Skip to main content

Pharmacokinetics and Modeling

  • Chapter
  • First Online:
Molecular Imaging and Targeted Therapy
  • 822 Accesses

Abstract

Molecular imaging of radiotracer distribution by PET or SPECT studies permits the measurement of the time course of uptake and clearance of specific tracers from different organs, and tissues. Quantitative measurement of the local radiotracer activity is essential to assess the local physiological function quantitatively. The standardized uptake value (SUV) is a unit-less number that normalizes the lesion uptake to the injected dose per unit of body weight. The radiotracer kinetic physiologic modeling of dynamic imaging data provides the link between activity levels measured in a specific region of interest (ROI) in the functional scan and the physiologic parameters associated with the particular function being studied. Two- and three-compartment models can be used to describe radiotracer kinetics in vivo. Based on the equations of ligand-receptor interactions, quantitative parameters such as binding potential and affinity can be estimated. Graphical analysis techniques (such as Patlak and Logan plot) are simple methods for the analysis of data from radiotracer PET and SPECT imaging studies. This chapter provides a broad overview of pharmacokinetic modeling techniques, and practical applications of determining the quantitative parameters from dynamic molecular imaging data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acton PD, Zhuang H, Alavi A. Quantification in PET. Radiol Clin North Am. 2004;42:1055–62.

    Article  PubMed  Google Scholar 

  2. Hofheinz F, Apostolova I, Oehme L. Test–retest variability in lesion SUV and lesion SUR in 18F-FDG PET: an analysis of data from two prospective multicenter trials. J Nucl Med. 2017;58(11):1770–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Huang S. Anatomy of SUV: standardized uptake value. Nucl Med Biol. 2000;27:643–6.

    Article  CAS  PubMed  Google Scholar 

  4. Kinahan PE, Fletcher JW. PET/CT standardized uptake values (SUVs) in clinical practice and assessing response to therapy. Semin Ultrasound CT MR. 2010;31(6):496–505.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zasadny KR, Wahl RL. Standardized uptake values of normal tissues at PET with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose: variations with body weight and a method for correction. Radiology. 1993;189:847–50.

    Article  CAS  PubMed  Google Scholar 

  6. Michaelis L, Menten ML. Die Kinetik der Invertinwirkung. Biochem Z. 1913;49:1333.

    Google Scholar 

  7. Farde L, Eriksson L, Blomquist G, et al. Kinetic analysis of central [11C]raclopride binding to D2-dopamine receptors studied by PET: a comparison to the equilibrium analysis. J Cereb Blood Flow Metab. 1989;9:696–708.

    Google Scholar 

  8. Ichise M, Meyer JH, Yonekura Y. An introduction to PET and SPECT neuroreceptor quantification models. J Nucl Med. 2001;42(5):755–63.

    CAS  PubMed  Google Scholar 

  9. Laruelle M, Slifstein M, Huang Y. Relationships between radiotracer properties and image quality in molecular imaging of the brain with positron emission tomography. Mol Imaging Biol. 2003;5:363–75.

    Article  PubMed  Google Scholar 

  10. Lassen NA, Ingvar DH, Skinhoj G. Brain function and blood flow. Sci Am. 1978;239:62–71.

    Article  CAS  PubMed  Google Scholar 

  11. Raichle ME, Martin WR, et al. Brain blood flow measured with intravenous [15O]H2O. II. Implementation and validation. J Nucl Med. 1983;24:790–8.

    CAS  PubMed  Google Scholar 

  12. Crone C. Permeability of capillaries in various organs as determined by the indicator diffusion method. Acta Physiol Scand. 1964;58:292–305.

    Article  Google Scholar 

  13. Phelps ME, Huang SC, Hoffman EJ, et al. Tomographic measurement of local cerebral glucose metabolic rate in human with [18F]2-fluoro-2-deoxyglucose. Validation of method. Ann Neurol. 1979;6:371–88.

    Article  CAS  PubMed  Google Scholar 

  14. Sokoloff L, Reivich M, Kennedy C, et al. The [14C]de-oxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977;28:897–916.

    Article  CAS  PubMed  Google Scholar 

  15. Mankoff DA, Muzi M, Krohn KA. Quantitative positron emission tomography imaging to measure tumor response to therapy: what is the best method? Mol Imaging Biol. 2003;5:281–5.

    Article  PubMed  Google Scholar 

  16. Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab. 1983;3(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  17. Heiss W-D, Herholz K. Brain receptor imaging. J Nucl Med. 2006;47:302–12.

    CAS  PubMed  Google Scholar 

  18. Mintun MA, Raichle ME, Kilbourn MR, et al. A quantitative model for the in vivo assessment of drug binding sites with positron emission tomography. Ann Neurol. 1984;15:217–27.

    Article  CAS  PubMed  Google Scholar 

  19. Patlak CS, Blasberg RG. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Flow Metab. 1985;5(4):584–90.

    Google Scholar 

  20. Gambhir SS. Quantitative assay development for PET. In: Phelps ME, editor. PET molecular imaging and its biological applications. New York: Springer; 2004.

    Google Scholar 

  21. Logan J. Graphical analysis of PET data applied to reversible and irreversible tracers. Nucl Med Biol. 2000;27(7):661–70.

    Google Scholar 

  22. Logan J. A review of graphical methods for tracer studies and strategies to reduce bias. Nucl Med Biol. 2003;30:833–44.

    Google Scholar 

  23. Ichise M, Fujita M, Seibyl J, et al. Graphical analysis and simplified quantification of striatal and extrastriatal dopamine D2 receptor binding with [123I]epidepride SPECT. J Nucl Med. 1999;40:1902.

    CAS  PubMed  Google Scholar 

  24. Logan J, Fowler J, Volkow N, et al. Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(−)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab. 1990;10:740–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shankar Vallabhajosula .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vallabhajosula, S. (2023). Pharmacokinetics and Modeling. In: Molecular Imaging and Targeted Therapy. Springer, Cham. https://doi.org/10.1007/978-3-031-23205-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23205-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23203-9

  • Online ISBN: 978-3-031-23205-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics