded up robust features. In: European conference on computer vision, pp. 404–417. Springer (2006). https://doi.org/10.1007/11744023_32

  34. Kummerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: G2o: a general framework for graph optimization. In: 2011 IEEE International Conference on Robotics and Automation, pp. 3607–3613. IEEE (2011). https://doi.org/10.1109/ICRA.2011.5979949

  35. Galvez-Lopez, D., Tardos, J.D.: Bags of binary words for fast place recognition in image sequences. IEEE Trans. Robot. 28(5), 1188–1197 (2012). https://doi.org/10.1109/TRO.2012.2197158

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirill Muravyev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Muravyev, K., Yakovlev, K. (2022). Evaluation of RGB-D SLAM in Large Indoor Environments. In: Ronzhin, A., Meshcheryakov, R., Xiantong, Z. (eds) Interactive Collaborative Robotics. ICR 2022. Lecture Notes in Computer Science, vol 13719. Springer, Cham. https://doi.org/10.1007/978-3-031-23609-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23609-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23608-2

  • Online ISBN: 978-3-031-23609-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics