Skip to main content

Personalized Fast Electrophysiology Simulations to Evaluate Arrhythmogenicity of Ventricular Slow Conduction Channels

  • Conference paper
  • First Online:
Statistical Atlases and Computational Models of the Heart. Regular and CMRxMotion Challenge Papers (STACOM 2022)

Abstract

After suffering a myocardial infarction, patient’s tissue shows a complex substrate remodeling that combines dead and viable tissue in the scar region. Within such regions, slow conduction channels (SCC) might be present, being formed by viable tissue with altered electrical properties that can change the normal ventricle activation sequence, and sustain a ventricular tachycardia (VT) [8]. Computational models can help to stratify patients at risk, but they usually require large computational resources. In this study, we present a fast pipeline based on fully automatic modeling and simulation of patient’s electrophysiology to assess the potential arrhythmogeneity of SCCs based on hundreds of simulated scenarios per patient. We apply our pipeline to four patients that have suffered a myocardial infarction, reproducing successfully predicting patient arrhythmogeneity in all cases with low computational times compatible with clinical routine (less than 4 h).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adabag, A.S., Therneau, T.M., Gersh, B.J., Weston, S.A., Roger, V.L.: Sudden death after myocardial infarction. JAMA 300(17), 2022–2029 (2008). https://doi.org/10.1001/jama.2008.553

    Article  Google Scholar 

  2. Arevalo, H.J., et al.: Arrhythmia risk stratification of patients after myocardial infarction using personalized heart models. Nat. Commun. 7, 11437 (2016). https://doi.org/10.1038/ncomms11437

  3. Barber, F., et al.: Estimation of personalized minimal purkinje systems from human electro-anatomical maps. IEEE Trans. Med. Imaging 40(8), 2182–2194 (2021)

    Article  Google Scholar 

  4. Cárdenes, R., Sebastian, R., Soto-Iglesias, D., Berruezo, A., Camara, O.: Estimation of purkinje trees from electro-anatomical mapping of the left ventricle using minimal cost geodesics. Med. Image Anal. 24(1), 52–62 (2015)

    Article  Google Scholar 

  5. Chen, Z., et al.: Biophysical modeling predicts ventricular tachycardia inducibility and circuit morphology: a combined clinical validation and computer modeling approach. J. Cardiovasc. Electrophysiol. 27(7), 851–60 (2016). https://doi.org/10.1111/jce.12991

  6. Corral-Acero, J., et al.: The ‘digital twin’ to enable the vision of precision cardiology. Eur. Heart J. 41(48), 4556–4564 (2020). https://doi.org/10.1093/eurheartj/ehaa159

    Article  Google Scholar 

  7. Deng, D., Prakosa, A., Shade, J., Nikolov, P., Trayanova, N.A.: Characterizing conduction channels in postinfarction patients using a personalized virtual heart. Biophys. J. 117(12), 2287–2294 (2019). https://doi.org/10.1016/j.bpj.2019.07.024

  8. Fernández-Armenta, J., et al.: Three-dimensional architecture of scar and conducting channels based on high resolution ce-cmr: insights for ventricular tachycardia ablation. Circ. Arrhythm Electrophysiol. 6(3), 528–37 (2013). https://doi.org/10.1161/CIRCEP.113.000264

    Article  Google Scholar 

  9. Ferrer-Albero, A., et al.: Non-invasive localization of atrial ectopic beats by using simulated body surface p-wave integral maps. PloS one 12(7), e0181263 (2017)

    Article  Google Scholar 

  10. Lopez-Perez, A., Sebastian, R., Ferrero, J.M.: Three-dimensional cardiac computational modelling: methods, features and applications. Biomed. Eng. Online 14, 35 (2015). https://doi.org/10.1186/s12938-015-0033-5

    Article  Google Scholar 

  11. Lopez-Perez, A., et al.: Personalized cardiac computational models: From clinical data to simulation of infarct-related ventricular tachycardia. Front. Physiol. 10, 580 (2019). https://doi.org/10.3389/fphys.2019.00580

    Article  Google Scholar 

  12. Relan, J., et al.: Coupled personalization of cardiac electrophysiology models for prediction of ischaemic ventricular tachycardia. Interface Focus 1(3), 396–407 (2011). https://doi.org/10.1098/rsfs.2010.0041

    Article  Google Scholar 

  13. Serra, D., et al.: An automata-based cardiac electrophysiology simulator to assess arrhythmia inducibility. Mathematics 10(8), 1293 (2022)

    Article  Google Scholar 

  14. Soto-Iglesias, D., et al.: Cardiac magnetic resonance-guided ventricular tachycardia substrate ablation. JACC Clin. Electrophysiol. 6(4), 436–447 (2020). https://doi.org/10.1016/j.jacep.2019.11.004

  15. Trayanova, N.A., Pashakhanloo, F., Wu, K.C., Halperin, H.R.: Imaging-based simulations for predicting sudden death and guiding ventricular tachycardia ablation. Circ. Arrhythm Electrophysiol. 10(7) (2017). https://doi.org/10.1161/CIRCEP.117.004743

  16. ten Tusscher, K.H.W.J., Noble, D., Noble, P.J., Panfilov, A.V.: A model for human ventricular tissue. Am. J. Physiol. Heart Circ. Physiol. 286(4), H1573-89 (2004). https://doi.org/10.1152/ajpheart.00794.2003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Sebastian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Serra, D. et al. (2022). Personalized Fast Electrophysiology Simulations to Evaluate Arrhythmogenicity of Ventricular Slow Conduction Channels. In: Camara, O., et al. Statistical Atlases and Computational Models of the Heart. Regular and CMRxMotion Challenge Papers. STACOM 2022. Lecture Notes in Computer Science, vol 13593. Springer, Cham. https://doi.org/10.1007/978-3-031-23443-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23443-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23442-2

  • Online ISBN: 978-3-031-23443-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics