Skip to main content

Growing Bioinspired Synthetic Landscape Ecologies and the Adequacy of Object Oriented Programming

  • Conference paper
  • First Online:
Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2021)

Abstract

In this study we develop, using basic object-oriented paradigms, and in collaboration with biologists, a comprehensive model of landscapes and ecosystems dynamics based on bioinspiration principles. Faced with the issue of taking into consideration a variety of elements, processes, interactions, contexts, and scales simultaneously effective, we iteratively develop this model using successive aggregation of new components based on specific case studies. These were then generalized and consolidated to form a coherent platform. To address robustness, the model was continually reworked in search of the closest resemblance to the concrete workings of Nature.

We have arrived at a general architecture built from the bottom up that is both generic and as parsimonious as possible. The model emerging from this compilation is a shared class tree with three primary categories of variability: (i) cognitive living agents, (ii) containers of agents that can be nested at various functional scales, and (iii) particular genomes that instantiate attributes for each type of agent. The results of the iterative strategy to modeling synthetic ecology are discussed, as well as the suitability of object-oriented paradigms (composition, aggregation, inheritance, generalization…) for achieving the goal of bioinspired modeling.

Parts of this work have been presented on behalf of the Simultech (Internat. Conf. Simul. and Model. Method., Technol. and Applic.) conferences (see [1, 2])

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Le Fur, J., Mboup, P.A., Sall, M.: A simulation model for integrating multidisciplinary knowledge in natural sciences. heuristic and application to wild rodent studies. In: 7th International Conference on Simulation and Modeling Methodologies, Technologies and Applications, pp. 340–347. Scitepress (2017)

    Google Scholar 

  2. Le Fur, J.; Mboup, P.A., Sall, M.: Use and adequacy of computer paradigms to simulate bioinspired synthetic landscape ecologies. In: 11th International Conference on Simulation and Modeling Methodologies, Technologies and Applications, pp. 154–162. Scitepress (2021)

    Google Scholar 

  3. Chen, Y.C., Lu, P.E., Chang, C.S., Liu, T.H.: A time-dependent SIR model for COVID-19 with undetectable infected persons. IEEE Trans. Netw. Sci. Eng. 7(4), 3279–3294 (2020)

    Article  MathSciNet  Google Scholar 

  4. Kari, L., Rozenberg, G.: The many facets of natural computing. Commun. ACM 51(10), 72–83 (2008)

    Article  Google Scholar 

  5. Yao, X., Liu, Y., Li, J., He, J., Frayn, C.: Current developments and future directions of bio-inspired computation and implications for ecoinformatics. Eco. Inform. 1(1), 9–22 (2006)

    Article  Google Scholar 

  6. Olden, J.D., Poff, N.L., Bledsoe, B.P.: Incorporating ecological knowledge into ecoinformatics: an example of modeling hierarchically structured aquatic communities with neural networks. Eco. Inform. 1(1), 33–42 (2006)

    Article  Google Scholar 

  7. Colomer, M.À., Margalida, A., Sanuy, D., Pérez-Jiménez, M.J.: A bio-inspired computing model as a new tool for modeling ecosystems: the avian scavengers as a case study. Ecol. Model. 222(1), 33–47 (2011)

    Article  Google Scholar 

  8. Holling, C.S.: The strategy of building models of complex ecological systems. In: Watt, K.E.F. (ed.) Systems Analysis in Ecology, pp. 195–214. Academic Press, Cambridge (1966)

    Chapter  Google Scholar 

  9. Evans, M.R., et al.: Do simple models lead to generality in ecology? Trends Ecol. Evol. 28(10), 578–583 (2013)

    Article  Google Scholar 

  10. Svoray, T., Benenson, I.: Scale and adequacy of environmental microsimulation. Ecol. Complex. 6(2), 77–79 (2009)

    Article  Google Scholar 

  11. Dunham, M.J.: Synthetic ecology: a model system for cooperation. Proc. Natl. Acad. Sci. 104(6), 1741–1742 (2007)

    Article  Google Scholar 

  12. Shou, W., Ram, S., Vilar, J.M.: Synthetic cooperation in engineered yeast populations. Proc. Natl. Acad. Sci. 104(6), 1877–1882 (2007)

    Article  Google Scholar 

  13. Buck-Sorlin, G.: Functional-structural plant modeling. In: Dubitzky, W., Wolkenhauer, O., Cho, K.H., Yokota, H. (eds.) Encyclopedia of Systems Biology. Springer, New York, NY (2013)

    Google Scholar 

  14. Dejong, T., Da Silva, D., Vos, J., Escobar-Gutiérrez, A.: Using functional-structural plant models to study, understand and integrate plant development and ecophysiology. Ann. Bot. 108, 987–989 (2011)

    Article  Google Scholar 

  15. Cantrell, B., Holzman, J.: Protocols, simulation, and manipulation for indeterminate landscapes. Synthetic Ecologies (2014)

    Google Scholar 

  16. DeAngelis, D.L., Mooij, W.M.: In praise of mechanistically rich models. In: Canham, C.D., Cole, J.J., Lauenroth, W.K. (eds.) Models in Ecosystem Science, pp. 63–82. Princeton University Press, New Jersey (2003)

    Google Scholar 

  17. Clapham, W.M., Crosby, C.J.: Utility of object-oriented programming in complex system modeling. Math. Comput. Modell. 16(617), 45–50 (1992)

    Article  Google Scholar 

  18. Granjon, L., Duplantier, J.M.: Les rongeurs de l’Afrique sahélo-soudanienne. IRD Editions, Publications Scientifiques du Muséum - Collection Faune et Flore tropicales 43. (2009). ISBN IRD, 978-2-7099-1675-2

    Google Scholar 

  19. Le Fur, J.: A formal computer framework for linking multidisciplinary multiscale knowledge. a case study on rodent population dynamics and management. In: European Conference on Complex Systems (ECCS), Lisbon (2013a)

    Google Scholar 

  20. Le Fur, J.: Du foisonnement des disciplines à la recomposition d’une réalité partagée Élaboration d’une structure de modélisation dédiée à l’intégration de connaissances disciplinaires. In: XXIeme journées de Rochebrune “Multi-trans-interdisciplinarité”. Rencontres interdisciplinaires sur les systèmes complexes naturels et artificiels (2014). https://hal.ird.fr/ird-03182988

  21. North, M.J., et al.: Complex adaptive systems modeling with repast simphony. Complex Adaptive Systems Modeling, Springer, Heidelberg (2013). https://doi.org/10.1186/2194-3206-1-3

  22. Comte, A.: Caractérisation des barrières à l’hybridation de deux espèces jumelles de rongeurs africains du genre Mastomys. Étude par simulation multi-agents à partir de deux expériences in situ. Rapp. M2 Écologie-Biodiversité Spécialité Biodiversité Évolution Parcours Génétique et Biodiversité, p. 44 (2012)

    Google Scholar 

  23. Diakhate, E.H.M., Diouf, N., Granjon, L., Konate, K., Mboup, P.A., Le Fur J.: Modélisation et simulation multi-agents d’un protocole de capture-marquage-recapture d’une population de rongeurs sauvages dans la réserve de Bandia (Sénégal). In: 12th African Conference on Research in Computer Science and Applied Mathematics (CARI), Saint-Louis Sénégal, pp.43–54 (2014)

    Google Scholar 

  24. Mboup, P.A., Konaté, K., Handschumacher, P., Le Fur, J.: Des Connaissances au Modèle Multi-agents par l’approche orientée événement : construction d’un simulateur de la colonisation du rat noir au Sénégal par les transports humains sur un siècle. Actes Colloque National sur la Recherche en Informatique et ses Applications, Thiès, Sénégal, p. 8 (2015a)

    Google Scholar 

  25. Mboup, P.A., Mboup, M.L., Konaté, K., Handschumacher, P., Le Fur, J.: Optimisation de l’utilisation de l’algorithme de Dijkstra pour un simulateur multi-agents spatialisé. In: World Congress on Information Technology and Computer Applications (WCITCA), Hammamet, Tunisia, pp. 1–6 (2015b). https://doi.org/10.1109/WCITCA.2015.7367061

  26. Sall, M., Dembélé, J.M., Le Fur, J.: An hybrid algorithm to simulate mice following residential wall. In: Proceedings of the 8th International Conference on Simulation and Modeling Methodologies, Technologies and Application (Simultech). ScitePress Publication, pp. 368–375 (2019)

    Google Scholar 

  27. Simon, H A.: The architecture of complexity. Proc. Am. Philos. Soc. 106(6), 467-482 (1962)

    Google Scholar 

  28. Le Fur, J.: Extending life concepts to complex systems Interdiscip. Descr. Complex Syst. 11(1), 37-50 (2013b)

    Google Scholar 

  29. Macia-Perez, F., Lorenzo-Fonseca, I., VicenteBerna-Martinez, J.: A formal framework for modelling complex network management systems. J. Netw. Comput. Appl. 40, 255–269 (2014)

    Article  Google Scholar 

  30. Caillou, P., Gaudou, B., Grignard, A., Truong, C.Q., Taillandier, P.: A Simple-to-use BDI architecture for agent-based modeling and simulation. In: The 11th Conference of the European Social Simulation Association, Groningen, Netherlands hal-01216165 (2015)

    Google Scholar 

  31. Shaw, K.L., Wagner, K.: Cricketsim: a Genetic and Evolutionary Computer Simulation. J. Artificial Societies and Social Simulation, 11(3) (2008)

    Google Scholar 

  32. Forterre, P., Gribaldo, S., Brochier, C.: LUCA: à la recherche du plus proche ancêtre commun universel. Méd./Sci. 21(10), 860–865 (2005)

    Google Scholar 

  33. Darwin, C.: On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. John Murray, London (1859)

    Book  Google Scholar 

  34. Marcos, E., Cavero, J.M.: Hierarchies in object oriented conceptual modeling. In: Bruel, J.-M., Bellahsene, Z. (eds.) OOIS 2002. LNCS, vol. 2426, pp. 24–33. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46105-1_4

    Chapter  MATH  Google Scholar 

  35. Gell-Man, M.: The Quark and the Jaguar: Adventures in the Simple and the Complex. H. W. Freeman, New York (1994)

    MATH  Google Scholar 

  36. Le Fur, J., Sall, M.: Using flexible time scale to explore the validity of agent-based models of ecosystem dynamics: application to simulation of a wild rodent population in a changing agricultural landscape. In: 8th International Conference on Simulation and Modeling Methodologies, Technologies and Application, pp. 297–304. Scitepress (2018)

    Google Scholar 

  37. Ferber, J., Gutknecht, O., Michel, F.: From agents to organizations: an organizational view of multi agent systems. In: Giorgini, P., Müller, J.P., Odell, J. (eds.) Agent-Oriented Software Engineering IV, LNCS, vol. 2935, pp. 214–230. Springer, Berlin, Heidelberg (2003)

    Chapter  Google Scholar 

  38. Mboup, P.A., Konaté, K., Le Fur, J.: A multi-world agent-based model working at several spatial and temporal scales for simulating complex geographic systems. In: International Conference on Computational Science (ICCS), Zurich, Procedia Computer Science 108C, 968–977 (2017)

    Google Scholar 

  39. Mohnen, M.: Interfaces with default implementations in Java. In: Proceedings of the Workshop on Intermediate Representation Engineering for Virtual Machines, pp. 35–40 (2002)

    Google Scholar 

  40. Malayeri, D., Aldrich, J.: CZ: multiple inheritance without diamonds. ACM SIGPLAN Notices 44(10), 21–40 (2009)

    Article  Google Scholar 

  41. Truyen, E., Joosen, W., Nørregaard Jørgensen, B., Verbaeten, P.: A generalization and solution to the common ancestor dilemma problem in delegation-based object systems. In: Proceedings of the 2004 Dynamic Aspects Workshop, 103–119 (2004)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank J.F. Cosson, J.P. Quéré, C. Berthier, B. Gauffre, J.M. Duplantier, L. Granjon, G. Ganem, J. Britton, O. Ninot, J. Lombard, P. Handschumacher, S. Piry, the scientists who kindly agreed to decipher their disciplinary expertise for the formalization of thematic case studies. This study owes much to the work done by Q. Baduel, A. Realini, J.E. Longueville, A. Comte and M. Diakhate, as part of their student internships. The study was supported by the Chancira (grant IRD-ANR-11-CEPL-0010), Cerise (grant IRD-FRB no. AAP-SCEN -20B III) projects, the French National Research Institute for Sustainable Development (IRD) and the ‘Centre de Biologie pour la Gestion des Populations’ (CBGP, UMR no. 22 INRAe/IRD/Cirad/Supagro). We also wish to thank the members of the BioPASS laboratory in Senegal for their decisive field support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Le Fur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Le Fur, J., Mboup, P.A., Sall, M. (2023). Growing Bioinspired Synthetic Landscape Ecologies and the Adequacy of Object Oriented Programming. In: Wagner, G., Werner, F., Oren, T., De Rango, F. (eds) Simulation and Modeling Methodologies, Technologies and Applications. SIMULTECH 2021. Lecture Notes in Networks and Systems, vol 601. Springer, Cham. https://doi.org/10.1007/978-3-031-23149-0_7

Download citation

Publish with us

Policies and ethics