Skip to main content

Abstract

With the advancement of medical science, new healthcare methods have been introduced. Biomedical signals have provided us with a deep insight into the working of the human body. Invasive biomedical signaling and sensing involve inserting sensors inside the human body. Non-invasive biomedical signals such as electroencephalogram (EEG), electromyogram (EMG), electrocardiogram (ECG), electrooculogram (EOG), phonocardiogram (PCG), and photoplethysmography (PPG) can be acquired by placing sensors on the surface of the human body. After the acquisition of these biomedical signals, further processing such as artifact removal and feature extraction is required to extract vital information about the subject’s health and well-being. In addition to conventional signal processing and analysis tools, advanced methods that involve machine and deep learning techniques were introduced to extract useful information from these signals. There are several applications of non-invasive biomedical signal processing, including monitoring, detecting, and estimating physiological and pathological states for diagnosis and therapy. For example, detection and monitoring of different types of cancer, heart diseases, blood vessel blockage, neurological disorders, etc. In addition, biomedical signals are also used in brain control interfaces (BCI), Neurofeedback and biofeedback systems to improve the mental and physical health of the subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.-H. Chang, J.M. Moura, Biomedical signal processing. Biomed. Eng. Design Handbook 2, 559–579 (2010)

    Google Scholar 

  2. R. Delgado-Gonzalo et al., Evaluation of accuracy and reliability of PulseOn optical heart rate monitoring device, in 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), (IEEE, 2015)

    Google Scholar 

  3. P. Patel, M. Sarkar, S. Nagaraj, Ultra wideband channel characterization for invasive biomedical applications, in 2016 IEEE 17th Annual Wireless and Microwave Technology Conference (WAMICON), (IEEE, 2016)

    Google Scholar 

  4. K.S. Litvinova et al., Non-invasive biomedical research and diagnostics enabled by innovative compact lasers. Prog. Quant. Electron. 56, 1–14 (2017)

    Article  Google Scholar 

  5. C.D. Block et al., Minimally-invasive and non-invasive continuous glucose monitoring systems: Indications, advantages, limitations and clinical aspects. Curr. Diabetes Rev. 4(3), 159–168 (2008)

    Article  Google Scholar 

  6. M.E. Spira, A. Hai, Multi-electrode array technologies for neuroscience and cardiology. Nat. Nanotechnol. 8(2), 83–94 (2013)

    Article  Google Scholar 

  7. K. Blinowska, P. Durka, Electroencephalography (Eeg) (Wiley encyclopedia of biomedical engineering, 2006)

    Book  Google Scholar 

  8. R.W. Homan, J. Herman, P. Purdy, Cerebral location of international 10–20 system electrode placement. Electroencephalogr. Clin. Neurophysiol. 66(4), 376–382 (1987)

    Article  Google Scholar 

  9. H. Marzbani, H. Marateb, M. Mansourian, Methodological note: Neu-rofeedback: A comprehensive review on system design, Methodol-ogy and clinical applications. Basic Clin. Neurosci. 7(2), 143–158 (2016) 10.15412

    Google Scholar 

  10. D. Mahmood et al., The effect of music listening on EEG functional connectivity of brain: A short-duration and long-duration study. Mathematics 10(3), 349 (2022)

    Article  Google Scholar 

  11. U. Amin, S.R. Benbadis, The role of EEG in the erroneous diagnosis of epilepsy. J. Clin. Neurophysiol. 36(4), 294–297 (2019)

    Article  Google Scholar 

  12. M. Simão et al., A review on electromyography decoding and pattern recognition for human-machine interaction. Ieee Access 7, 39564–39582 (2019)

    Article  Google Scholar 

  13. B. Farnsworth, What Is EMG (Electromyography) and How Does It Work?

    Google Scholar 

  14. E. An, Electromyography (EMG) and Nerve Conduction Studies

    Google Scholar 

  15. Y. Sattar, L. Chhabra, Electrocardiogram, in StatPearls [Internet], (StatPearls Publishing, 2021)

    Google Scholar 

  16. J. Xue, L. Yu, Applications of machine learning in ambulatory ECG. Heart 2(4), 472–494 (2021)

    Article  Google Scholar 

  17. M. Collins et al., A review of hand-held electrocardiogram (ECG) recording devices. Eur. J. Cardiovasc. Nurs. 20(Supplement_1), zvab060 (2021)

    Article  Google Scholar 

  18. D.J. Creel, The electroretinogram and electro-oculogram: Clinical applications by Donnell. J. Creel. Webvision: The Organization of the Retina and Visual System (2015)

    Google Scholar 

  19. J. Seggie et al., Retinal pigment epithelium response and the use of the EOG and Arden ratio in depression. Psychiatry Res. 36(2), 175–185 (1991)

    Article  Google Scholar 

  20. L. Voxuan, Recognizing Best's disease: Two cases of this rare condition, involving a mother and son, demonstrate an assortment of diagnostic challenges. Rev. Optom. 147(11), 87–91 (2010)

    Google Scholar 

  21. J. Heo, H. Yoon, K.S. Park, A novel wearable forehead EOG measurement system for human computer interfaces. Sensors 17(7), 1485 (2017)

    Article  Google Scholar 

  22. Britannica. phonocardiography. 2019 4 July 2022; Available from: https://www.britannica.com/science/phonocardiography

  23. H.B. Sprague, History and present status of phonocardiography. IRE Trans. Med. Electron. PGME-9, 2–3 (1957)

    Article  Google Scholar 

  24. A. Sa-Ngasoongsong et al., A low-cost, portable, high-throughput wireless sensor system for phonocardiography applications. Sensors 12(8), 10851–10870 (2012)

    Article  Google Scholar 

  25. D. Castaneda et al., A review on wearable photoplethysmography sensors and their potential future applications in health care. International journal of biosensors & bioelectronics 4(4), 195–202 (2018)

    Google Scholar 

  26. J. Allen, Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas. 28(3), R1–R39 (2007)

    Article  Google Scholar 

  27. A.M. Johnson, R. Jegan, X.A. Mary, Performance measures on blood pressure and heart rate measurement from PPG signal for biomedical applications, in 2017 International Conference on Innovations in Electrical, Electronics, Instrumentation and Media Technology (ICEEIMT), (IEEE, 2017)

    Google Scholar 

  28. S. Bagha, L. Shaw, A real time analysis of PPG signal for measurement of SpO2 and pulse rate. Internat. J. Computer Applicat. 36(11), 45–50 (2011)

    Google Scholar 

  29. J.C. Richardson et al., Pharmaceutical applications of magnetic resonance imaging (MRI). Adv. Drug Deliv. Rev. 57(8), 1191–1209 (2005)

    Article  Google Scholar 

  30. S.E. Alert, Preventing accidents and injuries in the MRI suite

    Google Scholar 

  31. E.K. Weidman et al., MRI safety: A report of current practice and advancements in patient preparation and screening. Clin. Imaging 39(6), 935–937 (2015)

    Article  MathSciNet  Google Scholar 

  32. N. Dey, Classification and clustering in biomedical signal processing. IGI global (2016)

    Google Scholar 

  33. M. Elgendi, Eventogram: A visual representation of main events in biomedical signals. Bioengineering 3(4), 22 (2016)

    Article  Google Scholar 

  34. D. Mahmood, H. Nisar, Y.V. Voon, Removal of Physiological Artifacts from Electroencephalogram Signals: A Review and Case Study, in 2021 IEEE 9th Conference on Systems, Process and Control (ICSPC 2021), (IEEE, 2021)

    Google Scholar 

  35. R. Nawaz et al., Comparison of different feature extraction methods for EEG-based emotion recognition. Biocybernetics and Biomedical Engineering 40(3), 910–926 (2020)

    Article  Google Scholar 

  36. S. Krishnan, Y. Athavale, Trends in biomedical signal feature extraction. Biomedical Signal Processing and Control 43, 41–63 (2018)

    Article  Google Scholar 

  37. A.A. Al-Taee et al., Feature extraction using wavelet scattering transform coefficients for EMG pattern classification, in Australasian Joint Conference on Artificial Intelligence, (Springer, 2022)

    Google Scholar 

  38. J. Rafiee et al., Feature extraction of forearm EMG signals for prosthetics. Expert Syst. Appl. 38(4), 4058–4067 (2011)

    Article  MathSciNet  Google Scholar 

  39. W.S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5(4), 115–133 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  40. A.M. Turing, J. Haugeland, Computing Machinery and Intelligence (Verbal Behavior as the Hallmark of Intelligence, The Turing Test, 1950), pp. 29–56

    Google Scholar 

  41. P.P. Shinde, S. Shah, A review of machine learning and deep learning applications, in 2018 fourth international conference on computing communication control and automation (ICCUBEA), (IEEE, 2018)

    Google Scholar 

  42. V. Patel, A.K. Shah, Machine learning for biomedical signal processing, in Machine Learning and the Internet of Medical Things in Healthcare, (Elsevier, 2021), pp. 47–66

    Chapter  Google Scholar 

  43. S.K. Dhull, K.K. Singh, ECG beat classifiers: A journey from ANN to DNN. Procedia Computer Sci. 167, 747–759 (2020)

    Article  Google Scholar 

  44. N. Ghassemi, A. Shoeibi, M. Rouhani, Deep neural network with generative adversarial networks pre-training for brain tumor classification based on MR images. Biomedical Signal Processing and Control 57, 101678 (2020)

    Article  Google Scholar 

  45. S. Banerjee, G.K. Singh, Deep neural network based missing data prediction of electrocardiogram signal using multiagent reinforcement learning. Biomedical Signal Processing and Control 67, 102508 (2021)

    Article  Google Scholar 

  46. S. Chaabene et al., Convolutional neural network for drowsiness detection using EEG signals. Sensors 21(5), 1734 (2021)

    Article  Google Scholar 

  47. M. Porumb et al., A convolutional neural network approach to detect congestive heart failure. Biomedical Signal Process. Cont. 55, 101597 (2020)

    Article  Google Scholar 

  48. K.H. Cheah et al., Convolutional neural networks for classification of music-listening EEG: Comparing 1D convolutional kernels with 2D kernels and cerebral laterality of musical influence. Neural Comput. & Applic. 32(13), 8867–8891 (2020)

    Article  Google Scholar 

  49. S. Madhavan, R.K. Tripathy, R.B. Pachori, Time-frequency domain deep convolutional neural network for the classification of focal and non-focal EEG signals. IEEE Sensors J. 20(6), 3078–3086 (2019)

    Article  Google Scholar 

  50. A. Anuragi, D.S. Sisodia, Empirical wavelet transform based automated alcoholism detecting using EEG signal features. Biomedical Signal Process. Cont. 57, 101777 (2020)

    Article  Google Scholar 

  51. M. Fatima, M. Pasha, Survey of machine learning algorithms for disease diagnostic. J. Intell. Learn. Syst. Appl. 9(01), 1–16 (2017)

    Google Scholar 

  52. C. Marquez-Chin, N. Kapadia-Desai, S. Kalsi-Ryan, Brain–Computer Interfaces (Springer, 2021), pp. 51–65

    Google Scholar 

  53. J.J. Vidal, et al., Biocybernetic control in man-machine interaction: final technical report 1973-1974. California univ los angeles school of engineering and applied science (1974)

    Google Scholar 

  54. L.A. Farwell, E. Donchin, Talking off the top of your head: Toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr. Clin. Neurophysiol. 70(6), 510–523 (1988)

    Article  Google Scholar 

  55. C. Guger, B.Z. Allison, A. Gunduz, Brain-computer interface research: A state-of-the-art summary 10, in Brain-Computer Interface Research, (Springer, 2021), pp. 1–11

    Google Scholar 

  56. S. Waldert, Invasive vs. non-invasive neuronal signals for brain-machine interfaces: Will one prevail? Front. Neurosci. 10, 295 (2016)

    Article  Google Scholar 

  57. J. Bu, X. Zhang, BCI-based neurofeedback training for quitting smoking, in Brain-Computer Interface Research, (Springer, 2021), pp. 13–23

    Chapter  Google Scholar 

  58. J.J. Daly, J.R. Wolpaw, Brain–computer interfaces in neurological rehabilitation. The Lancet Neurology 7(11), 1032–1043 (2008)

    Article  Google Scholar 

  59. M.M. Moore, Real-world applications for brain-computer interface technology. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 162–165 (2003)

    Article  Google Scholar 

  60. J.J. Shih, D.J. Krusienski, J.R. Wolpaw, Brain-computer interfaces in medicine, in Mayo Clinic Proceedings, vol. 87, (Elsevier, 2012), pp. 268–279

    Google Scholar 

  61. M.C. Domingo, An overview of the internet of things for people with disabilities. J. Netw. Comput. Appl. 35(2), 584–596 (2012)

    Article  Google Scholar 

  62. J.-R. Wang, S. Hsieh, Neurofeedback training improves attention and working memory performance. Clin. Neurophysiol. 124(12), 2406–2420 (2013)

    Article  Google Scholar 

  63. D.T. Karthikeyan, B. Sabarigiri, Enhancement of multi-modal biometric authentication based on iris and brain neuro image coding. Int. J. Biom. Bioinform.(IJBB) 5, 249 (2011)

    Google Scholar 

  64. R. İnce, S.S. Adanır, F. Sevmez, The inventor of electroencephalography (EEG): Hans Berger (1873–1941). Childs Nerv. Syst. 37(9), 2723–2724 (2021)

    Article  Google Scholar 

  65. C. Kerson, A Neurofeedback Story (Neurofeedback. The First Fifty Years, 2019), p. 229

    Google Scholar 

  66. J. Blumenthal, Relaxation therapies and biofeedback: Applications in medical practice, in Consultation Liaison Psychiatry and Behavioural Medicine, (WB Saunders, Philadelphia, 1988), pp. 272–283

    Google Scholar 

  67. R.R. Kline, The cybernetics moment: Or why we call our age the information age (JHU Press, 2015)

    Book  MATH  Google Scholar 

  68. P.M. Lehrer, Biofeedback training to increase heart rate variability. Principl. Pract. Stress Manag. 3, 227–248 (2007)

    Google Scholar 

  69. A.M. Freedman, H.I. Kaplan, B.J. Sadock, Comprehensive textbook of psychiatry (1975), pp. 1350–1350

    Google Scholar 

  70. J.P. Hatch, R.J. Gatchel, R. Harrington, Biofeedback: Clinical applications in medicine, in Handbook of Psychology and Health, (Routledge, 2021), pp. 37–73

    Chapter  Google Scholar 

  71. A.L. Davidoff, W.E. Whitehead, Biofeedback, relaxation training, and cognitive behavior modification: Treatments for functional GI disorders, in Handbook of Functional Gastrointestinal Disorders, (2020), pp. 361–384

    Chapter  Google Scholar 

  72. R. Nawaz, H. Nisar, Y.V. Voon, Changes in spectral power and functional connectivity of response-conflict task after neurofeedback training. IEEE Access 8, 139444–139459 (2020)

    Article  Google Scholar 

  73. R. Nawaz et al., The effect of alpha neurofeedback training on cognitive performance in healthy adults. Mathematics 10(7), 1095 (2022)

    Article  Google Scholar 

  74. E. Angelakis et al., EEG neurofeedback: A brief overview and an example of peak alpha frequency training for cognitive enhancement in the elderly. Clin. Neuropsychol. 21(1), 110–129 (2007)

    Article  Google Scholar 

  75. J.V. Hardt, J. Kamiya, Anxiety change through electroencephalographic alpha feedback seen only in high anxiety subjects. Science 201(4350), 79–81 (1978)

    Article  Google Scholar 

  76. H. Heinrich, H. Gevensleben, U. Strehl, Annotation: Neurofeedback–train your brain to train behaviour. J. Child Psychol. Psychiatry 48(1), 3–16 (2007)

    Article  Google Scholar 

  77. J. Raymond et al., Biofeedback and dance performance: A preliminary investigation. Appl. Psychophysiol. Biofeedback 30(1), 65–73 (2005)

    Article  Google Scholar 

  78. L. Thompson, M. Thompson, A. Reid, Neurofeedback outcomes in clients with Asperger’s syndrome. Appl. Psychophysiol. Biofeedback 35(1), 63–81 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Humaira Nisar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahmood, D., Riaz, H.N., Nisar, H. (2023). Introduction to Non-Invasive Biomedical Signals for Healthcare. In: Qaisar, S.M., Nisar, H., Subasi, A. (eds) Advances in Non-Invasive Biomedical Signal Sensing and Processing with Machine Learning. Springer, Cham. https://doi.org/10.1007/978-3-031-23239-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23239-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23238-1

  • Online ISBN: 978-3-031-23239-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics