Skip to main content

An E-Nose Using Metal Oxide Semiconductor Sensors Array to Recognize the Odors of Fall Armyworm Pest for Its Early Detection in the Farm

  • Conference paper
  • First Online:
Innovations and Interdisciplinary Solutions for Underserved Areas (InterSol 2022)

Abstract

Considerably decrease hunger and food insecurity in the world is one of sustainable development goals of the horizon 2030. Agriculture, which is one of most countries main sector and the only factor in the diet of the world’s population, is challenged by pest attack. Technology tools offer real opportunities to better protect farms from many damages caused to crops. In this work, an e-nose system using Metal Oxide Semiconductor sensors for early detection of fall armyworm (FAW) pest is proposed. This is based on a special architecture designed to have an affordable and efficient e-nose. Detailed investigations were carried out to identify sensors with potential sensitivity to FAW odors. Then, the sensors were used in a sensor matrix as electronic nose. An electronic acquisition card was achieved to interface the electrical output of the array of seven metal oxide semiconductor gas sensors exposed to an odor diffusion system with the computer. A LabVIEW program was developed for data analysis. The system was successfully exploited to study the response of the sensor array to volatile organic compounds (VOC) released by FAW and for optimizing the data acquisition, as well as signal preprocessing, storage, and wave forms presentation. Experiments were carried out using real FAW. The results and analysis presented in this paper show evidence of discrimination of Fall armyworm’s VOC signature, thus the first detection of FAW presence by e-nose system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kiki, M. P. A. F., Ahouandjinou, S. A. R. M., Assogba, K. M.: Towards a smart farming for early detection of fall armyworm pest. In: 2019 International Conference on Smart Applications, Communications and Networking (SmartNets), Sharm El Sheik, Egypt pp. 1–5 (2019). https://doi.org/10.1109/SmartNets48225.2019.9069756

  2. Batista-Pereira, L.G., et al.: Isolation, identification, synthesis, and field evaluation of the sex pheromone of the brazilian population of Spodoptera frugiperda. J. Chem. Ecol. 32(5), 1085 (2006). https://doi.org/10.1007/s10886-006-9048-5

    Article  Google Scholar 

  3. Ahouandjinou, S.A.R.M., Kiki, M.P.A.F., Amoussouga Badoussi, P.E.N., Assogba, K.M.: A multi-level smart monitoring system by combining an E-nose and image processing for early detection of FAW pest in agriculture. In: Thorn, J.P.R., Gueye, A., Hejnowicz, A.P. (eds.) InterSol 2020. LNICSSITE, vol. 321, pp. 20–32. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51051-0_2

    Chapter  Google Scholar 

  4. Fatoretto, J. C., Michel, A. P., Silva Filho, M. C., Silva, N.: Adaptive potential of fall armyworm (Lepidoptera: Noctuidae) Limits Bt Trait Durability in Brazil. J. Integr. Pest Manag. 8(1) (2017) https://doi.org/10.1093/jipm/pmx011

  5. Hu, W., Wan, L., Jian, Y., Ren, C., Jin, K.: Electronic noses: From advanced materials to sensors aided with data processing. Adv. Mater. Technol. 1800488 (2018). https://doi.org/10.1002/admt.201800488

  6. Gardner, J.W., Bartlett, P.N.: A brief history of electronic noses. Sens. Actuators B Chem. 18(1–3), 210–211 (1994). https://doi.org/10.1016/0925-4005(94)87085-3

    Article  Google Scholar 

  7. Moncrieff, R.W.: An instrument for measuring and classifying odors. J. Appl. Physiol. 16(4), 742–749 (1961). https://doi.org/10.1152/jappl.1961.16.4.742

    Article  Google Scholar 

  8. Persaud, K., Dodd, G.: Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 299(5881), 352–355 (1982). https://doi.org/10.1038/299352a0

    Article  Google Scholar 

  9. Li, C.W., Wang, G.D.: The research on artificial olfaction system-electronic nose. J. Phys. Conf. Ser. 48, 667–670 (2006). https://doi.org/10.1088/1742-6596/48/1/125

    Article  Google Scholar 

  10. E. Garcia-Breijo, J. Atkinson, L. Gil-Sanchez, R. Masot, and J. Ibañez.: A comparison study of pattern recognition algorithms implemented on a microcontroller for use in an electronic tongue for monitoring drinking waters. Sens. Actuators Phys. 172(2), 570–582 (2011). https://doi.org/10.1016/j.sna.2011.09.039

  11. Zhang, W., Liu, T., Ye, L., Ueland, M., Forbes, S.L., Su, S.W.: A novel data pre-processing method for odour detection and identification system. Sens. Actuators Phys. 287, 113–120 (2019). https://doi.org/10.1016/j.sna.2018.12.028

    Article  Google Scholar 

  12. Liu, T., Cao, J., Li, D., Chen, Y., Yang, T., Zhu, X.: Active instance selection for drift calibration of an electronic nose. Sens. Actuators Phys. 312, 112149 (2020). https://doi.org/10.1016/j.sna.2020.112149

    Article  Google Scholar 

  13. Tan, J., Xu, J.: Applications of electronic nose (e-nose) and electronic tongue (e-tongue) in food quality-related properties determination: A review. Artif. Intell. Agric. 4, 104–115 (2020). https://doi.org/10.1016/j.aiia.2020.06.003

    Article  Google Scholar 

  14. Hai, Z., Wang, J.: Electronic nose and data analysis for detection of maize oil adulteration in sesame oil. Sens. Actuators B Chem. 119(2), 449–455 (2006). https://doi.org/10.1016/j.snb.2006.01.001

    Article  Google Scholar 

  15. Maschenko, A.A., Musatov, V., Varezhnikov, A.S., Kiselev, I., Sommer, M., Sysoev, V.V.: On the feasibility to apply a neural network processor for analyzing a gas response of a multisensor microarray. Sens. Actuators Phys. 190, 61–65 (2013). https://doi.org/10.1016/j.sna.2012.11.016

    Article  Google Scholar 

  16. Breijo, E.G., Pinatti, C.O., Peris, R.M., Fillol, M.A., Martínez-Máñez, R., Camino, J.S.: TNT detection using a voltammetric electronic tongue based on neural networks. Sens. Actuators Phys. 192, 1–8 (2013). https://doi.org/10.1016/j.sna.2012.11.038

    Article  Google Scholar 

  17. S. Li: Recent developments in human odor detection technologies. J. Forensic Sci. Criminol. 1(1) (2014). https://doi.org/10.15744/2348-9804.1.S104

  18. Jha, S. K., Yadava, R. D. S.: Statistical pattern analysis assisted selection of polymers for odor sensor array. In: 2011 International Conference on Signal Processing, Communication, Computing and Networking Technologies, Thuckalay, Tamil Nadu, India, 575–580 (2011). https://doi.org/10.1109/ICSCCN.2011.6024617

  19. Shafiqul Islam, A. K. M., Ismail, Z., Ahmad, M.N., Saad, B., Othman, A.R.: Transient parameters of a coated quartz crystal microbalance sensor for the detection of volatile organic compounds (VOCs). Sens. Actuat. B Chem. 109(2), 238–243 (2005). https://doi.org/10.1016/j.snb.2004.12.116

  20. Borowik, P., Adamowicz, L., Tarakowski, R., Siwek, K., Grzywacz, T.: Odor detection using an e-nose with a reduced sensor array. Sensors 20(12), 3542 (2020). https://doi.org/10.3390/s20123542

    Article  Google Scholar 

  21. Ahmadou, D., Losson, E., Siadat, M., Lumbreras, M.: Optimization of an electronic nose for rapid quantitative recognition. In: 2014 International Conference on Control, Decision and Information Technologies (CoDIT), Metz, France, pp. 736–741 (2014). https://doi.org/10.1109/CoDIT.2014.6996988

  22. Faleh, R., Bedoui, S., Kachouri, A.: Review on smart electronic nose coupled with artificial intelligence for air quality monitoring. Adv. Sci. Technol. Eng. Syst. J. 5(2), 739–747 (2020). https://doi.org/10.25046/aj050292

    Article  Google Scholar 

  23. Le Maout, P., Laquintinie, P.S., Lahuec, C., Seguin, F., Wojkiewicz, J-L., Redon, N., Dupont, L.: A low cost, handheld E-nose for renal diseases early diagnosis. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, pp. 2817–2820 (2018). https://doi.org/10.1109/EMBC.2018.8512847

  24. Wilson, A., Oberle, C., Oberle, D.: Detection of off-flavor in catfish using a conducting polymer electronic-nose technology. Sensors 13(12), 15968–15984 (2013). https://doi.org/10.3390/s131215968

    Article  Google Scholar 

  25. Johnson, A.T.C., Khamis, S.M., Preti, G., Kwak, J., Gelperin, A.: DNA-coated nanosensors for breath analysis. IEEE Sens. J. 10(1), 159–166 (2010). https://doi.org/10.1109/JSEN.2009.2035670

    Article  Google Scholar 

  26. Haddad, R., Medhanie, A., Roth, Y., Harel, D., Sobel, N.: Predicting odor pleasantness with an electronic nose. PLoS Comput. Biol. 6(4), e1000740 (2010). https://doi.org/10.1371/journal.pcbi.1000740

    Article  Google Scholar 

  27. PubChem: (Z)-9-Tetradecenyl acetate. https://pubchem.ncbi.nlm.nih.gov/compound/5364714

  28. Fine, G.F., Cavanagh, L.M., Afonja, A., Binions, R.: Metal oxide semi-conductor gas sensors in environmental monitoring. Sensors 10(6), 5469–5502 (2010). https://doi.org/10.3390/s100605469

    Article  Google Scholar 

  29. Burgués, J., Marco, S.: Low power operation of temperature-modulated metal oxide semiconductor gas sensors. Sensors 18(2), 339 (2018). https://doi.org/10.3390/s18020339

    Article  Google Scholar 

  30. A. Kanade and Dr. A. D. Shaligram: Development of an E-nose using metal oxide semiconductor sensors for the classification of climacteric fruits. Int. J. Sci. Eng. Res. 5(2), 467–472 (2014). https://doi.org/10.14299/ijser.2014.02.003

  31. A. S. Yuwono and P. S. Lammers: Odor pollution in the environment and the detection instrumentation: p. 33.

    Google Scholar 

  32. Ward, R.J., Jjunju, F.P.M., Griffith, E.J., Wuerger, S.M., Marshall, A.: Artificial odour-vision syneasthesia via olfactory sensory argumentation. IEEE Sens. J. 21(5), 6784–6792 (2021). https://doi.org/10.1109/JSEN.2020.3040114

    Article  Google Scholar 

  33. Estakhroyeh, H.R., Rashedi, E., Mehran, M.: Design and construction of electronic nose for multi-purpose applications by sensor array arrangement using IBGSA. J. Intell. Rob. Syst. 92(2), 205–221 (2017). https://doi.org/10.1007/s10846-017-0759-3

    Article  Google Scholar 

  34. Malo, E.A., Rojas, J.C., Gago, R., Guerrero, Á.: Inhibition of the responses to sex pheromone of the fall armyworm. Spodoptera frugiperda. J. Insect Sci. 13(134), 1–14 (2013). https://doi.org/10.1673/031.013.13401

    Article  Google Scholar 

  35. Sambemana, H., Siadat, M., Lumbreras, M.: Gas sensor characterization at low concentrations of natural oils. Chem. Eng. Tran. 23, 177–183 (2010)

    Google Scholar 

Download references

Acknowledgement

The authors would like to thank International Institute of Tropical Agriculture (IITA) of Benin Republic for its helpful assistance during the experimental work. Especially for the stock farming of the fall armyworm pest. Without it, this work could not be achieved.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manhougbé Probus A. F. Kiki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kiki, M.P.A.F., Ahouandjinou, S.A.R.M., Assogba, K.M., Sama, Y.N. (2022). An E-Nose Using Metal Oxide Semiconductor Sensors Array to Recognize the Odors of Fall Armyworm Pest for Its Early Detection in the Farm. In: Mambo, A.D., Gueye, A., Bassioni, G. (eds) Innovations and Interdisciplinary Solutions for Underserved Areas. InterSol 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 449. Springer, Cham. https://doi.org/10.1007/978-3-031-23116-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23116-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23115-5

  • Online ISBN: 978-3-031-23116-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics