Skip to main content

Design of Radiolabeled Peptide Radiopharmaceuticals

  • Chapter
  • First Online:
Molecular Imaging and Targeted Therapy
  • 903 Accesses

Abstract

Peptides are short chains of amino acids (AA) containing less than 40–50 AAs. Twenty AAs appear in the genetic code and are considered as “standard” alpha AAs (or proteinogenic AAs). The peptide bond is an amide type of covalent chemical bond linking two consecutive α-amino acids. Compared with larger proteins and antibodies, peptides can penetrate and diffuse further into the tumor tissue because of their low molecular mass, and relatively small size. Since 1994, following the approval of 111In-DTPA-octreotide (Octreoscan) for imaging somatostatin receptor (SSTR) positive neuroendocrine tumors (NETs), several radiolabeled peptide drug conjugates (RPDC) have been approved for routine clinical use for PET imaging and targeted radionuclide therapy (TRT). Except for radiohalogens (18F, 123/124/131I), most PRPs for imaging and therapy are based on metallic radionuclides, such as 111In, 64Cu, 68Ga, 90Y, 177Lu, and 225Ac. The chemical components of a target-specific RPDC may have individual components such as targeting vehicle (peptide), spacer and/or linker, a bifunctional chelator (BFC), and radionuclide. The target specificity and in vivo stability of bioactive peptides can be improved by cyclization and substitution of non-natural AAs. This chapter provides a broad overview of the design and development of RPDCs for imaging and TRT of cancers expressing different peptide receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cooper BM, Legre J, O’Donovan DH, et al. Peptides as a platform for targeted therapeutics for cancer: peptide–drug conjugates (PDCs). Chem Soc Rev. 2021;50:1480–94.

    CAS  PubMed  Google Scholar 

  2. Zhang Y, Zhang H, Ghosh D, Williams RO. Just how prevalent are peptide therapeutic products? A critical review. Int J Pharma. 2020;587:119491.

    CAS  Google Scholar 

  3. Fani M, Maeske HR, Okavi SM. Radiolabeled peptides: valuable tools for the detection and treatment of cancer. Theranostics. 2012;2(5):481–501.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Gharibkandi NA, Conlon JM, Hosseinimehr SJ. Strategies for improving stability and pharmacokinetic characteristics of radiolabeled peptides for imaging and therapy. Peptides. 2020;133(12):170385.

    Google Scholar 

  5. Mikulová MB, Mikuš P. Advances in development of radiometal labeled amino acid-based compounds for cancer imaging and diagnostics. Pharmaceuticals. 2021;14:167.

    PubMed  PubMed Central  Google Scholar 

  6. Tornesello AL, Buonaguro L, Tornesello ML, Buonaguro FM. New insights in the design of bioactive peptides and chelating agents for imaging and therapy in oncology. Molecules. 2017;22(8):1282.

    PubMed  PubMed Central  Google Scholar 

  7. Maleki F, Farahani AM, Rezazedeh F, et al. Structural modifications of amino acid sequences of radiolabeled peptides for targeted tumor imaging. Bioorg Chem. 2020;99:103802.

    Google Scholar 

  8. Bass RT, Buckwalter BL, Patel BP, et al. (1996) Identification and characterization of novel somatostatin antagonists. Mol Pharmacol 50:709–715.

    Google Scholar 

  9. Günther T, Tulipano G, Dournaud P, et al. International Union of Basic and Clinical Pharmacology. CV. Somatostatin receptors: structure, function, ligands, and new nomenclature. Pharmacol Rev. 2018;70:763–835.

    PubMed  PubMed Central  Google Scholar 

  10. Fani M, Nicolas GP, Wild D. Somatostatin receptor antagonists for imaging and therapy. J Nucl Med. 2017;58:61S–6S.

    CAS  PubMed  Google Scholar 

  11. Evans BJ, King AT, Katsifis A, et al. Methods to enhance the metabolic stability of peptide-based PET radiopharmaceuticals. Molecules. 2020;25:2314. https://doi.org/10.3390/molecules25102314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gai Y, Jiang Y, Long Y, et al. Evaluation of an integrin α(v)β(3) and aminopeptidase N dual-receptor targeting tracer for breast cancer imaging. Mol Pharm. 2020;17:349–58.

    Google Scholar 

  13. Kapp TG, Rechenmacher F, Neubauer S, et al. Comprehensive evaluation of the activity and selectivity profile of ligands for RGD-binding integrins. Sci Rep. 2017;7:39805.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Popp I, Pozzo D, Waser B, et al. Approaches to improve metabolic stability of a statine-based GRP receptor antagonist. Nucl Med Biol. 2017;45:22–9.

    CAS  PubMed  Google Scholar 

  15. Cod WL, He JX, Reily MD, et al. Design of a potent combined pseudopeptide endothelin-A/endothelin-B receptor antagonist, Ac-d Bhg16-Leu-Asp-Ile-[NMe]Ile-Trp21 (PD 156252): examination of its pharmacokinetic and spectral properties. J Med Chem. 1997;40:2228–40.

    Google Scholar 

  16. Klingler M, Summer D, Rangger C, et al. DOTA-MGS5, a new cholecystokinin-2 receptor-targeting peptide analog with an optimized targeting profile for theranostic use. J Nucl Med. 2019;60:1010–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wu H, Huang J. PEGylated peptide-based imaging agents for targeted molecular imaging. Curr Protein Pept Sci. 2016;7(6):582–95.

    Google Scholar 

  18. Jamous M, Tamma ML, Gourni E, et al. PEG spacers of different length influence the biological profile of bombesin-based radiolabeled antagonists. Nucl Med Biol. 2014;41:464–70.

    CAS  PubMed  Google Scholar 

  19. Wu Z, Li Z-B, Cai W, et al. 18F-labeled mini-PEG spacered RGD dimer (18F-FPRGD2): synthesis and microPET imaging of αvβ3 integrin expression. Eur J Nucl Med Mol Imaging. 2007;34:1823.

    Google Scholar 

  20. Moradi SV, Hussein WM, Varamini P, et al. Glycosylation, an effective synthetic strategy to improve the bioavailability of therapeutic peptides. Chem Sci. 2016;7:2492–500.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Schweinsberg C, Maes V, Brans L, et al. Novel glycated [99mTc(CO)3]-labeled Bombesin analogues for improved targeting of gastrin-releasing peptide receptor-positive tumors. Bioconjug Chem. 2008;19:2432–9.

    CAS  PubMed  Google Scholar 

  22. Cho EH, Lim JC, Lee SY, Jung SH. An assessment tumor targeting ability of 177Lu labeled cyclic CCK analogue peptide by binding with cholecystokinin receptor. J Pharmacol Sci. 2016;131:209–14.

    CAS  PubMed  Google Scholar 

  23. Shinde SS, Maschauer S, Prante O. Sweetening pharmaceutical radiochemistry by 18F-Fluoro-glycosylation: recent progress and future prospects. Pharmaceuticals. 2021;14:1175. https://doi.org/10.3390/ph14111175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu Z, Chen X. Simple bioconjugate chemistry serves great clinical advances: albumin as a versatile platform for diagnosis and precision therapy. Chem Soc Rev. 2016;45(5):1432–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Zorzi A, Linciano S, Angelini A. Non-covalent albumin-binding ligands for extending the circulating half-life of small biotherapeutics. Med Chem Commun. 2019;10:1068.

    CAS  Google Scholar 

  26. Muller C, Struthers H, Winiger C, et al. DOTA conjugate with an albumin-binding entity enables the first folic acid-targeted 177Lu-radionuclide tumor therapy in mice. J Nucl Med. 2013;54(1):124–31.

    CAS  PubMed  Google Scholar 

  27. Tian R, Jacobson O, Niu G. Evans blue attachment enhances somatostatin receptor Subtype-2 imaging and radiotherapy. Theranostics. 2018;8(3):735–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Dumelin CE, Trussel S, Buller F, et al. A portable albumin binder from a DNA encoded chemical library. Angew Chem Int Ed Engl. 2008;47:3196–201.

    CAS  PubMed  Google Scholar 

  29. Kelly JM, Amor-Coarasa A, Ponnala S, et al. Albumin-binding PSMA ligands: implications for expanding the therapeutic window. J Nucl Med. 2019;60(5):656–63.

    CAS  PubMed  Google Scholar 

  30. Umbricht CA, Benesova M, Hasler R, et al. Design and preclinical evaluation of an albumin-binding PSMA ligand for (64)Cu-based PET imaging. Mol Pharm. 2018;15(12):5556–64.

    CAS  PubMed  Google Scholar 

  31. Rousseau E, Lau J, Zhang Z, et al. Effects of adding an albumin binder chain on [(177)Lu]LuDOTATATE. Nucl Med Biol. 2018;66:10–7.

    CAS  PubMed  Google Scholar 

  32. Jacobson O, Kiesewetter DO, Chen X. Albumin-Binding Evans Blue Derivatives for Diagnostic Imaging and Production of Long-Acting Therapeutics Bioconjugate Chem. 2016;27(10):2239–47.

    Google Scholar 

  33. Zhang J, Wang H, Jacobson O, et al. Safety, pharmacokinetics, and dosimetry of a long-acting radiolabeled somatostatin analog (177)Lu-DOTA-EB-TATE in patients with advanced metastatic neuroendocrine tumors. J Nucl Med. 2018;59(11):1699–705.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Arezou FM, Fariba M, Nourollah S. The influence of different spacers on biological profile of peptide radiopharmaceuticals for diagnosis and therapy of human cancers. Anti Cancer Agents Med Chem. 2020;20(4):402–16.

    Google Scholar 

  35. Farahani AM, Maleki F, Sadeghzadeh N. The influence of different spacers on biological profile of peptide radiopharmaceuticals for diagnosis and therapy of human cancers. Anti Cancer Agents Med Chem. 2020;20(4):402–6.

    CAS  Google Scholar 

  36. Antunes P, Ginj M, Walter MA, et al. Influence of different spacers on the biological profile of a DOTA-somatostatin analogue. Bioconjug Chem. 2007;18:84–92.

    CAS  PubMed  Google Scholar 

  37. Jia Y, Shi W, Zhou Z, et al. Evaluation of DOTA-chelated neurotensin analogs with spacer-enhanced biological performance for neurotensin-receptor-1-positive tumor targeting. Nucl Med Biol. 2015;42:816–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Janssen M, Oyen WJ, Massuger LF, et al. Comparison of a monomeric and dimeric radiolabeled RGD-peptide for tumor targeting. Cancer Biother Radiopharm. 2002;17(6):641–6.

    CAS  PubMed  Google Scholar 

  39. Li ZB, Cai W, Cao Q, et al. (64)Cu-labeled tetrameric and octameric RGD peptides for small-animal PET of tumor alpha(v)beta(3) integrin expression. J Nucl Med. 2007;48(7):1162–71.

    CAS  PubMed  Google Scholar 

  40. Liu Z, Yan Y, Chin FT, et al. Dual integrin and gastrin-releasing peptide receptor targeted tumor imaging using 18F-labeled PEGylated RGD-bombesin heterodimer 18F-FB-PEG3-Glu-RGD-BBN. J Med Chem. 2009;52(2):425–32.

    CAS  PubMed  Google Scholar 

  41. Li H, Liu Z, Yuan L, et al. Radionuclide-based imaging of breast cancer: state of the art. Cancers (Basel). 2021;13(21):5459.

    CAS  PubMed  Google Scholar 

  42. Jamous M, Haberkorn U, Mier W. Synthesis of peptide radiopharmaceuticals for the therapy and diagnosis of tumor diseases. Molecules. 2013;18:3379–409.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Oliveira MC, Correia JDG. Biomedical applications of radioiodinated peptides. Eur J Med Chem. 2019;179:56–77.

    CAS  PubMed  Google Scholar 

  44. Ajenjo J, Destro G, Cornelissen B, Gouverneur V, et al. Closing the gap between 19F and 18F chemistry. EJNMMI Radiopharm Chem. 2021;6:33–70.

    PubMed  PubMed Central  Google Scholar 

  45. Jacobson O, Kiesewetter DO, Chen X. Fluorine-18 radiochemistry, labeling strategies and synthetic routes. Bioconjug Chem. 2015;26:1–18.

    CAS  PubMed  Google Scholar 

  46. Richter S, Wuest F. 18F-labeled peptides: the future is bright. Molecules. 2014;19:20536–56.

    Google Scholar 

  47. Halder R, Ritter T. 18F-fluorination: challenge and opportunity for organic chemists. J Org Chem. 2021;86(20):13873–84.

    Google Scholar 

  48. Yuan Z, Nodwell MB, Yang H, et al. Site-selective, late-stage C−H 18F-fuorination on unprotected peptides for positron emission tomography imaging. Angew Chemie Int Ed. 2018;57:12733–6.

    CAS  Google Scholar 

  49. Rickmeier J, Ritter T. Site-specific deoxyfluorination of small peptides with [18F]fluoride. Angew Chem Int Ed. 2018;57:14207–11.

    CAS  Google Scholar 

  50. McBride WJ, Sharkey RM, Karacay H, et al. A novel method of 18F radiolabeling for PET. J Nucl Med. 2009;50:991–8.

    CAS  PubMed  Google Scholar 

  51. Archibald SJ, Allott L. The aluminum-[18F]fluoride revolution: simple radiochemistry with a big impact for radiolabelled biomolecules EJNMMI. Radiopharm Chem. 2021;6:30.

    Google Scholar 

  52. Kumar K. 18F-AlF-labeled biomolecule conjugates as imaging pharmaceuticals. J Nucl Med. 2018;59(8):1218–9.

    Google Scholar 

  53. Fersing C, Bouhlel A, Cantelli C, et al. A comprehensive review of non-covalent radiofluorination approaches using aluminum [18F]fluoride: will [18F]AlF replace 68Ga for metal chelate labeling? Molecules. 2019;24(16):2866.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Boros E, Packard A. Radioactive transition metals for imaging and therapy. Chem Rev. 2019;119:870–90.

    CAS  PubMed  Google Scholar 

  55. Price EW, Orvig C. Matching chelators to radiometals for radiopharmaceuticals. Chem Soc Rev. 2014;43:260.

    CAS  PubMed  Google Scholar 

  56. Kostelnik TI, Orvig C. Radioactive main group and rare earth metals for imaging and therapy. Chem Rev. 2019;119(2):902–56.

    CAS  PubMed  Google Scholar 

  57. Boschi A, Uccelli L, Martini P. A picture of modern Tc-99m radiopharmaceuticals: production, chemistry, and applications in molecular imaging. Appl Sci. 2019;9:2526.

    Google Scholar 

  58. Rezazadeh F, Sadeghzade N. Tumor targeting with 99mTc radiolabeled peptides: clinical application and recent development. Chem Biol Drug Des. 2019;93:205–21.

    Google Scholar 

  59. Ram S, Buchsbaum DJ. A peptide-based bifunctional chelating agent for 99mTc and 186Re labeling of monoclonal antibodies. Cancer. 1994;73(s3):769–73.

    Google Scholar 

  60. Babich JW, Fischman AJ. Effect of co-ligand on the biodistribution of 99mTc labeled hydrazine nicotinic acid derivatized chemotactic peptides. Nucl Med Biol. 1995;22:25–30.

    CAS  PubMed  Google Scholar 

  61. Piramoon M, Hosseinimehr SJ. The past, current studies and future of organometallic 99mTc(CO)3 labeled peptides and proteins. Curr Pharm Des. 2016;22:4854–67.

    CAS  PubMed  Google Scholar 

  62. Alberto R, Schlibi R, Schubiger AP. First application of fac-[99mTc(OH2)3(CO)3]+ in bioorganometallic chemistry: design, structure, and in vitro affinity of a 5-HT1A receptor ligand labeled with 99mTc. J Am Chem Soc. 1999;121:6076–7.

    CAS  Google Scholar 

  63. Waibei R, Alberto R, Willude J, et al. Stable one-step technetium-99m labeling of His-tagged recombinant proteins with a novel Tc(I)-carbonyl complex. Nat Biotechnol. 1999;17:897–901.

    Google Scholar 

  64. Alberto R, Ortner K, Wheatley N, et al. Synthesis and properties of boranocarbonate: A convenient in situ CO source for the aqueous preparation of [99mTc(OH2)3(CO)3]+. J Am Chem Soc. 2001;123: 3135–136.

    Google Scholar 

  65. Schmidkonz C, Götz TI, Atzinger A, et al. 99mTc-MIP-1404 SPECT/CT for assessment of whole-body tumor burden and treatment response in patients with biochemical recurrence of prostate cancer. Clin Nucl Med. 2020;45(8):e349–57.

    Google Scholar 

  66. Vallabhajosula S, Nikolopoulou A, Babich JW (2014) 99mTc-labeled small-molecule inhibitors of prostate-specific membrane antigen: pharmacokinetics and biodistribution studies in healthy subjects and patients with metastatic prostate cancer. J Nucl Med 55(11):1791–1798.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shankar Vallabhajosula .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vallabhajosula, S. (2023). Design of Radiolabeled Peptide Radiopharmaceuticals. In: Molecular Imaging and Targeted Therapy. Springer, Cham. https://doi.org/10.1007/978-3-031-23205-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23205-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23203-9

  • Online ISBN: 978-3-031-23205-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics