Skip to main content

Theranostics in Neuroendocrine Tumors

  • Chapter
  • First Online:
Molecular Imaging and Targeted Therapy
  • 859 Accesses

Abstract

Neuroendocrine neoplasms (NENs) are a heterogeneous group of epithelial neoplastic proliferations ranging from indolent well differentiated neuroendocrine tumors (NETs) to very aggressive poorly differentiated neuroendocrine carcinomas (NECs). The most characteristic feature of NENs is the homogeneous overexpression of peptide hormone receptors (such as somatostatin receptor, SSTR) on the tumor cell surface. The radio-theranostic concept of using a molecular marker (the targeting vehicle) for both molecular imaging and targeted radionuclide therapy has shown great promise of personalized medicine of patients with NETs. Radiolabeled SSTR agonists (111In-DTPA-octreotide, 68Ga-Dotatate, 68Ga-Dotatoc, 64Cu-Dotatate, 177Lu-Dotatate, and 177Lu-Dotatoc) are in routine clinical use for MI and TRT in patients with SSTR-2 positive NETs. Recent data indicates that radiolabeled SSTR antagonists (such as 68Ga/177Lu-NODAGA-JR11) may provide a better option for MI and therapy. Norepinephrine analog, 131I-MIBG (Azedra) is an ideal theranostic agent in patients with insufficient expression of SSTRs (such as neuroblastoma, pheochromocytoma, and paraganglioma). Several new radiotracers targeting glucagon-like peptide-1 (GLP-1) receptor, chemokine receptor-4 (CXCR4), and cholecystokinin-2 (CCK2) receptors are under active clinical investigation. This chapter provides a broad overview of the current approaches and future challenges of diagnostic and therapeutic evaluations in NENs. Theranostics in NETs serves as a model for developing targeted probes for several other cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bräutigam K, Rodriguez-Calero A, Kim-Fuchs C, et al. Update on histological reporting changes in neuroendocrine neoplasms. Curr Oncol Rep. 2021;23:65.

    PubMed  PubMed Central  Google Scholar 

  2. Harris AG, Vinik AI, O’Dorisio TM, O’Dorisio MS. Radioligand theranostics in the management of neuroendocrine tumors. Pancreas. 2020;49(5):599–603.

    PubMed  PubMed Central  Google Scholar 

  3. Rickman DS, Beltran H, Demichelis F, Rubin MA. Biology and evolution of poorly differentiated neuroendocrine tumors. Nat Med. 2017;23(6):664–73.

    Google Scholar 

  4. Gonzalez RS. Diagnosis and management of gastrointestinal neuroendocrine neoplasms. Surg Pathol. 2020;13:377–97.

    Google Scholar 

  5. Refardt J, Hofland J, Kwadwo A, et al. Theranostics in neuroendocrine tumors: an overview of current approaches and future challenges. Rev Endocr Metab Disord. 2020;22:581–94.

    Google Scholar 

  6. Taïeb D, Hicks RJ, Hindié E, et al. European association of nuclear medicine practice guideline/society of nuclear medicine and molecular imaging procedure standard 2019 for radionuclide imaging of phaeochromocytoma and paraganglioma. Eur J Nucl Med Mol Imaging. 2019;46:2112–37.

    PubMed  PubMed Central  Google Scholar 

  7. Taïeb D, Jha A, Treglia G, Pacak K. Molecular imaging and radionuclide therapy of pheochromocytoma and paraganglioma in the era of genomic characterization of disease subgroups. Endocr Relat Cancer. 2019;26:R627–52.

    PubMed  PubMed Central  Google Scholar 

  8. Tevosian SG, Ghayee HK. Pheochromocytomas and paragangliomas. Endocrinol Metab Clin N Am. 2019;48:727–50.

    Google Scholar 

  9. Van Arendonk KJ, Chung DH. Neuroblastoma: tumor biology and its implications for staging and treatment. Children. 2019;6:12. https://doi.org/10.3390/children6010012.

    Article  PubMed  PubMed Central  Google Scholar 

  10. O’Dorisio TM, Harris AG, O’Dorisio MS. Evolution of neuroendocrine tumor therapy. Surg Oncol Clin N Am. 2020;29:145–63.

    PubMed  PubMed Central  Google Scholar 

  11. Ferrari AC, Glasberg J, Riechelmann RP. Carcinoid syndrome: update on the pathophysiology and treatment. Clinics. 2018;73(suppl 1):e490s.

    Google Scholar 

  12. Langbein T, Weber WA, Eiber M. Future of theranostics: an outlook on precision oncology in nuclear medicine. J Nucl Med. 2019;60:13S–9S.

    CAS  PubMed  Google Scholar 

  13. Park S, Parihar AS, Bodei L, et al. Somatostatin receptor imaging and theranostics: current practice and future prospects. J Nucl Med. 2021;62:1323–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Werner RA, Weich A, Kircher M. The theranostic promise for neuroendocrine tumors in the late 2010s – where do we stand, where do we go? Theranostics. 2018;8(22):6088–100.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Basu S, Parghane RV, Kamaldeep CS. Peptide receptor radionuclide therapy of neuroendocrine tumors. Semin Nucl Med. 2020;50:447–64.

    PubMed  Google Scholar 

  16. Bodei L, Schöder H, Baum RP, et al. Molecular profiling of neuroendocrine tumours to predict response and toxicity to peptide receptor radionuclide therapy. Lancet Oncol. 2020;21:e431–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Desouky O, Ding N, Zhou G. Targeted and non-targeted effects of ionizing radiation. J Radiat Res Appl Sci. 2015;2015:247–54.

    Google Scholar 

  18. Kostelnik TI, Orvig C. Radioactive main group and rare earth metals for imaging and therapy. Chem Rev. 2019;119(2):902–56.

    CAS  PubMed  Google Scholar 

  19. Price EW, Orvig C. Matching chelators to radiometals for radiopharmaceuticals. Chem Soc Rev. 2014;43:260.

    CAS  PubMed  Google Scholar 

  20. Günther T, Tulipano G, Dournaud P, et al. International Union of Basic and Clinical Pharmacology. CV. Somatostatin receptors: structure, function, ligands, and new nomenclature. Pharmacol Rev. 2018;70:763–835.

    PubMed  PubMed Central  Google Scholar 

  21. Brazeau P, Vale W, Burgus R, et al. Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science. 1973;179:77–9.

    CAS  PubMed  Google Scholar 

  22. Bauer W, Briner U, Doepfner W, et al. SMS 201-995: a very potent and selective octapeptide analogue of somatostatin with prolonged action. Life Sci. 1982;31(11):1133–40.

    CAS  PubMed  Google Scholar 

  23. La Salvia A, Espinosa-Olarte P, Riesco-Martinez MDC, et al. Targeted cancer therapy: what’s new in the field of neuroendocrine neoplasms? Cancer. 2021;13:1701. https://doi.org/10.3390/cancers13071701.

    Article  CAS  Google Scholar 

  24. Fani M, Nicolas GP, Wild D. Somatostatin receptor antagonists for imaging and therapy. J Nucl Med. 2017;58:61S–6S.

    CAS  PubMed  Google Scholar 

  25. Maecke HR, Reubi JC. Somatostatin receptors as targets for nuclear medicine imaging and radionuclide treatment. J Nucl Med. 2011;52:841–4.

    CAS  PubMed  Google Scholar 

  26. Hankus J, Tomaszewska R. Neuroendocrine neoplasms and somatostatin receptor subtypes expression. Nucl Med Rev. 2016;19(2):111–7.

    Google Scholar 

  27. Popa O, Tabani SM, Pantea S, et al. The new WHO classification of gastrointestinal neuroendocrine tumors and immunohistochemical expression of somatostatin receptor 2 and 5. Exp Ther Med. 2021;22:1179.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Reubi JC, Hacki WH, Lamberts SW. Hormone-producing gastrointestinal tumors contain a high density of somatostatin receptors. J Clin Endocrinol Metab. 1987;65:1127–34.

    CAS  PubMed  Google Scholar 

  29. Lamberts SW, Bakker WH, Reubi JC, Krenning EP. Somatostatin-receptor imaging in the localization of endocrine tumors. N Engl J Med. 1990;323:1246–9.

    CAS  PubMed  Google Scholar 

  30. Ginj M, Zhang H, Waser B, et al. Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors. Proc Natl Acad Sci U S A. 2006;103:16436–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Bakker WH, Albert R, Bruns C, et al. 111In-DTPA-D-Phe1-octreotide, a potential radiopharmaceutical for imaging of somatostatin receptor-positive tumors: synthesis, radiolabeling and in vitro validation. Life Sci. 1991;49(22):1583–91.

    Google Scholar 

  32. Krenning EP, Kwekkeboom DJ, Bakker WH, et al. Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1]- and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur J Nucl Med. 1993;20:716–31.

    CAS  PubMed  Google Scholar 

  33. De Jong M, Bakker WH, Krenning EP, et al. Yttrium-90 and indium-111 labelling, receptor binding and biodistribution of [DOTA0,D-Phe1,Tyr3]octreotide, a promising somatostatin analogue for radionuclide therapy. Eur J Nucl Med. 1997;24:368–71.

    PubMed  Google Scholar 

  34. Otte A, Jermann E, Behe M, et al. DOTATOC: a powerful new tool for receptor-mediated radionuclide therapy. Eur J Nucl Med. 1997;24:792–5.

    CAS  PubMed  Google Scholar 

  35. Reubi JC, Schär J-C, Waser B, et al. Affinity profiles for human somatostatin receptor subtypes SST1–SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med. 2000;27:273–82.

    CAS  PubMed  Google Scholar 

  36. Hofmann M, Maecke H, Börner AR, et al. Biokinetics and imaging with the somatostatin receptor PET radioligand Ga-68 DOTATOC preliminary data. Eur J Nucl Med. 2001;28:1751–7.

    CAS  PubMed  Google Scholar 

  37. Graham MM, Gu X, Ginader T, et al. 68Ga-DOTATOC imaging of neuroendocrine tumors: a systematic review and metaanalysis. J Nucl Med. 2017;58:1452–8.

    Google Scholar 

  38. Hennrich U, Benešová M. [68Ga]Ga-DOTA-TOC: the first FDA-approved 68Ga-radiopharmaceutical for PET imaging. Pharmaceuticals. 2020;13:38. https://doi.org/10.3390/ph13030038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. De Jong M, Breeman WAP, Bakker WH, et al. Comparison of 111In-labeled somatostatin analogues for tumor scintigraphy and radionuclide therapy. Cancer Res. 1998;58:437–41.

    PubMed  Google Scholar 

  40. Kwekkeboom DJ, Bakker WH, Kooji PPM, et al. [177Lu-DOTA0,Tyr3]octreotate: comparison with [111In-DTPAo]octreotide in patients. Eur J Nucl Med. 2001;28:1319–25.

    CAS  PubMed  Google Scholar 

  41. Forrer F, Uusijarvi H, Waldherr C, et al. A comparison of 111In-DOTATOC and 111In-DOTATATE: biodistribution and dosimetry in the same patients with metastatic neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2004;31:1257–62.

    CAS  PubMed  Google Scholar 

  42. Poeppel TD, Binse I, Petersenn S, et al. 68Ga-DOTATOC versus 68Ga-DOTATATE PET/CT in functional imaging of neuroendocrine tumors. J Nucl Med. 2011;52:1864–70.

    Google Scholar 

  43. Wild D, Schmitt JS, Ginj M, et al. DOTA-NOC, a high-affinity ligand of somatostatin receptor subtypes 2, 3 and 5 for labelling with various radiometals. Eur J Nucl Med Mol Imaging. 2003;30:1338–47.

    CAS  PubMed  Google Scholar 

  44. Kabasakal L, Demirci E, Ocak M, et al. Comparison of 68Ga-DOTATATE and 68Ga-DOTANOC PET/CT imaging in the same patient group with neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2012;39:1271–7.

    PubMed  Google Scholar 

  45. Wild D, Fani M, Behe M, et al. First clinical evidence that imaging with somatostatin receptor antagonists is feasible. J Nucl Med. 2012;52:1412–7.

    Google Scholar 

  46. Mohamad H, Ali S, Emmanuel P, et al. The role of 68Ga-DOTA-NOC PET/CT in evaluating neuroendocrine tumors. Nucl Med Commun. 2017;38(2):170–7.

    Google Scholar 

  47. Anderson CJ, Dehdashti F, Cutler PD, et al. 64Cu-TETA-octreotide as a PET imaging agent for patients with neuroendocrine tumors. J Nucl Med. 2001;42:213–21.

    Google Scholar 

  48. Carlsen EA, Johnbeck CB, Binderup T, et al. 64Cu-DOTATATE PET/CT and prediction of overall and progression-free survival in patients with neuroendocrine neoplasms. J Nucl Med. 2020;61:1491–7.

    Google Scholar 

  49. Pfeifer A, Knigge U, Mortensen J, et al. Clinical PET of neuroendocrine tumors using 64Cu-DOTATATE: first-in-humans study. J Nucl Med. 2012;53:1207–15.

    CAS  PubMed  Google Scholar 

  50. Johnbeck CB, Knigge U, Loft A, et al. Head-to-head comparison of 64Cu-DOTATATE and 68Ga-DOTATOC PET/CT: a prospective study of 59 patients with neuroendocrine tumors. J Nucl Med. 2017;58:451–7.

    CAS  PubMed  Google Scholar 

  51. Delpassand ES, Ranganathan D, Wagh N, et al. 64Cu-DOTATATE PET/CT for imaging patients with known or suspected somatostatin receptor–positive neuroendocrine tumors: results of the first U.S. prospective, reader-masked clinical trial. J Nucl Med. 2020;61:890–6.

    Google Scholar 

  52. Eychenne R, Bouvry C, Bourgeois M, et al. Overview of radiolabeled somatostatin analogs for cancer imaging and therapy. Molecules. 2020;25:4012. https://doi.org/10.3390/molecules25174012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bass RT, Buckwalter BL, Patel BP, et al. Identification and characterization of novel somatostatin antagonists. Mol Pharmacol. 1996;50:709–15.

    CAS  PubMed  Google Scholar 

  54. Fani M, Braun F, Waser B, et al. Unexpected sensitivity of sst2 antagonists to N terminal radiometal modifications. J Nucl Med. 2012;53:1481–9.

    CAS  PubMed  Google Scholar 

  55. Nicolas GP, Schreier N, Kaul F, et al. Sensitivity comparison of (68)Ga-OPS202 and (68)Ga DOTATOC PET/CT in patients with gastroenteropancreatic neuroendocrine tumors: a prospective phase II imaging study. J Nucl Med. 2018;59:915–21.

    CAS  PubMed  Google Scholar 

  56. Wild D, Fani M, Fischer R, et al. Comparison of somatostatin receptor agonist and antagonist for peptide receptor radionuclide therapy: a pilot study. J Nucl Med. 2014;55:1248–52.

    CAS  PubMed  Google Scholar 

  57. Reidy-Lagunes D, Pandit-Taskar N, O’Donoghue JA, et al. Phase I trial of well-differentiated neuroendocrine tumors (NETs) with radiolabeled somatostatin antagonist 177Lu-satoreotide tetraxetan. Clin Cancer Res. 2019;25:6939–47.

    PubMed  PubMed Central  Google Scholar 

  58. Huo L, Zhu W, Cheng Y. A prospective randomized, double-blind study to evaluate the safety, biodistribution, and dosimetry of 68Ga-NODAGA-LM3 and 68Ga-DOTA-LM3 in patients with well-differentiated neuroendocrine tumors. J Nucl Med. 2021;62:1398–405.

    PubMed  PubMed Central  Google Scholar 

  59. Baum RP, Zhang J, Schuchardt C, et al. First-in-human study of novel SSTR antagonist 177Lu-DOTA-LM3 for peptide receptor radionuclide therapy in patients with metastatic neuroendocrine neoplasms: dosimetry, safety and efficacy. J Nucl Med. 2021;62:1571–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Valkema R, De Jong M, Bakker WH, et al. Phase I study of peptide receptor radionuclide therapy with [In-DTPA]octreotide: the Rotterdam experience. Semin Nucl Med. 2002;32:110–122m.

    PubMed  Google Scholar 

  61. Otte A, Mueller-Brand J, Dellas S, et al. Yttrium-90-labelled somatostatin-analogue for cancer treatment. Lancet. 1998;351:417–8.

    CAS  PubMed  Google Scholar 

  62. Waldherr C, Pless M, Maecke HR. The clinical value of [90Y-DOTA]-D-Phe1-Tyr3-octreotide (90Y-DOTATOC) in the treatment of neuroendocrine tumours: a clinical phase II study. Ann Oncol. 2001;12:941–5.

    CAS  PubMed  Google Scholar 

  63. Imhof A, Brunner P, Marincek N, et al. Response, survival, and long-term toxicity after therapy with the radiolabeled somatostatin analogue [90Y-DOTA]-TOC in metastasized neuroendocrine cancers. J Clin Oncol. 2011;29:2416–23.

    CAS  PubMed  Google Scholar 

  64. Bushnell D, O’Dorisio TM, O’Dorisio MS, et al. 90Y-edotreotide for metastatic carcinoid refractory to octreotide. J Clin Oncol. 2010;28:1652–9.

    Google Scholar 

  65. Bodei L, Kidd M, Paganelli G, et al. Long-term tolerability of PRRT in 807 patients with neuroendocrine tumours: the value and limitations of clinical factors. Eur J Nucl Med Mol Imaging. 2015;42:5–19.

    CAS  PubMed  Google Scholar 

  66. Melis M, Krenning EP, Bernard BF, et al. Localization and mechanism of renal retention of radiolabelled somatostatin analogues. Eur J Nucl Med Mol Imaging. 2005;32:1136–43.

    CAS  PubMed  Google Scholar 

  67. Geenen L, Nonnekens J, Konijnenberg M, et al. Overcoming nephrotoxicity in peptide receptor radionuclide therapy using [177Lu]Lu-DOTA-TATE for the treatment of neuroendocrine tumors. Nucl Med Biol. 2021;102–103:1–11.

    PubMed  Google Scholar 

  68. Esser JP, Krenning EP, Teunissen JJM, et al. Comparison of [177Lu-DOTA0,Tyr3]octreotate and [177Lu-DOTA0,Tyr3]octreotide: which peptide is preferable for PRRT? Eur J Nucl Med Mol Imaging. 2006;33:1346–51.

    CAS  PubMed  Google Scholar 

  69. Schuchardt C, Kulkarni HR, Prasad V, et al. The Bad Berka dose protocol: comparative results of dosimetry in peptide receptor radionuclide therapy using 177Lu-DOTATATE, 177Lu-DOTANOC, and 177Lu-DOTATOC. Recent Results Cancer Res. 2013;194:519–36.

    CAS  PubMed  Google Scholar 

  70. Uccelli L, Boschi A, Cittanti C, et al. 90Y/177Lu-DOTATOC: from preclinical studies to application in humans. Pharmaceutics. 2021;13:1463.

    Google Scholar 

  71. Baum RP, Kluge AW, Kulkarn H, et al. [177Lu-DOTA]0-D-Phe1-Tyr3-octreotide (177Lu-DOTATOC) for peptide receptor radiotherapy in patients with advanced neuroendocrine tumours: a phase-II study. Theranostics. 2016;6:501–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Erion JL, Bugaj JE, Schmidt MA, et al. High radiotherapeutic efficacy of 177Lu-DOTA-Y3-octreotate in a rat tumor model. [abstract]. J Nucl Med. 1999;40(Suppl):223.

    Google Scholar 

  73. Bergsma H, Konijnenberg MW, Kam BL, et al. Subacute haematotoxicity after PRRT with 177Lu-DOTA-octreotate: prognostic factors, incidence, and course. Eur J Nucl Med Mol Imaging. 2016;43:453–63.

    CAS  PubMed  Google Scholar 

  74. Bergsma H, Konijnenberg MW, van der Zwan WA, et al. Nephrotoxicity after PRRT with 177Lu-DOTA-octreotate. Eur J Nucl Med Mol Imaging. 2016;43:1802–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Khan S, Krenning EP, van Essen M, et al. Quality of life in 265 patients with gastroenteropancreatic or bronchial neuroendocrine tumors treated with [177Lu-DOTA0,Tyr3]octreotate. J Nucl Med. 2011;52:1361–8.

    CAS  PubMed  Google Scholar 

  76. Kwekkeboom DJ, de Herder WW, Kam BL, et al. Treatment with the radiolabeled somatostatin analog [177Lu-DOTA0,Tyr3]octreotate: toxicity, efficacy, and survival. J Clin Oncol. 2008;26:2124–30.

    CAS  PubMed  Google Scholar 

  77. Levine R, Krenning EP. Clinical history of the theranostic radionuclide approach to neuroendocrine tumors and other types of cancer: historical review based on an interview of Eric P. Krenning by Rachel Levine. J Nucl Med. 2017;58:3S–9S.

    CAS  PubMed  Google Scholar 

  78. Strosberg J, El-Haddad G, Wolin E, et al. Phase 3 trial of 177Lu-dotatate for midgut neuroendocrine tumors. N Engl J Med. 2017;376(2):125–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Hennrich U, Kopka K. Lutathera®: the first FDA- and EMA-approved radiopharmaceutical for peptide receptor radionuclide therapy. Pharmaceuticals. 2019;12:114. https://doi.org/10.3390/ph12030114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Brabander T, Zwan WA, Teunissen JJM, et al. Long-term efficacy, survival, and safety of [177Lu-DOTA0-Tyr3]octreotate in patients with gastroentero-pancreatic and bronchial neuroendocrine tumors. Clin Cancer Res. 2017;23(16):4617–24.

    CAS  PubMed  Google Scholar 

  81. Hope TA, Abbott A, Colucci K, et al. NANETS/SNMMI procedure standard for somatostatin receptor–based peptide receptor radionuclide therapy with 177Lu-DOTATATE. J Nucl Med. 2019;60:937–43.

    CAS  PubMed  Google Scholar 

  82. Jacobson O, Kiesewetter DO, Chen X. Albumin-binding Evans blue derivatives for diagnostic imaging and production of long-acting therapeutics. Bioconjug Chem. 2016;27(10):2239–47.

    CAS  PubMed  Google Scholar 

  83. Bandara N, Jacobson O, Mpoy C, et al. Novel structural modification based on Evans blue dye to improve pharmacokinetics of a somatostatin-receptor-based theranostic agent. Bioconjug Chem. 2018;29:2448–54.

    CAS  PubMed  Google Scholar 

  84. Tian R, Jacobson O, Niu G, et al. Evans blue attachment enhances somatostatin receptor subtype-2 imaging and radiotherapy. Theranostics. 2018;8(3):735–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Wang H, Cheng Y, Zhang J, et al. Response to single low-dose 177Lu-DOTA-EB-TATE treatment in patients with advanced neuroendocrine neoplasm: a prospective pilot study. Theranostics. 2018;8(12):3308–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Liu Q, Zang J, Sui H, et al. Peptide receptor radionuclide therapy of late-stage neuroendocrine tumor patients with multiple cycles of 177Lu-DOTA-EB-TATE. J Nucl Med. 2021;62:386–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhang J, Wang H, Jacobson Weiss O, et al. Safety, pharmacokinetics and dosimetry of a long-acting radiolabeled somatostatin analogue 177Lu-DOTA-EBTATE in patients with advanced metastatic neuroendocrine tumors. J Nucl Med. 2018;59:1699–705.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Hänscheid H, Hartrampf PE, Schirbel A, et al. Intraindividual comparison of 177Lu-DOTA-EB-TATE and 177Lu-DOTA-TOC. Eur J Nucl Med Mol Imaging. 2021;48:2566–72.

    PubMed  PubMed Central  Google Scholar 

  89. Mansi R, Fani M. Design and development of the theranostic pair 177Lu-OPS201/68GaOPS202 for targeting somatostatin receptor expressing tumors. J Labelled Comp Radiopharm. 2019;62:635–45.

    Google Scholar 

  90. Navalkissoor S, Grossman A. Targeted alpha particle therapy for neuroendocrine tumours: the next generation of peptide receptor radionuclide therapy. Neuroendocrinology. 2019;108:256–64.

    CAS  PubMed  Google Scholar 

  91. Kunikowska J, Krolicki L. Targeted α-emitter therapy of neuroendocrine tumors. Semin Nucl Med. 2019;50:171–6.

    Google Scholar 

  92. Ballal S, Yadav MP, Bal C, et al. Broadening horizons with (225)Ac-DOTATATE targeted alpha therapy for gastroenteropancreatic neuroendocrine tumor patients stable or refractory to (177)Lu-DOTATATE PRRT: first clinical experience on the efficacy and safety. Eur J Nucl Med Mol Imaging. 2020;47:934–46.

    CAS  PubMed  Google Scholar 

  93. Zhang J, Kulkarni HR, Baum RP. Peptide receptor radionuclide therapy using 225Ac-DOTATOC achieves partial remission in a patient with progressive neuroendocrine liver metastases after repeated β-emitter peptide receptor radionuclide therapy. Clin Nucl Med. 2020;45:241–3.

    CAS  PubMed  Google Scholar 

  94. Bonisch H, Bruss M. The norepinephrine transporter in physiology and disease. Handb Exp Pharmacol. 2006;(175):485–524.

    Google Scholar 

  95. Streby KA, Shah N, Ranalli MA, Kunkler A, Cripe TP. Nothing but NET: a review of nor-epinephrine transporter expression and efficacy of 131I-mIBG therapy. Pediatr Blood Cancer. 2015;62:5–11.

    CAS  PubMed  Google Scholar 

  96. Wieland DM, Wu J, Brown LE, et al. Radiolabeled adrenergic neuronblocking agents: adrenomedullary imaging with [131I]iodobenzylguanidine. J Nucl Med. 1980;21:349–53.

    CAS  PubMed  Google Scholar 

  97. Wieland DM, Brown LE, Tobes MC, et al. Imaging the primate adrenal medulla with [123I] and [131I] meta-iodobenzylguanidine: concise communication. J Nucl Med. 1981;22:358–64.

    CAS  PubMed  Google Scholar 

  98. Vallabhajosula S, Nikolopoulou A. Radioiodinated metaiodobenzylguanidine (MIBG): radiochemistry, biology, and pharmacology. Semin Nucl Med. 2011;41(5):324–33.

    PubMed  Google Scholar 

  99. Hattner RS, Huberty JP, Engelstad BL, et al. Localization of m-iodo(131I)benzylguanidine in neuroblastoma. AJR Am J Roentgenol. 1984;143(2):373–4.

    CAS  PubMed  Google Scholar 

  100. Sisson JC, Frager MS, Valk TW, et al. Scintigraphic localization of pheochromocytoma. N Engl J Med. 1981;305(1):12–7.

    CAS  PubMed  Google Scholar 

  101. Sisson JC, Shapiro B, Beierwaltes WH, et al. Radiopharmaceutical treatment of malignant pheochromocytoma. J Nucl Med. 1984;25:197–206.

    CAS  PubMed  Google Scholar 

  102. Treuner J, Klingebiel T, Bruchelt G, et al. Treatment of neuroblastoma with metaiodobenzylguanidine: results and side effects. Med Pediatr Oncol. 1987;15:199–202.

    CAS  PubMed  Google Scholar 

  103. Hoefnagel CA, Voûte PA, de Kraker J, Marcuse HR. Radionuclide diagnosis and therapy of neural crest tumors using I-131-meta-iodobenzylguanidine. J Nucl Med. 1987;28:308–14.

    CAS  PubMed  Google Scholar 

  104. Pandit-Taskar N, Modak S. Norepinephrine transporter as a target for imaging and therapy. J Nucl Med. 2017;58:39S–53S.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Pharmaclucence 2008 package insert: I-131 MIBG iobenguane sulfate I-131 injection diagnostic for intravenous use. Billerica: Pharmalucence; 2008.

    Google Scholar 

  106. Garg PK, Garg S, Zalutsky MR. Synthesis and preliminary evaluation of Para- and meta-[18F]fuorobenzylguanidine. Nulc Med Biol. 1994;21(1):97–103.

    CAS  Google Scholar 

  107. Vaidyanathan G, Afeck DJ, Zalutsky MR. Validation of 4-[18F] fuoro-3-iodobenzylguanidine as a positron-emitting analog of MIBG. J Nucl Med. 1995;36:644–50.

    CAS  PubMed  Google Scholar 

  108. Zhang H, Huang R, Cheung NK, et al. Imaging the norepinephrine transporter in neuroblastoma: a comparison of [18F]-MFBG and 123I-MIBG. Clin Cancer Res. 2014;20(8):2182–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Pandit-Taskar N, Zanzonico P, Staton KD, et al. Biodistribution and dosimetry of 18F-meta-fuorobenzylguanidine: a first-in human PET/CT imaging study of patients with neuroendocrine malignancies. J Nucl Med. 2018;59(1):147–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Yamaguchi A, Hanaoka H, Higuchi T, Tsushima Y. Radiolabeled (4-fuoro-3-iodobenzyl)guanidine improves imaging and targeted radionuclide therapy of norepinephrine transporter expressing tumors. J Nucl Med. 2018;59(5):815–21.

    CAS  PubMed  Google Scholar 

  111. Kaji P, Carrasquillo JA, Linehan WM, et al. The role of 6-[18F]fluorodopamine positron emission tomography in the localization of adrenal pheochromocytoma associated with von Hippel-Lindau syndrome. Eur J Endocrinol. 2007;156:483–7.

    CAS  PubMed  Google Scholar 

  112. Pacak K, Eisenhofer G, Carrasquillo JA, et al. 6-[18F]Fluorodopamine positron emission tomographic (PET) scanning for diagnostic localization of pheochromocytoma. Hypertension. 2001;38:6–8.

    CAS  PubMed  Google Scholar 

  113. Timmers HJLM, Chen CC, Carrasquillo JA. Comparison of 18F-Fluoro-L-DOPA, 18F-fluorodeoxyglucose, and 18F-fluorodopamine PET and 123I-MIBG scintigraphy in the localization of pheochromocytoma and paraganglioma. J Clin Endocrinol Metab. 2009;94:4757–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Chen X, Kudo T, Lapa C, et al. Recent advances in radiotracers targeting norepinephrine transporter: structural development and radiolabeling improvements. J Neural Transm. 2020;127:851–73.

    PubMed  Google Scholar 

  115. Shulkin BL, Wieland DM, Baro ME, et al. PET hydroxyephedrine imaging of neuroblastoma. J Nucl Med. 1996;37:16–21.

    CAS  PubMed  Google Scholar 

  116. Shulkin BL, Wieland DM, Schwaiger M, et al. PET scanning with hydroxyephedrine: an approach to the localization of pheochromocytoma. J Nucl Med. 1992;33:1125–31.

    CAS  PubMed  Google Scholar 

  117. Yamamoto S, Hellman P, Wassberg C, et al. 11C-Hydroxyephedrine positron emission tomography imaging of pheochromocytoma: a single Center experience over 11 years. J Clin Endocrinol Metab. 2012;97:2423–32.

    Google Scholar 

  118. Vyakaranam AR, Crona J, Norlén O, et al. 11C-hydroxy-ephedrine-PET/CT in the diagnosis of pheochromocytoma and paraganglioma. Cancers (Basel). 2019;11(6):pii:E847.

    Google Scholar 

  119. Gonias S, Goldsby R, Matthay KK, et al. Phase II study of high-dose [131I] metaiodobenzylguanidine therapy for patients with metastatic pheochromocytoma and paraganglioma. J Clin Oncol. 2009;27:4162–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Azedra® (iobenguane I 131) injection for intravenous use [package insert]. New York: Progenics Pharmaceuticals, Inc.; 2018.

    Google Scholar 

  121. Pryma DA, Chin BB, Noto RB, et al. Efficacy and safety of high-specific-activity 131I-MIBG therapy in patients with advanced pheochromocytoma or paraganglioma. J Nucl Med. 2019;60:623–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Carrasquillo JA, Chen CC, Jha A, et al. Systemic radiopharmaceutical therapy of pheochromocytoma and paraganglioma. J Nucl Med. 2021;62:1192–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Adekola K, Rosen ST, Shanmugama M. Glucose transporters in cancer metabolism. Curr Opin Oncol. 2012;24(6):650–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Macheda ML, Rogers S, Best JD. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol. 2005;202:654–62.

    CAS  PubMed  Google Scholar 

  125. Basturk O, Yang Z, Tang LH, et al. The high-grade (WHO G3) pancreatic neuroendocrine tumor category is morphologically and biologically heterogenous and includes both well differentiated and poorly differentiated neoplasms. Am J Surg Pathol. 2015;39:683–90.

    PubMed  PubMed Central  Google Scholar 

  126. Bahri H, Laurence L, Edeline J, et al. High prognostic value of 18F-FDG PET for metastatic gastroentero-pancreatic neuroendocrine tumors: a long-term evaluation. J Nucl Med. 2014;55(11):1786–90.

    CAS  PubMed  Google Scholar 

  127. Pattison DA, Hofman MS. Role of fluorodeoxyglucose PET/computed tomography in targeted radionuclide therapy for endocrine malignancies. PET Clin. 2015;10:461–47.

    PubMed  Google Scholar 

  128. Alevroudis E, Spei M-E, Chatziioannou SN, et al. Clinical utility of 18F-FDG PET in neuroendocrine tumors prior to peptide receptor radionuclide therapy: a systematic review and meta-analysis. Cancer. 2021;13:1813.

    CAS  Google Scholar 

  129. Evangelista L, Ravelli I, Bignotto A. Ga-68 DOTA-peptides and F-18 FDG PET/CT in patients with neuroendocrine tumor: a review. Clin Imaging. 2020;67:113–6.

    PubMed  Google Scholar 

  130. Zhao Y, Wang L, Pan J. The role of L-type amino acid transporter 1 in human tumors. Intractable Rare Dis Res. 2015;4(4):165–9.

    PubMed  PubMed Central  Google Scholar 

  131. Bjurling P, Watanabe Y, Tokushige M, et al. Syntheses of β-11C-labelled L-tryptophan and 5-hydroxy-L-tryptophan using a multi-enzymatic reaction route. J Chem Soc Perkin. 1989;1(7):1331–4.

    Google Scholar 

  132. Sundin A, Eriksson B, Bergstrom M, et al. Demonstration of (11C) 5-hydroxy-l-tryptophan uptake and decarboxylation in carcinoid tumors by specific positioning labeling in positron emission tomography. Nucl Med Biol. 2000;1:33–41.

    Google Scholar 

  133. Sundin A, Eriksson B, Bergstrom M, et al. PET in the diagnosis of neuroendocrine tumors. Ann N Y Acad Sci. 2004;1014:246–57.

    CAS  PubMed  Google Scholar 

  134. Hoegerle S, Altehoefer C, Ghanem N, et al. Whole-body 18F-DOPA PET for detection of gastrointestinal carcinoid tumors. Radiology. 2001;220:373–80.

    CAS  PubMed  Google Scholar 

  135. Lussey-Lepoutre C, Hindié E, Montravers F, et al. The current role of 18F-FDOPA PET for neuroendocrine tumor imaging. Médecine Nucléaire. 2016;40:20–30.

    Google Scholar 

  136. Bergstrom M, Lu L, Eriksson B, et al. Modulation of organ uptake of 11C-labelled 5-hydroxytryptophan. Biog Amines. 1996;12:477–85.

    Google Scholar 

  137. Luxen A, Guillaume M, Melega WP, et al. Production of 6-[18F]fluoro-L-dopa and its metabolism in vivo– a critical review. Int J Rad Appl Instrum B. 1992;19:149–58.

    CAS  PubMed  Google Scholar 

  138. Orlefors H, Sundin A, Lu L, et al. Carbidopa pretreatment improves image interpretation and visualization of carcinoid tumours with 11C-5-hydroxytryptophan positron emission tomography. Eur J Nucl Med Mol Imaging. 2006;33:60–5.

    CAS  PubMed  Google Scholar 

  139. Oberg K. Diagnosis and treatment of carcinoid tumors. Expert Rev Anticancer Ther. 2003;3:863–77.

    PubMed  Google Scholar 

  140. Orlefors H. Positron emission tomography in the management of neuroendocrine tumors. PhD Thesis, Uppsala University, Sweden; 2003.

    Google Scholar 

  141. Orlefors H, Sundin A, Garske U, et al. Whole-body 11C-5-hydroxytrypto-phan positron emission tomography as a universal imaging technique for neuroendocrine tumors – comparison with somatostatin receptor scintigraphy and computed tomography. J Clin Endocrinol Metab. 2005;90:3392–400.

    CAS  PubMed  Google Scholar 

  142. Carlbom L, Caballero-Corba J, Granberg D, et al. Whole-body MRI including diffusion-weighted MRI compared with 5-HTP PET/CT in the detection of neuroendocrine tumors. Ups J Med Sci. 2017;122(1):43–50.

    PubMed  Google Scholar 

  143. Garnett ES, Firnau G, Nahmias C. Dopamine visualized in the basal ganglia of living man. Nature. 1983;305:137–8.

    CAS  PubMed  Google Scholar 

  144. Gazdar AF, Helman LJ, Israel MA, et al. Expression of neuroendocrine cell markers L-dopa decarboxylase, chromogranin A, and dense core granules in human tumors of endocrine and nonendocrine origin. Cancer Res. 1988;48:4078–82.

    CAS  PubMed  Google Scholar 

  145. Becherer A, Szabo M, Karanikas G, et al. Imaging of advanced neuroendocrine tumors with [18]F-FDOPA PET. J Nucl Med. 2004;45:1161–7.

    CAS  PubMed  Google Scholar 

  146. Rufini V, Calcagni ML, Baum RP. Imaging of neuroendocrine tumors. Semin Nucl Med. 2006;36:228–47.

    PubMed  Google Scholar 

  147. Barachini O, Bernt R, Mirzaei S, et al. The impact of 18F-FDOPA-PET/MRI image fusion in detecting liver metastasis in patients with neuroendocrine tumors of the gastrointestinal tract. BMC Med Imaging. 2020;20:22–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Jager PL, Chirakal R, Marriott CJ, et al. 6-L-18F-fluorodihydroxyphenyl-alanine PET in neuroendocrine tumors: basic aspects and emerging clinical applications. J Nucl Med. 2008;49:573–86.

    CAS  PubMed  Google Scholar 

  149. Ouvrard E, Chevalier E, Addeo P, et al. Intraindividual comparison of 18F-FDOPA and 68Ga-DOTATOC PET/CT detection rate for metastatic assessment in patients with ileal neuroendocrine tumours. Clin Endocrinol. 2021;94:66–73.

    CAS  Google Scholar 

  150. FDOPA-FDA 2019: drug trials snapshots: FLUORODOPA F18 | FDA

    Google Scholar 

  151. Mikulova MB, Mikus P. Advances in development of radiometal labeled amino acid-based compounds for cancer imaging and diagnostics. Pharmaceuticals. 2021;14:167–206.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Christ E, Antwi K, Fani M, Wild D. Innovative imaging of insulinoma: the end of sampling? A review. Endocr Relat Cancer. 2020;27:R79–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Jansen T, Van Lith S, Boss M, et al. Exendin-4 analogs in insulinoma theranostics. J Label Compd Radiopharm. 2019;62:656–72.

    CAS  Google Scholar 

  154. Wild D, Macke H, Christ E, Gloor B, Reubi JC. Glucagon-like peptide 1-receptor scans to localize occult insulinomas. N Engl J Med. 2008;359(7):766–8.

    CAS  PubMed  Google Scholar 

  155. Antwi K, Fani M, Nicolas G, et al. Localization of hidden insulinomas with 68Ga-DOTA-Exendin-4 PET/CT: a pilot study. J Nucl Med. 2015;56:1075–8.

    CAS  PubMed  Google Scholar 

  156. Antwi K, Fani M, Heye T, et al. Comparison of glucagon-like peptide-1 receptor (GLP-1R) PET/CT, SPECT/CT and 3T MRI for the localization of occult insulinomas: evaluation of diagnostic accuracy in a prospective crossover imaging study. Eur J Nucl Med Mol Imaging. 2018;45:2318–27.

    CAS  PubMed  Google Scholar 

  157. Luo Y, Pan Q, Yao S, et al. Glucagon-like peptide-1 receptor PET/CT with 68Ga-NOTA-exendin-4 for detecting localized insulinoma: a prospective cohort study. J Nucl Med. 2016;57:715–20.

    CAS  PubMed  Google Scholar 

  158. Rottenburger C, Nicolas GP, McDougall L, et al. Cholecystokinin 2 receptor agonist 177Lu-PP-F11N for radionuclide therapy of medullary thyroid carcinoma: results of the Lumed phase 0a study. J Nucl Med. 2020;61:520–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Sauter AW, Mansi R, Hassiepen U, et al. Targeting of the cholecystokinin-2 receptor with the minigastrin analog 177Lu-DOTA-PP-F11N: does the use of protease inhibitors further improve in vivo distribution? J Nucl Med. 2019;60:393–9.

    Google Scholar 

  160. Baum RP, Singh A, Schuchardt C, et al. 177Lu-3BP-227 for neurotensin receptor 1–targeted therapy of metastatic pancreatic adenocarcinoma: first clinical results. J Nucl Med. 2018;59:809–14.

    Google Scholar 

  161. Li D, Minnix M, Allen R, et al. Preclinical PET imaging of NTSR-1-positive tumors with 64Cu- and 68Ga-DOTA-neurotensin analogs and therapy with an 225Ac-DOTA-neurotensin analog. Cancer Biother Radiopharm. 2021;36(8):651.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Schulz J, Rohracker M, Stiebler M, et al. Comparative evaluation of the biodistribution profiles of a series of nonpeptidic neurotensin receptor-1 antagonists reveals a promising candidate for theranostic applications. J Nucl Med. 2016;57:1120–3.

    CAS  PubMed  Google Scholar 

  163. Schulz J, Rohracker M, Stiebler M, et al. Proof of therapeutic efficacy of a 177Lu-labeled neurotensin receptor 1 antagonist in a colon carcinoma xenograft model. J Nucl Med. 2017;58:936–41.

    CAS  PubMed  Google Scholar 

  164. Kircher M, Herhaus P, Schottelius M, et al. CXCR4-directed theranostics in oncology and inflammation. Ann Nucl Med. 2018;32:503–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Kakinuma T, Hwang ST. Chemokines, chemokine receptors, and cancer metastasis. J Leukoc Biol. 2006;79:639–51.

    CAS  PubMed  Google Scholar 

  166. Guo F, Wang Y, Liu J. CXCL12/CXCR4: a symbiotic bridge linking cancer cells and their stromal neighbors in oncogenic communication networks. Oncogene. 2016;35:816–26.

    CAS  PubMed  Google Scholar 

  167. Demmer O, Gourni E, Schumacher U, et al. PET imaging of CXCR4 receptors in cancer by a new optimized ligand. Chem Med Chem. 2011;6(10):1789–91.

    CAS  PubMed  Google Scholar 

  168. Lapa C, Lückerath K, Rudelius M, et al. [68Ga]Pentixafor-PET/CT for imaging of chemokine receptor 4 expression in small cell lung cancer - initial experience. Oncotarget. 2016;7:9288. https://doi.org/10.18632/oncotarget.7063.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Werner RA, Weich A, Higuchi T, et al. Imaging of chemokine receptor 4 expression in neuroendocrine tumors - a triple tracer comparative approach. Theranostics. 2017;7:1489–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Weich A, Werner RA, Buck AK, et al. CXCR4-directed PET/CT in patients with newly diagnosed neuroendocrine carcinomas. Diagnostics. 2021;11(4):605. https://doi.org/10.3390/diagnostics11040605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Osl T, Schmidt A, Schwaiger M, et al. A new class of PentixaFor- and PentixaTher-based theranostic agents with enhanced CXCR4-targeting efficiency. Theranostics. 2020;10:8264–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Park JA, Cheung N-KV. Targets and antibody formats for immunotherapy of neuroblastoma. J Clin Oncol. 2020;38:1836–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Kramer K, Kushner BH, Modak S, et al. Compartmental intrathecal radioimmunotherapy: results for treatment for metastatic CNS neuroblastoma. J Neuro-Oncol. 2010;97:409–18.

    Google Scholar 

  174. Pandit-Taskar N, Zanzonico PB, Kramer K, et al. Biodistribution and dosimetry of intraventricularly administered 124I-Omburtamab in patients with metastatic leptomeningeal tumors. J Nucl Med. 2019;60:1794–801.

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Kaplona H, Reichert JM. Antibodies to watch in 2021. MAbs. 2021;13(1):e1860476, 34p

    Google Scholar 

  176. Strosberg J, Kunz PL, Hendifar A, et al. Impact of liver tumour burden, alkaline phosphatase elevation, and target lesion size on treatment outcomes with 177Lu-dotatate: an analysis of the NETTER-1 study. Eur J Nucl Med Mol Imaging. 2020;47:2372–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Bozkurt MF, Salanci BV, Uğur O. Intra-arterial radionuclide therapies for liver tumors. Semin Nucl Med. 2016;46:324–39.

    PubMed  Google Scholar 

  178. Chin R-I, Wu FS, Menda Y, Kim H. Radiopharmaceuticals for neuroendocrine tumors. Semin Radiat Oncol. 2020;31:60–70.

    Google Scholar 

  179. Yordanova A, Biersack H-J, Ahmadzadehfar H. Advances in molecular imaging and radionuclide therapy of neuroendocrine tumors. J Clin Med. 2020;9:3679. https://doi.org/10.3390/jcm9113679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Braat AJAT, Ahmadzadehfar H, Kappadath SC, et al. Radioembolization with (90)Y resin microspheres of neuroendocrine liver metastases after initial peptide receptor radionuclide therapy. Cardiovasc Intervent Radiol. 2020;43:246–53.

    CAS  PubMed  Google Scholar 

  181. Braat AJAT, Bruijnen RCG, Van Rooij R, et al. Additional holmium-166 radioembolization after lutetium-177-dotatate in patients with neuroendocrine tumor liver metastases (HEPAR PLuS): a single-center, single-arm, open-label, phase 2 study. Lancet Oncol. 2020;21:561–70.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shankar Vallabhajosula .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vallabhajosula, S. (2023). Theranostics in Neuroendocrine Tumors. In: Molecular Imaging and Targeted Therapy. Springer, Cham. https://doi.org/10.1007/978-3-031-23205-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23205-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23203-9

  • Online ISBN: 978-3-031-23205-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics