Skip to main content

Delivery of Vaccines via the Nasal Route

  • Chapter
  • First Online:
Nasal Drug Delivery

Abstract

Several methods, including novel formulations and production systems, have been proposed as ways to improve drug delivery. Nasal delivery of drugs is traditionally employed when local effects (allergies, congestion, and respiratory illnesses) and/or systemic effects (pain treatment) are required. Over the last couple of years, the nasal route has been sought as a site for vaccine delivery. Data suggests that when vaccines are administered via the nasal route, they elicit powerful immune system responses. There are a number of vaccines that have been developed for nasal administration, some of which include Nasalflu, FluMistĀ®, and Coronavac, among others. The nasal route for delivering vaccines has many merits; however, a few drawbacks limit the use of this route. Nonetheless, scientists are still trying to exploit this route as a potential for vaccine administration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Landry S, Heilman C. Future directions in vaccines: the payoffs of basic research. Health Aff. 2005;24(3):758ā€“69.

    ArticleĀ  Google ScholarĀ 

  2. Nabel GJ. Global health designing tomorrowā€™s vaccines. N Engl J Med. 2013;368(6):551ā€“60.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  3. Treves P. Thucydides, the history of the Peloponnesian war, edited in translation. By Livingstone R. W. Sir. Pp. xxxi + 400. 1 map. Oxford: University Press (The Worldā€™s Classics), 1943. 3s. In: The Journal of Hellenic Studies. Cambridge, UK: Cambridge University Press; 1943. p. 133ā€“4.

    Google ScholarĀ 

  4. Jenner E. An inquiry into the causes and effects of the variolae vaccinae a disease discovered in some of the Western Counties of England, particularly Gloucestershire, and known by the name of the Cow Pox. Project Gutenberg. 2009.

    Google ScholarĀ 

  5. Tognotti E. The eradication of smallpox, a success story for modern medicine and public health: what lessons for the future? J Infect Dev Ctries. 2010;4(5):264ā€“6.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  6. Pasteur L. De lā€™attenuation du virus du cholera des poules. CR Acad Sci Paris. 1880;91(7):673ā€“80.

    Google ScholarĀ 

  7. Pasteur L. MĆ©thode pour prĆ©venir la rage aprĆØs morsure. CR Acad Sci Paris. 1885;91(7):765ā€“72.

    Google ScholarĀ 

  8. Jennings H. Further approaches for optimizing polysaccharide-protein conjugate vaccines for prevention of invasive bacterial disease. J Infect Dis. 1992;165(Supplement-1):S156ā€“9.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  9. Hammer GD, McPhee SJ. Pathophysiology of disease: an introduction to clinical medicine, McGraw-Hillā€™s AccessMedicine. 6th ed. New York: McGraw-Hill Education LLC; 2010.

    Google ScholarĀ 

  10. Ols S, et al. Route of vaccine administration alters antigen trafficking but not innate or adaptive immunity. Cell Rep. 2020;30(12):3964ā€“3971.e7.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  11. Peace RM. Mucosal immunization for cancer: Opportunities and challenges. ProQuest dissertations publishing, NC, USA. 2015.

    Google ScholarĀ 

  12. Czerkinsky C, Holmgren J. Topical immunization strategies. Mucosal Immunol. 2010;3(6):545ā€“55.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  13. Kraehenbuhl J-P, Neutra MR. Mucosal vaccines: where do we stand? Curr Top Med Chem. 2013;13(20):2609ā€“28.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  14. Lobaina Mato Y. Nasal route for vaccine and drug delivery: features and current opportunities. Int J Pharm. 2019;572:118813.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  15. Boyaka PN, et al. Effective mucosal immunity to anthrax: neutralizing antibodies and Th cell responses following nasal immunization with protective antigen. J Immunol (1950). 2003;170(11):5636ā€“43.

    ArticleĀ  CASĀ  Google ScholarĀ 

  16. Almeida AJ, Alpar HO. Nasal delivery of vaccines. J Drug Target. 1996;3(6):455ā€“67.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  17. Shakya AK, et al. Mucosal vaccine delivery: current state and a pediatric perspective. J Control Release. 2016;240:394ā€“413.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  18. Hauri AM, Armstrong GL, Hutin YJF. The global burden of disease attributable to contaminated injections given in health care settings. Int J STD AIDS. 2004;15(1):7ā€“16.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  19. Fortuna A, et al. Intranasal delivery of systemic-acting drugs: small-molecules and biomacromolecules. Eur J Pharm Biopharm. 2014;88(1):8ā€“27.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  20. Chien YW, Su KSE, Chang S-F. Nasal systemic drug delivery. Drugs and the pharmaceutical sciences, vol. 39. New York: M. Dekker; 1989.

    Google ScholarĀ 

  21. Ramvikas M, et al. Chapter Fifteen ā€“ Nasal vaccine delivery. Elsevier Inc., USA. 2017. p. 279ā€“301.

    Google ScholarĀ 

  22. Illum L. Nasal drug deliveryā€”possibilities, problems and solutions. J Control Release. 2003;87(1):187ā€“98.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  23. Marttin E, et al. Nasal mucociliary clearance as a factor in nasal drug delivery. Adv Drug Deliv Rev. 1998;29(1):13ā€“38.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  24. Stevens A, Lowe JS. Human histology. London: Mosby; 1997.

    Google ScholarĀ 

  25. Ki D-D. Drug absorption studies: in situ. In: In vitro and in silico models. Springer; 2007.

    Google ScholarĀ 

  26. Yusuf H, Kett V. Current prospects and future challenges for nasal vaccine delivery. Hum Vaccin Immunother. 2017;13(1):34ā€“45.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  27. Quraishi MS, Jones NS, Mason J. The rheology of nasal mucus: a review. Clin Otolaryngol Allied Sci. 1998;23(5):403ā€“13.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  28. Voynow JA, Rubin BK. Mucins, mucus, and sputum. Chest. 2009;135(2):505ā€“12.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  29. Thornton DJ, Rousseau K, McGuckin MA. Structure and function of the polymeric mucins in airways mucus. Annu Rev Physiol. 2008;70(1):459ā€“86.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  30. Walker WT, et al. Upper and lower airway nitric oxide levels in primary ciliary dyskinesia, cystic fibrosis and asthma. Respir Med. 2012;107(3):380ā€“6.

    ArticleĀ  Google ScholarĀ 

  31. Russell MW, et al. Chapter 1 ā€“ Overview: the mucosal immune system. Elsevier Inc; 2015. p. 3ā€“8.

    Google ScholarĀ 

  32. Brandtzaeg P. Function of mucosa-associated lymphoid tissue in antibody formation. Immunol Investig. 2010;39(4ā€“5):303ā€“55.

    ArticleĀ  CASĀ  Google ScholarĀ 

  33. Holmgren J, Czerkinsky C. Mucosal immunity and vaccines. Nat Med. 2005;11(4):S45ā€“53.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  34. van de Pavert SA, Mebius RE. New insights into the development of lymphoid tissues. Nat Rev Immunol. 2010;10(9):664ā€“74.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  35. Hjelm BE, Kilbourne J, Herbst-Kralovetz MM. TLR7 and 9 agonists are highly effective mucosal adjuvants for norovirus virus-like particle vaccines. Hum Vaccin Immunother. 2014;10(2):410ā€“6.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  36. Fukuyama S, Kiyono H. NALT- versus PEYERā€™S-patch-mediated mucosal immunity. Nat Rev Immunol. 2004;4(9):699ā€“710.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  37. Perry M, Whyte A. Immunology of the tonsils. Immunol Today (Amsterdam Regular ed.). 1998;19(9):414ā€“21.

    ArticleĀ  CASĀ  Google ScholarĀ 

  38. Bienenstock J, McDermott MR. Bronchus- and nasal-associated lymphoid tissues. Immunol Rev. 2005;206(1):22ā€“31.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  39. Sharma S, et al. Pharmaceutical aspects of intranasal delivery of vaccines using particulate systems. J Pharm Sci. 2009;98(3):812ā€“43.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  40. Csaba N, Garcia-Fuentes M, Alonso MJ. Nanoparticles for nasal vaccination. Adv Drug Deliv Rev. 2009;61(2):140ā€“57.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  41. Grassin-Delyle S, et al. Intranasal drug delivery: an efficient and non-invasive route for systemic administration ā€“ focus on opioids. Pharmacol Ther. 2012;134(3):366ā€“79.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  42. Dahl AR, Hadley WM. Formaldehyde production promoted by rat nasal cytochrome P-450-dependent monooxygenases with nasal decongestants, essences, solvents, air pollutants, nicotine, and cocaine as substrates. Toxicol Appl Pharmacol. 1983;67(2):200ā€“5.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  43. Brittebo EB. Metabolism of progesterone by the nasal mucosa in mice and rats. Acta Pharmacol Toxicol. 1982;51(5):441ā€“5.

    ArticleĀ  CASĀ  Google ScholarĀ 

  44. Henningfield JE, Keenan RM. Nicotine delivery kinetics and abuse liability. J Consult Clin Psychol. 1993;61(5):743ā€“50.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  45. Arora P, Sharma S, Garg S. Permeability issues in nasal drug delivery. Drug Discov Today. 2002;7(18):967ā€“75.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  46. Touitou E, Barry BW, Editors. Enhancement in drug delivery (1st ed.). CRC Press, USA. 2011. https://doi.org/10.1201/9781420004816.

  47. Pires A, Fortuna A, Alves G, FalcĆ£o A. Intranasal drug delivery: how, why and what for? J Pharm Pharm Sci. 2009;12(3):288ā€“311.

    Google ScholarĀ 

  48. Dimova S, et al. The use of human nasal in vitro cell systems during drug discovery and development. Toxicol In Vitro. 2005;19(1):107ā€“22.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  49. Sarkar MA. Drug metabolism in the nasal mucosa. Pharm Res. 1992;9(1):1ā€“9.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  50. Lee VHL, Yamamoto A. Penetration and enzymatic barriers to peptide and protein absorption. Adv Drug Deliv Rev. 1989;4(2):171ā€“207.

    ArticleĀ  Google ScholarĀ 

  51. Harris AS, et al. Intranasal administration of peptides: nasal deposition, biological response, and absorption of desmopressin. J Pharm Sci. 1986;75(11):1085ā€“8.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  52. McMartin C, et al. Analysis of structural requirements for the absorption of drugs and macromolecules from the nasal cavity. J Pharm Sci. 1987;76(7):535ā€“40.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  53. Costantino HR, et al. Intranasal delivery: physicochemical and therapeutic aspects. Int J Pharm. 2007;337(1):1ā€“24.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  54. Zaki NM, et al. Rapid-onset intranasal delivery of metoclopramide hydrochloride. Part II: safety of various absorption enhancers and pharmacokinetic evaluation. Int J Pharm. 2006;327(1ā€“2):97ā€“103.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  55. Belshe RB, et al. The efficacy of live attenuated, cold-adapted, trivalent, intranasal influenzavirus vaccine in children. N Engl J Med. 1998;338(20):1405ā€“12.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  56. Carter NJ, Curran MP. Live attenuated influenza vaccine (FluMistĀ®; Fluenzā„¢): a review of its use in the prevention of seasonal influenza in children and adults. Drugs. 2012;71(12):1591ā€“622.

    ArticleĀ  Google ScholarĀ 

  57. Lamb YN. BNT162b2 mRNA COVID-19 vaccine: first approval. Drugs. 2021;81(4):495ā€“501.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  58. Sadoff J, et al. Interim results of a phase 1ā€“2a trial of Ad26.COV2.S Covid-19 vaccine. N Engl J Med. 2021;384(19):1824ā€“35.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  59. Wan EYF, et al. Bellā€™s palsy following vaccination with mRNA (BNT162b2) and inactivated (CoronaVac) SARS-CoV-2 vaccines: a case series and nested case-control study. Lancet Infect Dis. 2021;2(1):64ā€“72.

    ArticleĀ  Google ScholarĀ 

  60. Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol. 1965;13(1):238,IN26ā€“52,IN27.

    ArticleĀ  Google ScholarĀ 

  61. Allen TM. Liposomes: opportunities in drug delivery. Drugs. 1997;54(S4):8ā€“14.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  62. van Hoogevest P, Wendel A. The use of natural and synthetic phospholipids as pharmaceutical excipients. Eur J Lipid Sci Technol. 2014;116(9):1088ā€“107.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  63. Alsarra IA, Hamed AY, Alanazi FK. Acyclovir liposomes for intranasal systemic delivery: development and pharmacokinetics evaluation. Drug Deliv. 2008;15(5):313ā€“21.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  64. Meyer HW, Ostro M, Editors. Liposomes ā€“ from biophysics to therapeutics. XIV + 393 S., 72 Abb., 32 Tab. New York-Basel 1987. Marcel Dekker. $ 102.00. ISBN: 0-8247-7762-X. In: Journal of Basic Microbiology. Berlin: Wiley-VCH; 1989. p. 255.

    Google ScholarĀ 

  65. Allen TM, Hansen CB, de Menezes DEL. Pharmacokinetics of long-circulating liposomes. Adv Drug Deliv Rev. 1995;16(2):267ā€“84.

    ArticleĀ  CASĀ  Google ScholarĀ 

  66. Jain AK, et al. Muco-adhesive multivesicular liposomes as an effective carrier for transmucosal insulin delivery. J Drug Target. 2007;15(6):417ā€“27.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  67. Law SL, et al. Enhancement of nasal absorption of calcitonin loaded in liposomes. J Liposome Res. 2001;11(2ā€“3):165ā€“74.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  68. Alsarra IA, et al. Mucoadhesive polymeric hydrogels for nasal delivery of acyclovir. Drug Dev Ind Pharm. 2009;35(3):352ā€“62.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  69. Sharma N, Purwar N, Gupta PC. Microspheres as drug carriers for controlled drug delivery: a review. Int J Pharm Sci Res. 2015;6(11):4579.

    CASĀ  Google ScholarĀ 

  70. Sinha VR, et al. Chitosan microspheres as a potential carrier for drugs. Int J Pharm. 2004;274(1):1ā€“33.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  71. Pereswetoff-Morath L. Microspheres as nasal drug delivery systems. Adv Drug Deliv Rev. 1998;29(1):185ā€“94.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  72. Gavini E, et al. Mucoadhesive microspheres for nasal administration of cyclodextrins. J Drug Target. 2009;17(2):168ā€“79.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  73. De Jong WH, Borm PJA. Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine. 2008;3(2):133ā€“49.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  74. Tiyaboonchai W. Chitosan nanoparticles: a promising system for drug delivery. NUJST. 2003;11:51ā€“66.

    Google ScholarĀ 

  75. El-Zaafarany GM, et al. A tailored thermosensitive PLGA-PEG-PLGA/emulsomes composite for enhanced oxcarbazepine brain delivery via the nasal route. Pharmaceutics. 2018;10(4):217.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  76. Dhakar RC, et al. A review on factors affecting the design of nasal drug delivery system. Int J Drug Deliv. 2011;1(2):194ā€“208.

    Google ScholarĀ 

  77. Marasini N, Skwarczynski M, Toth I. Intranasal delivery of nanoparticle-based vaccines. Ther Deliv. 2017;8(3):151ā€“67.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seth Kwabena Amponsah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amponsah, S.K., Amoafo, E.B. (2023). Delivery of Vaccines via the Nasal Route. In: Pathak, Y.V., Yadav, H.K.S. (eds) Nasal Drug Delivery. Springer, Cham. https://doi.org/10.1007/978-3-031-23112-4_8

Download citation

Publish with us

Policies and ethics