Skip to main content

Radiopharmaceuticals for Therapy

  • Chapter
  • First Online:
Molecular Imaging and Targeted Therapy

Abstract

Radionuclide therapy or targeted radionuclide therapy (TRT) is designed to selectively deliver cytotoxic radiation to cancer cells that causes minimal toxicity to surrounding healthy tissues, using optimized targeting vehicles (such as small organic molecules, peptides, and proteins) that deliver beta (β) or alpha (α) emitting radionuclides to specific biological targets (such as receptors and tumor-specific proteins) in cancer tissue. Therapeutic radiopharmaceuticals may be structurally simple ions (131I, 89Sr2+, and 223Ra2+), small molecules (131I-MIBG and 153Sm-EDTMP), complex molecules (177Lu-Dotatate, 177Lu-DOTA-PSMA-617, and 90Y-ibritumomab tiuxetan), colloids (32P chromic phosphate), or even particles (90Y labeled microspheres). Twelve approved therapeutic radiopharmaceuticals are in clinical use and many more are in active clinical investigation. Theranostics has the potential to develop patient-specific radiation dosimetry strategies based on molecular imaging (MI) studies and cell-killing radiation strategies to deliver the optimal therapeutic dose to the right patient at the right time. The success of the theranostic approach has been well established in patients with neuroendocrine tumors and prostate cancer with the approval of 18F-, 68Ga-, and 64Cu-labeled PET radiopharmaceuticals for MI studies, and 177Lu-labeled somatostatin receptor (SSTR) agonists and small-molecule prostate-specific membrane antigen (PSMA) inhibitors. This chapter provides a broad overview of therapeutic radiopharmaceuticals, clinical indications, and mechanisms of tumor localization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Troy DB, Beringer P, editors. Remington: the science and practice of pharmacy. 21st ed. Philadelphia: Lippincott Williams & Wilkins; 2006.

    Google Scholar 

  2. Christiansen JA, Hevesy GD, Lomholt S. Recherches, par une methode radiochimique, sur la circulationdu bismuth dans l’organisme. Compt Rend. 1924;178:1324.

    CAS  Google Scholar 

  3. Lomholt S. Notes on the pharmacology of bismuth, with reference to its employment in the therapy of syphilis. Br J Vener Dis. 1925;1(1):50–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Seidlin SM, Marinelli LD, Oshry E. Radioactive iodine therapy: effect on functioning metastases of adenocarcinoma of the thyroid. JAMA. 1946;32(14):838–47.

    Google Scholar 

  5. Vallabhajosula S. The chemistry of therapeutic radiopharmaceuticals. In: Aktolun C, Goldsmith SJ, editors. Nuclear medicine therapy: principles and clinical applications. New York: Springer Science+Business Media; 2013.

    Google Scholar 

  6. Chakravarty R, Chakraborty S. A review of advances in the last decade on targeted cancer therapy using 177Lu: focusing on 177Lu produced by the direct neutron activation route. Am J Nucl Med Mol Imaging. 2021;11(6):443–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Sgouros G, Bodei L, McDevitt MR, Nedrow JR. Radiopharmaceutical therapy in cancer: clinical advances and challenges. Nat Rev Drug Discov. 2020;19:589.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. O’Donoghue JA, Bardiès M, Wheldon TE. Relationships between tumor size and curability for uniformly targeted therapy with beta-emitting radionuclides. J Nucl Med. 1995;36(10):1902–9.

    PubMed  Google Scholar 

  9. IAEA-RRS-2. Production of long-lived parent radionuclides for generators: 68Ge, 82Sr, 90Sr and 188W. Vienna: International Atomic Energy Agency; 2010.

    Google Scholar 

  10. IAEA TRS-470. Therapeutic radionuclide generators: 90Sr/90Y AND 188W/188Re generators. Vienna: International Atomic Energy Agency; 2009.

    Google Scholar 

  11. Banerjee S, Pillai MRA, Knapp FF. Lutetium-177 therapeutic radiopharmaceuticals: linking chemistry, radiochemistry, and practical applications. Chem Rev. 2015;115(8):2934–74.

    CAS  PubMed  Google Scholar 

  12. Medvedev DG, Mausner LF, Meinken GE, et al. Development of a large-scale production of Cu-67 from Zn-68 at the high energy proton accelerator: closing the Zn-68 cycle. Appl Radiat Isot. 2012;70:423–9.

    CAS  PubMed  Google Scholar 

  13. Ehst DA, Smith NA, Bowers DL, Makarashvili V. Copper-67 production on electron linacs—photonuclear technology development. AIP Conf Proc. 2012;1509:157–61.

    CAS  Google Scholar 

  14. Mamtimin M, Harmon F, Starovoitova VN. Sc-47 production from titanium targets using electron linacs. Appl Radiat Isot. 2015;102:1–4.

    CAS  PubMed  Google Scholar 

  15. Mikolajczak R, Huclier-Markai S, Alliot C, et al. Production of scandium radionuclides for theranostic applications: towards standardization of quality requirements. EJNMMI Radiopharm Chem. 2021;6:19.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Rotsch DA, Brown MA, Nolen JA, et al. Electron linear accelerator production and purification of scandium-47 from titanium dioxide targets. Appl Radiat Isot. 2018;2018(131):77–82.

    Google Scholar 

  17. Lehenberger S, Barkhausen C, Susan Cohrs S, et al. The low-energy β and electron emitter 161Tb as an alternative to 177Lu for targeted radionuclide therapy. Nucl Med Biol. 2011;38(6):917–24.

    CAS  PubMed  Google Scholar 

  18. Gracheva N, Müller C, Talip Z, et al. Production and characterization of no-carrier-added 161Tb as an alternative to the clinically applied 177Lu for radionuclide therapy EJNMMI. Radiopharm Chem. 2019;4:12.

    Google Scholar 

  19. Nicholas AL, Aldama DL, Verpelli M. Handbook of nuclear data for safeguards. International Atomic Energy Agency. 2008. IAEA-INDC (NDS)-0534.

    Google Scholar 

  20. Stevenson NR, St. George G, Simon J, Srivastava SC. Methods of producing high specific activity Sn-117m with commercial cyclotrons. J Radioanal Nucl Chem. 2015;305(1):99–108. https://doi.org/10.1007/s10967-015-4031-7.

    Article  CAS  Google Scholar 

  21. IAEA-TRS-468. Cyclotron produced radionuclides: physical characteristics and production methods. Vienna: International Atomic Energy Agency; 2009.

    Google Scholar 

  22. Balkin ER, Cutler CS. Scale-up of high specific activity 186gRe production using graphite-encased thick 186W targets and demonstration of an efficient target recycling process. Radiochimica Acta. 2017;105:1071–81.

    Google Scholar 

  23. Klaassen NJM, Arntz MJ, Arranja AG, et al. The various therapeutic applications of the medical isotope holmium-166: a narrative review. EJNMMI Radiopharm Chem. 2019;4(1):19.

    PubMed  PubMed Central  Google Scholar 

  24. Kozempel J, Mokhodoeva O, Vlk M. Progress in targeted alpha-particle therapy. What we learned about recoils release from in vivo generators. Molecules. 2018;23:581.

    PubMed  PubMed Central  Google Scholar 

  25. Tinganelli W, Ma NY, Von Neubeck C, et al. Influence of acute hypoxia and radiation quality on cell survival. J Radiat Res. 2013;54(Suppl 1):23–30.

    Google Scholar 

  26. Eychenne R, Chérel M, Haddad F, et al. Overview of the most promising radionuclides for targeted alpha therapy: the “hopeful eight”. Pharmaceutics. 2021;13:906.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Apostolidis C, Molinet R, McGinley J, et al. Cyclotron production of Ac-225 for targeted alpha therapy. Appl Radiat Isot. 2005;62:383–7.

    CAS  PubMed  Google Scholar 

  28. IAEA Report. IAEA report on joint IAEA-JRC workshop “Supply of Actinium-225”. Vienna: International Atomic Energy Agency; 2018.

    Google Scholar 

  29. Ahenkorah S, Cassells I, Deroose CM, et al. Bismuth-213 for targeted radionuclide therapy: from atom to bedside. Pharmaceutics. 2021;13:599.

    Google Scholar 

  30. Bertrand A, Legras B, Martin J. The use of radium-224 in the treatment of ankylosing spondylitis and rheumatoid synovitis. Health Phys. 1978;1:57–60.

    Google Scholar 

  31. Moiseeva AN, Aliev RA, Unezhev VN, et al. Cross section measurements of 151Eu(3He,5n) reaction: new opportunities for medical alpha emitter 149Tb production. Sci Rep. 2020;10:1–7.

    Google Scholar 

  32. Cavaier F, Haddad F, Sounalet T, et al. Terbium radionuclides for theranostics applications: a focus on MEDICIS-PROMEDR. Phys Procedia. 2017;90:157–63.

    Google Scholar 

  33. Ku A, Facca VJ, Cai Z, Reilly RM. Auger electrons for cancer therapy—a review. EJNMMI Radiopharm Chem. 2019;2019(4):27–63.

    Google Scholar 

  34. Howell RW, Rao DV, Hou D-Y, Narra VR, Sastry KSR. The question of relative biological effectiveness and quality factor for Auger emitters incorporated into proliferating mammalian cells. Radiat Res. 1991;128:282–92.

    CAS  PubMed  Google Scholar 

  35. Edem PE, Fonslet J, Kjær A, et al. In vivo radionuclide generators for diagnostics and therapy bioinorganic chemistry and applications. Bioinorg Chem Appl. 2016;2016:6148357.

    PubMed  PubMed Central  Google Scholar 

  36. Mausner L, Straub R, Srivastava S. The in vivo generator for radioimmunotherapy. J Labell Comp Radiopharm. 1989;26(1–12):498–500.

    Google Scholar 

  37. McDevitt MR, Ma D, Lai L, et al. Tumor therapy with targeted atomic nanogenerators. Science. 2001;294:1537–40.

    CAS  PubMed  Google Scholar 

  38. Kruijff RM, Wolterbeek HT, Denkova AG. A critical review of alpha radionuclide therapy—how to deal with recoiling daughters? Pharmaceuticals (Basel). 2015;8(2):321–36. https://doi.org/10.3390/ph8020321. Published online 2015 Jun 10.

    Article  CAS  PubMed  Google Scholar 

  39. Bhaskar R, Lee KA, Yeo R, Yeoh K-W. Cancer and radiation therapy: current advances and future directions. Int J Med Sci. 2012;9(3):193–9.

    Google Scholar 

  40. Murshed H. Radiation biology. In: Fundamentals of radiation oncology. 3rd ed. New York: Academic; 2019. p. 57–87.

    Google Scholar 

  41. Sinclair DW. Relative biological effectiveness (RBE), quality factor (Q) and radiation weighting factor (Wr). Ann ICRP. 2003;33(4):1–117.

    Google Scholar 

  42. Knapp FF, Dash A, editors. Radiopharmaceuticals for therapy. New Delhi: Springer-India; 2016.

    Google Scholar 

  43. Sia J, Szmyd R, Hau E, Gee HE. Molecular mechanisms of radiation-induced cancer cell death: a primer. Front Cell Dev Biol. 2020;8(41):1–8.

    Google Scholar 

  44. Desouky O, Ding N, Zhou G. Targeted and non-targeted effects of ionizing radiation. J Radiat Res Appl Sci. 2015;8:247–54.

    CAS  Google Scholar 

  45. Desouky O, Din N, Zhou G. Targeted and non-targeted effects of ionizing radiation. JRRAS March. 2015;1–8.

    Google Scholar 

  46. Panganiban R-AM, Snow AL, Day RM. Mechanisms of radiation toxicity in transformed and non-transformed cells. Int J Mol Sci. 2013;14:15931–58. https://doi.org/10.3390/ijms140815931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rösch F, Herzog H, Qaim SM. The beginning and development of the theranostic approach in nuclear medicine, as exemplified by the radionuclide pair 86Y and 90Y. Pharmaceuticals. 2017;10:56. https://doi.org/10.3390/ph10020056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Qaim SM, Scholten B, Neumaier B. New developments in the production of theranostic pairs of radionuclides. J Radioanal Nucl Chem. 2018;318:1493–509.

    Google Scholar 

  49. Boros E, Packard AB. Radioactive transition metals for imaging and therapy. Chem Rev. 2019;119(2):870–901.

    CAS  PubMed  Google Scholar 

  50. Kostelnik TI, Orvig C. Radioactive main group and rare earth metals for imaging and therapy. Chem Rev. 2019;119(2):902–56.

    CAS  PubMed  Google Scholar 

  51. Nelson BJB, Andersson JD, Wuest F. Targeted alpha therapy: progress in radionuclide production, radiochemistry, and applications. Pharmaceutics. 2021;13:49. https://doi.org/10.3390/pharmaceutics13010049.

    Article  CAS  Google Scholar 

  52. Price EW, Orvig C. Matching chelators to radiometals for radiopharmaceuticals. Chem Soc Rev. 2014;43(1):260–90.

    CAS  PubMed  Google Scholar 

  53. PI-NaI-2012. Sodium iodide I 131 solution therapeutic for oral use. Package insert. Mallinckrodt, revised 01/2012.

    Google Scholar 

  54. PI-Metastron-2013. METASTRON™ (Strontium-89 chloride injection). Package insert. New York: GE Health Care; 2013.

    Google Scholar 

  55. Sartor O, Coleman R, Nilsson S, et al. Effect of radium-223 dichloride on symptomatic skeletal events in patients with castration-resistant prostate cancer and bone metastases: results from a phase 3, double-blind, randomized trial. Lancet Oncol. 2014;15(7):738–46.

    Google Scholar 

  56. Parker CC, Coleman RE, Sartor O, et al. Three-year Safety of Radium-223 Dichloride in Patients with Castrationresistant Prostate Cancer and Symptomatic Bone Metastases from Phase 3 Randomized Alpharadin in Symptomatic Prostate Cancer Trial. Eur Urol. 2018; 73:427.

    Google Scholar 

  57. PI-Quadramet-2018. Quadramet® (Samarium Sm 153 lexidronam injection). Package insert. North Billerica: Lantheus Medical Imaging Inc.; 2018.

    Google Scholar 

  58. Braat AJAT, Smits MLJ, Braat MNGJA, et al. 90Y hepatic radioembolization: an update on current practice and recent developments. J Nucl Med. 2015;56:1079–108.

    Google Scholar 

  59. Beierwalters WH. Horizons in radionuclide therapy: 1985 update. J Nucl Med. 1981;26:421–6.

    Google Scholar 

  60. Bařinka C, Rojas C, Slusher B, Pomper M. Glutamate carboxypeptidase II in diagnosis and treatment of neurologic disorders and prostate cancer. Curr Med Chem. 2012;19:856.

    PubMed  PubMed Central  Google Scholar 

  61. Wieland DM, Wu J, Brown LE, Mangner TJ, et al. Radiolabeled adrenergic neuron blocking agents: adrenomedullary imaging with 131I-iodobenzylguanidine. J Nucl Med. 1980;21:349–53.

    CAS  PubMed  Google Scholar 

  62. Agrawal A, Rangarajan V, Shah S, et al. MIBG (metaiodobenzylguanidine) theranostics in pediatric and adult malignancies. Br J Radiol. 2018;91:1091.

    Google Scholar 

  63. Vallabhajosula S, Nikolopoulou A. Radioiodinated metaiodobenzylguanidine (MIBG): radiochemistry, biology, and pharmacology. Semin Nucl Med. 2011;41:324–33.

    PubMed  Google Scholar 

  64. PI-MIBG-2018. AZEDRA® (iobenguane I 131) injection, for intravenous use. Package Insert. New York, NY: Progenics Pharmaceuticals Inc, revised 07/2018.

    Google Scholar 

  65. Hoppenz P, Els-Heindl S, Beck-Sickinger AG. Peptide-drug conjugates and their targets in advanced cancer therapies. Front Chem. 2020;8:571.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Reubi J-C. Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr Rev. 2003;24:389–427. https://doi.org/10.1210/er.2002-0007.

    Article  CAS  PubMed  Google Scholar 

  67. Vrettos EI, Mezo G, Tzakos AG. On the design principles of peptide-drug conjugates for targeted drug delivery to the malignant tumor site. Beilstein J Org Chem. 2018;14:930–54. https://doi.org/10.3762/bjoc.14.80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Otte A, Mueller-Brand J, Dellas S, et al. Yttrium-90-labelled somatostatin-analogue for cancer treatment. Lancet. 1998;351(9100):417–8.

    Google Scholar 

  69. PI-Lutathera-2018. LUTATHERA® (lutetium Lu 177 dotatate) injection. Package insert. Millburn: Advanced Accelerator Applications; 2018.

    Google Scholar 

  70. Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256:495–7.

    PubMed  Google Scholar 

  71. Zahavi D, Weiner L. Monoclonal antibodies in cancer therapy. Antibodies. 2020;9(34). https://doi.org/10.3390/antib9030034.

  72. Boswell CA, Brechbiel MW. Development of radioimmunotherapeutic and diagnostic antibodies: an inside-out view. Nucl Med Biol. 2007;34:757–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Larson SM, Carrasquillo JA, Cheung N-KV, Press OW. Radioimmunotherapy of human tumours. Nat Rev Cancer. 2015;15:347–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. O’Keefe DS, Su SL, Bacich DJ, et al. Mapping, genomic organization and promoter analysis of the human prostate-specific membrane antigen gene. Biochim Biophys Acta. 1998;1443:113–27.

    PubMed  Google Scholar 

  75. Horoszewicz JS, Kawinski E, Murphy GP. Monoclonal antibodies to a new antigenic marker in epithelial prostatic cells and serum of prostatic cancer patients. Anticancer Res. 1987;7:927–35.

    Google Scholar 

  76. Israeli RS, Powell CT, Corr JG, Fair WR, Heston WD. Expression of the prostate-specific membrane antigen. Cancer Res. 1994;54:1807–11.

    Google Scholar 

  77. Liu H, Moy P, Kim S, et al. Monoclonal antibodies to the extracellular domain of prostate-specific membrane antigen also react with tumor vascular endothelium. Cancer Res. 1997;57:3629–34.

    CAS  PubMed  Google Scholar 

  78. Liu H, Rajasekaran AK, Moy P, et al. Constitutive and antibody-induced internalization of prostate-specific membrane antigen. Cancer Res. 1998;58:4055–60.

    CAS  PubMed  Google Scholar 

  79. Tagawa ST, Akhtar NH, Nikolopoulou A, et al. Bone marrow recovery and subsequent chemotherapy following radiolabeled anti-prostate-specific membrane antigen monoclonal antibody J591 in men with mCRPC. Front Oncol. 2013;3:1–6.

    Google Scholar 

  80. Tagawa ST, Sun M, Sartor AO, et al. Phase I study of 225Ac-J591 for men with metastatic castration-resistant prostate cancer (mCRPC). J Clin Oncol. 2021;39(Suppl 15):5015.

    Google Scholar 

  81. Vallabhajosula S, Nikolopoulou A, Jhanwar YS, et al. Radioimmunotherapy of metastatic prostate cancer with 177Lu-DOTA-huJ591 anti prostate specific membrane antigen specific monoclonal antibody. Curr Radiopharm. 2016;9:44–53.

    CAS  PubMed  Google Scholar 

  82. Pastorino S, Riondato M, Uccelli L, et al. Toward the discovery and development of PSMA targeted inhibitors for nuclear medicine applications. Current Radiopharmaceuticals. 2020;13:63–79.

    Google Scholar 

  83. Carlucci G, Ippisch R, Slavik R, et al. 68Ga-PSMA-11 NDA approval: a novel and successful academic partnership. J Nucl Med. 2021;62:149–55.

    Google Scholar 

  84. Morris MJ, Rowe SP, Gorin MA, et al. Diagnostic performance of 18 F-DCFPyL-PET/CT in men with biochemically recurrent prostate cancer: results from the CONDOR phase III, multicenter study. Clin Cancer Res. 2021;27(13):3674–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Weineisen M, Schottelius M, Simecek J, et al. 68Ga- and 177Lu-labeled PSMA I&T: optimization of a PSMA-targeted theranostic concept and first proof-of-concept human studies. J Nucl Med. 2015;56:1169–1176

    Google Scholar 

  86. Benešová M, Schäfer M, Bauder-Wüst U, et al. Preclinical evaluation of a tailor-made DOTA-conjugated PSMA inhibitor with optimized linker moiety for imaging and endoradiotherapy of prostate cancer. J Nucl Med. 2015;56(6):914–20.

    PubMed  Google Scholar 

  87. Kratochwil C, Giesel FL, Stefanova M, et al. PSMA-targeted radionuclide therapy of metastatic castration-resistant prostate cancer with 177Lu-labeled PSMA-617. J Nucl Med. 2016;57:1170–6.

    CAS  PubMed  Google Scholar 

  88. Hofman MS, Emmett L, Sandhu S, et al. [177Lu]Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): a randomized, open-label, phase 2 trial. Lancet. 2021;397(10276):797–804.

    CAS  PubMed  Google Scholar 

  89. Sartor O, de Bono J, Chi KN, Fizazi K, Herrmann K, Rahbar K, et al. Lutetium-177-PSMA-617 for metastatic castration-resistant prostate cancer. N Engl J Med. 2021;385:1091–103.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shankar Vallabhajosula .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vallabhajosula, S. (2023). Radiopharmaceuticals for Therapy. In: Molecular Imaging and Targeted Therapy. Springer, Cham. https://doi.org/10.1007/978-3-031-23205-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23205-3_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23203-9

  • Online ISBN: 978-3-031-23205-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics