Skip to main content

A Community Detection-Based Blockchain Sharding Scheme

  • Conference paper
  • First Online:
Blockchain – ICBC 2022 (ICBC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13733))

Included in the following conference series:

Abstract

Sharding has been considered a promising approach to improving blockchain scalability. However, multiple shards result in a large number of cross-shard transactions, which require a long confirmation time across shards and thus restrain the scalability of sharded blockchains. In this paper, we convert the blockchain sharding challenge into a graph partitioning problem on undirected and weighted transaction graphs that capture transaction frequency between blockchain addresses. We propose a new sharding scheme using the community detection algorithm, where blockchain nodes in the same community frequently trade with each other. The detected communities are used as shards for node allocation. The proposed community detection-based sharding scheme is validated using public Ethereum transactions over one million blocks. The proposed community detection-based sharding scheme is able to reduce the ratio of cross-shard transactions from 80% to 20%, as compared to baseline random sharding schemes, and retain the ratio of around 20% over the examined one million blocks.

Supported by BT Group Plc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Due to the limited computational capacity, the local computer can only handle up to 90 addresses.

  2. 2.

    0x7be8076f4ea4a4ad08075c2508e481d6c946d12b, https://opensea.io/.

  3. 3.

    0x503828976d22510aad0201ac7ec88293211d23da, https://www.coinbase.com/.

  4. 4.

    0xd3d2e2692501a5c9ca623199d38826e513033a17, https://uniswap.org/.

References

  1. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Decentralized Bus. Rev. 21260 (2008)

    Google Scholar 

  2. Wood, G., et al.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum Proj. Yellow Pap. 151(2014), 1–32 (2014)

    Google Scholar 

  3. Wang, X., et al.: Survey on blockchain for internet of things. Comput. Commun. 136, 10–29 (2019)

    Article  Google Scholar 

  4. Wang, X., Yu, G., Liu, R.P., et al.: Blockchain-enabled fish provenance and quality tracking system. IEEE Internet of Things J. 9(11), 8130–8142 (2021)

    Article  Google Scholar 

  5. Zhang, M., et al.: Go-sharing: a blockchain-based privacy-preserving framework for cross-social network photo sharing. IEEE Trans. Dependable Secure Comput. (2022)

    Google Scholar 

  6. Gerard, D.: Attack of the 50 Foot Blockchain: Bitcoin, Blockchain. Ethereum & smart contracts, David Gerard (2017)

    Google Scholar 

  7. Zhou, Q., Huang, H., Zheng, Z., Bian, J.: Solutions to scalability of blockchain: a survey. IEEE Access 8, 16440–16455 (2020)

    Article  Google Scholar 

  8. Wang, X., et al.: Capacity analysis of public blockchain. Comput. Commun. 177, 112–124 (2021)

    Article  Google Scholar 

  9. Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., Saxena, P.: A secure sharding protocol for open blockchains. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 17–30 (2016)

    Google Scholar 

  10. Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E., Ford, B.: Omniledger: a secure, scale-out, decentralized ledger via sharding. In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 583–598. IEEE (2018)

    Google Scholar 

  11. Zamani, M., Movahedi, M., Raykova, M.: Rapidchain: scaling blockchain via full sharding. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 931–948 (2018)

    Google Scholar 

  12. Wang, J., Wang, H.: Monoxide: scale out blockchains with asynchronous consensus zones. In: 16th USENIX Symposium on Networked Systems Design and Implementation (NSDI 19), pp. 95–112 (2019)

    Google Scholar 

  13. Al-Bassam, M., Sonnino, A., Bano, S., Hrycyszyn, D., Danezis, G.: Chainspace: a sharded smart contracts platform. arXiv preprint arXiv:1708.03778 (2017)

  14. Yu, G., Wang, X., Yu, K., Ni, W., Zhang, J.A., Liu, R.P.: Survey: sharding in blockchains. IEEE Access 8, 14155–14181 (2020)

    Article  Google Scholar 

  15. Yu, G., Wang, X., Yu, K., Ni, W., Zhang, J.A., Liu, R.P.: Scaling-out blockchains with sharding: an extensive survey (2020)

    Google Scholar 

  16. Mearian, L.: Sharding: what it is and why many blockchain protocols rely on it (2019). https://www.computerworld.com/article/3336187/sharding-what-it-is-and-why-so-many-blockchain-protocols-rely-on-it.html. Accessed 2019

  17. Zhang, M., Li, J., Chen, Z., Chen, H., Deng, X.: An efficient and robust committee structure for sharding blockchain. arXiv preprint arXiv:2112.15322 (2021)

  18. Yu, G., Wang, X., Liu, R.P.: Cross-chain between a parent chain and multiple side chains. arXiv preprint arXiv:2208.05125, 2022

  19. Liu, Y., Liu, J., Yin, J., Li, G., Yu, H., Wu, Q.: Cross-shard transaction processing in sharding blockchains. In: Qiu, M. (ed.) ICA3PP 2020. LNCS, vol. 12454, pp. 324–339. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60248-2_22

    Chapter  Google Scholar 

  20. Awerbuch, B., Scheideler, C.: Robust random number generation for peer-to-peer systems. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 275–289. Springer, Heidelberg (2006). https://doi.org/10.1007/11945529_20

    Chapter  Google Scholar 

  21. Syta, E., et al.: Scalable bias-resistant distributed randomness. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 444–460. IEEE (2017)

    Google Scholar 

  22. Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In: 28th Annual Symposium on Foundations of Computer Science (sfcs 1987), pp. 427–438. IEEE (1987)

    Google Scholar 

  23. Sen, S., Freedman, M.J.: Commensal cuckoo: secure group partitioning for large-scale services. ACM SIGOPS Operating Syst. Rev. 46(1), 33–39 (2012)

    Google Scholar 

  24. Androulaki, E., et al.: Hyperledger fabric: a distributed operating system for permissioned blockchains. In: Proceedings of the Thirteenth EuroSys Conference, pp. 1–15 (2018)

    Google Scholar 

  25. Androulaki, E., Cachin, C., De Caro, A., Kokoris-Kogias, E.: Channels: horizontal scaling and confidentiality on permissioned blockchains. In: Lopez, J., Zhou, J., Soriano, M. (eds.) ESORICS 2018. LNCS, vol. 11098, pp. 111–131. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99073-6_6

    Chapter  Google Scholar 

  26. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech. J. 49(2), 291–307 (1970)

    Article  MATH  Google Scholar 

  27. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech.: Theory Exp. 2008(10), P10008 (2008)

    Google Scholar 

  28. Ankr.com. Build on Ethereum With Instant RPC Endpoint (2022). https://www.ankr.com/protocol/public/eth/. Accessed 2022

Download references

Acknowledgement

This work was supported by BT Group plc through the Project “ Blockchain based Workflow and Policy Management Platform”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zixu Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Z. et al. (2022). A Community Detection-Based Blockchain Sharding Scheme. In: Chen, S., Shyamasundar, R.K., Zhang, LJ. (eds) Blockchain – ICBC 2022. ICBC 2022. Lecture Notes in Computer Science, vol 13733. Springer, Cham. https://doi.org/10.1007/978-3-031-23495-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23495-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23494-1

  • Online ISBN: 978-3-031-23495-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics