Skip to main content

Biomedical Applications of Nanocarriers in Nasal Delivery

  • Chapter
  • First Online:
Nasal Drug Delivery

Abstract

Non-invasive drug delivery is an emerging way to target a wide range of therapeutics. One of them, i.e., the nasal drug delivery has shown promising results in delivering small and large molecules, genes, peptides, and proteins. This drug delivery system targets the drug to the brain by direct nose-to-brain and/or indirect nose-to-blood-to-brain routes. Nanocarriers play a vital role in the nasal delivery system due to their small size which provides ease in targeting. Numerous strategies have been explored by researchers for the transportation of drugs from nose to target and found excellent results in therapy. It was observed that polymeric and lipidic nanocarriers have numerous applications in targeted drug delivery, gene delivery, and vaccine delivery. Moreover, they are also used for diagnostics as well as theranostics purposes. This chapter briefly summarizes the different types of nanocarriers used for nasal delivery with their characterization techniques. Further, the biomedical applications of nanocarriers via the nasal route are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cheng Z, Li M, Dey R, Chen Y. Nanomaterials for cancer therapy: current progress and perspectives. J Hematol Oncol. 2021;14:85. https://doi.org/10.1186/s13045-021-01096-0.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Din FU, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S, Zeb A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine. 2017;12:7291–309. https://doi.org/10.2147/IJN.S146315.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ghitman J, Biru EI, Stan R, Iovu H. Review of hybrid PLGA nanoparticles: future of smart drug delivery and theranostics medicine. Mater Des. 2020;193:108805. https://doi.org/10.1016/j.matdes.2020.108805.

    Article  CAS  Google Scholar 

  4. Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S, Shin H-S. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol. 2018;16:71. https://doi.org/10.1186/s12951-018-0392-8.

    Article  CAS  Google Scholar 

  5. Pandian SRK, Panneerselvam T, Pavadai P, Govindaraj S, Ravishankar V, Palanisamy P, Sampath M, Sankaranarayanan M, Kunjiappan S. Nano based approach for the treatment of neglected tropical diseases. Front Nanotechnol. 2021;3 https://doi.org/10.3389/fnano.2021.665274.

  6. Gagliardi A, Giuliano E, Venkateswararao E, Fresta M, Bulotta S, Awasthi V, Cosco D. Biodegradable polymeric nanoparticles for drug delivery to solid tumors. Front Pharmacol. 2021;12 https://doi.org/10.3389/fphar.2021.601626.

  7. Ventola CL. Progress in nanomedicine: approved and investigational nano drugs. P T 42;2017:742–55. http://www.ncbi.nlm.nih.gov/pubmed/29234213.

  8. Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol. 2018;9:1050–74. https://doi.org/10.3762/bjnano.9.98.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Borgå O, Lilienberg E, Bjermo H, Hansson F, Heldring N, Dediu R. Pharmacokinetics of Total and unbound paclitaxel after administration of Paclitaxel Micellar or Nab-Paclitaxel: an open, randomized, cross-over, explorative study in breast cancer patients. Adv Ther. 2019;36:2825–37. https://doi.org/10.1007/s12325-019-01058-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hollenberg NK. Vasodilators, antihypertensive therapy, and the kidney. Circulation. 1987;75:V39–42. http://www.ncbi.nlm.nih.gov/pubmed/2882875

    CAS  PubMed  Google Scholar 

  11. Ma P. Paclitaxel nano-delivery systems: a comprehensive review. J Nanomed Nanotechnol. 2013;4:1000164. https://doi.org/10.4172/2157-7439.1000164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chenthamara D, Subramaniam S, Ramakrishnan SG, Krishnaswamy S, Essa MM, Lin F-H, Qoronfleh MW. Therapeutic efficacy of nanoparticles and routes of administration. Biomater Res. 2019;23:20. https://doi.org/10.1186/s40824-019-0166-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Erdő F, Bors LA, Farkas D, Bajza Á, Gizurarson S. Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Res Bull. 2018;143:155–70. https://doi.org/10.1016/j.brainresbull.2018.10.009.

    Article  CAS  PubMed  Google Scholar 

  14. Dhas N, Mehta T, Sharma S, Garkal A, Yadav D, Hariharan K, Shamjetshabam B, Khot S, Kudarha R, Bangar P, Arbade G, Kalyankar P. Intranasal gene therapy for the treatment of neurological disorders. In: Direct nose-to-brain drug delivery. Elsevier; 2021. p. 351–87. https://doi.org/10.1016/B978-0-12-822522-6.00017-5.

    Chapter  Google Scholar 

  15. Dhas N, Yadav D, Singh A, Garkal A, Kudarha R, Bangar P, Savjani J, Pardeshi CV, Garg N, Mehta T. Direct transport theory: From the nose to the brain. In: Direct nose-to-brain drug delivery. Elsevier; 2021. p. 15–37. https://doi.org/10.1016/B978-0-12-822522-6.00001-1.

    Chapter  Google Scholar 

  16. Johnson NJ, Hanson LR, Frey WH. Trigeminal pathways deliver a low molecular weight drug from the nose to the brain and orofacial structures. Mol Pharm. 2010;7:884–93. https://doi.org/10.1021/mp100029t.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cawley J, Ruhm CJ. The economics of risky health behaviors. We thank the editors of this Handbook, Pedro Pita Barros, Tom McGuire, and Mark Pauly, for their feedback and helpful guidance. We also thank the other authors in this volume for their valuable feedback and comment, in 2011: pp. 95–199. https://doi.org/10.1016/B978-0-444-53592-4.00003-7.

  18. Musumeci T, Pellitteri R, Spatuzza M, Puglisi G. Nose-to-brain delivery: evaluation of polymeric nanoparticles on olfactory ensheathing cells uptake. J Pharm Sci. 2014;103:628–35. https://doi.org/10.1002/jps.23836.

    Article  CAS  PubMed  Google Scholar 

  19. Shah B, Khunt D, Misra M. Comparative evaluation of intranasally delivered quetiapine loaded mucoadhesive microemulsion and polymeric nanoparticles for brain targeting: pharmacokinetic and gamma scintigraphy studies. Future J Pharm Sci. 2021;7:6. https://doi.org/10.1186/s43094-020-00156-5.

    Article  Google Scholar 

  20. de Oliveira Junior ER, Santos LCR, Salomão MA, Nascimento TL, de Almeida Ribeiro Oliveira G, Lião LM, Lima EM. Nose-to-brain drug delivery mediated by polymeric nanoparticles: influence of PEG surface coating. Drug Deliv Transl Res. 2020;10:1688–99. https://doi.org/10.1007/s13346-020-00816-2.

    Article  CAS  PubMed  Google Scholar 

  21. Hansraj GP, Singh SK, Kumar P. Sumatriptan succinate loaded chitosan solid lipid nanoparticles for enhanced anti-migraine potential. Int J Biol Macromol. 2015;81:467–76. https://doi.org/10.1016/j.ijbiomac.2015.08.035.

    Article  CAS  PubMed  Google Scholar 

  22. Schlachet I, Moshe Halamish H, Sosnik A. Mixed amphiphilic polymeric nanoparticles of chitosan, poly(vinyl alcohol) and poly(methyl methacrylate) for intranasal drug delivery: a preliminary in vivo study. Molecules. 2020;25:4496. https://doi.org/10.3390/molecules25194496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Joachim E, Kim I-D, Jin Y, Kim K, Lee J-K, Choi H. Gelatin nanoparticles enhance the neuroprotective effects of intranasally administered osteopontin in rat ischemic stroke model. Drug Deliv Transl Res. 2014;4:395–9. https://doi.org/10.1007/s13346-014-0208-9.

    Article  CAS  PubMed  Google Scholar 

  24. Muntimadugu E, Dhommati R, Jain A, Challa VGS, Shaheen M, Khan W. Intranasal delivery of nanoparticle encapsulated tarenflurbil: a potential brain targeting strategy for Alzheimer’s disease. Eur J Pharm Sci. 2016;92:224–34. https://doi.org/10.1016/j.ejps.2016.05.012.

    Article  CAS  PubMed  Google Scholar 

  25. Mutingwende FP, Kondiah PPD, Ubanako P, Marimuthu T, Choonara YE. Advances in nano-enabled platforms for the treatment of depression. Polymers (Basel). 2021;13:1431. https://doi.org/10.3390/polym13091431.

    Article  CAS  PubMed  Google Scholar 

  26. Li W, Zhou Y, Zhao N, Hao B, Wang X, Kong P. Pharmacokinetic behavior and efficiency of acetylcholinesterase inhibition in rat brain after intranasal administration of galanthamine hydrobromide loaded flexible liposomes. Environ Toxicol Pharmacol. 2012;34:272–9. https://doi.org/10.1016/j.etap.2012.04.012.

    Article  CAS  PubMed  Google Scholar 

  27. Garkal A, Kulkarni D, Musale S, Mehta T, Giram P. Electrospinning nanofiber technology: a multifaceted paradigm in biomedical applications. New J Chem. 2021;45:21508. https://doi.org/10.1039/D1NJ04159B.

    Article  CAS  Google Scholar 

  28. Yang Z-Z, Zhang Y-Q, Wang Z-Z, Wu K, Lou J-N, Qi X-R. Enhanced brain distribution and pharmacodynamics of rivastigmine by liposomes following intranasal administration. Int J Pharm. 2013;452:344–54. https://doi.org/10.1016/j.ijpharm.2013.05.009.

    Article  CAS  PubMed  Google Scholar 

  29. Upadhyay P, Trivedi J, Pundarikakshudu K, Sheth N. Direct and enhanced delivery of nanoliposomes of anti schizophrenic agent to the brain through nasal route. Saudi Pharm J. 2017;25:346–58. https://doi.org/10.1016/j.jsps.2016.07.003.

    Article  PubMed  Google Scholar 

  30. Pardeshi CV, Rajput PV, Belgamwar VS, Tekade AR, Surana SJ. Novel surface modified solid lipid nanoparticles as intranasal carriers for ropinirole hydrochloride: application of factorial design approach. Drug Deliv. 2013;20:47–56. https://doi.org/10.3109/10717544.2012.752421.

    Article  CAS  PubMed  Google Scholar 

  31. Santonocito D, Raciti G, Campisi A, Sposito G, Panico A, Siciliano EA, Sarpietro MG, Damiani E, Puglia C. Astaxanthin-loaded stealth lipid nanoparticles (AST-SSLN) as potential carriers for the treatment of Alzheimer’s disease: formulation development and optimization. Nano. 2021;11:391. https://doi.org/10.3390/nano11020391.

    Article  CAS  Google Scholar 

  32. Patel S, Chavhan S, Soni H, Babbar AK, Mathur R, Mishra AK, Sawant K. Brain targeting of risperidone-loaded solid lipid nanoparticles by the intranasal route. J Drug Target. 2011;19:468–74. https://doi.org/10.3109/1061186X.2010.523787.

    Article  CAS  PubMed  Google Scholar 

  33. Cunha S, Costa CP, Loureiro JA, Alves J, Peixoto AF, Forbes B, Sousa Lobo JM, Silva AC. Double optimization of rivastigmine-loaded nanostructured lipid carriers (NLC) for nose-to-brain delivery using the quality by design (QbD) approach: formulation variables and instrumental parameters. Pharmaceutics. 2020;12:599. https://doi.org/10.3390/pharmaceutics12070599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Singh SK, Hidau MK, Gautam S, Gupta K, Singh KP, Singh SK, Singh S. Glycol chitosan functionalized asenapine nanostructured lipid carriers for targeted brain delivery: pharmacokinetic and teratogenic assessment. Int J Biol Macromol. 2018;108:1092–100. https://doi.org/10.1016/j.ijbiomac.2017.11.031.

    Article  CAS  PubMed  Google Scholar 

  35. Zhou J, Ralston J, Sedev R, Beattie DA. Functionalized gold nanoparticles: synthesis, structure and colloid stability. J Colloid Interface Sci. 2009;331:251–62. https://doi.org/10.1016/j.jcis.2008.12.002.

    Article  CAS  PubMed  Google Scholar 

  36. Dhas N, Kudarha R, Garkal A, Ghate V, Sharma S, Panzade P, Khot S, Chaudhari P, Singh A, Paryani M, Lewis S, Garg N, Singh N, Bangar P, Mehta T. Molybdenum-based hetero-nanocomposites for cancer therapy, diagnosis and biosensing application: current advancement and future breakthroughs. J Control Release. 2021;330:257–83. https://doi.org/10.1016/j.jconrel.2020.12.015.

    Article  CAS  PubMed  Google Scholar 

  37. Mody V, Siwale R, Singh A, Mody H. Introduction to metallic nanoparticles. J Pharm Bioallied Sci. 2010;2:282. https://doi.org/10.4103/0975-7406.72127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sukumar UK, Bose RJC, Malhotra M, Babikir HA, Afjei R, Robinson E, Zeng Y, Chang E, Habte F, Sinclair R, Gambhir SS, Massoud TF, Paulmurugan R. Biomaterials intranasal delivery of targeted polyfunctional gold – iron oxide nanoparticles loaded with therapeutic microRNAs for combined theranostic multimodality imaging and presensitization of glioblastoma to temozolomide. Biomaterials. 2019;218:119342. https://doi.org/10.1016/j.biomaterials.2019.119342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dhas N, Kudarha R, Pandey A, Nikam AN, Sharma S, Singh A, Garkal A, Hariharan K, Singh A, Bangar P, Yadhav D, Parikh D, Sawant K, Mutalik S, Garg N, Mehta T. Stimuli-responsive and receptor-targeted iron oxide-based nanoplatforms for multimodal therapy and imaging of cancer: conjugation chemistry and alternative therapeutic strategies. J Control Release. 2021;333:188–245. https://doi.org/10.1016/j.jconrel.2021.03.021.

    Article  CAS  PubMed  Google Scholar 

  40. Salem HF, Kharshoum RM, Abou-Taleb HA, Naguib DM. Brain targeting of resveratrol through intranasal lipid vesicles labeled with gold nanoparticles: in vivo evaluation and bioaccumulation investigation using computed tomography and histopathological examination. J Drug Target. 2019;27:1127–34. https://doi.org/10.1080/1061186X.2019.1608553.

    Article  CAS  PubMed  Google Scholar 

  41. Betzer O, Perets N, Angel A, Motiei M, Sadan T, Yadid G, Offen D, Popovtzer R. In vivo neuroimaging of exosomes using gold nanoparticles. ACS Nano. 2017;11:10883–93. https://doi.org/10.1021/acsnano.7b04495.

    Article  CAS  PubMed  Google Scholar 

  42. Arora S, Jain J, Rajwade JM, Paknikar KM. Cellular responses induced by silver nanoparticles: in vitro studies. Toxicol Lett. 2008;179:93–100. https://doi.org/10.1016/j.toxlet.2008.04.009.

    Article  CAS  PubMed  Google Scholar 

  43. Falconer JL, Grainger DW. In vivo comparisons of silver nanoparticle and silver ion transport after intranasal delivery in mice. J Control Release. 2018;269:1–9. https://doi.org/10.1016/j.jconrel.2017.10.018.

    Article  CAS  PubMed  Google Scholar 

  44. Lungare S, Hallam K, Badhan RKS. Phytochemical-loaded mesoporous silica nanoparticles for nose-to-brain olfactory drug delivery. Int J Pharm. 2016;513:280–93. https://doi.org/10.1016/j.ijpharm.2016.09.042.

    Article  CAS  PubMed  Google Scholar 

  45. Lakshmanan S, Gupta GK, Avci P, Chandran R, Sadasivam M, Jorge AES, Hamblin MR. Physical energy for drug delivery; poration, concentration and activation. Adv Drug Deliv Rev. 2014;71:98–114. https://doi.org/10.1016/j.addr.2013.05.010.

    Article  CAS  PubMed  Google Scholar 

  46. Dan M, Bae Y, Pittman TA, Yokel RA. Alternating magnetic field-induced hyperthermia increases iron oxide nanoparticle cell association/uptake and flux in blood-brain barrier models. Pharm Res. 2015;32:1615–25. https://doi.org/10.1007/s11095-014-1561-6.

    Article  CAS  PubMed  Google Scholar 

  47. Abbas H, Refai H, El Sayed N. Superparamagnetic iron oxide–loaded lipid nanocarriers incorporated in thermosensitive in situ gel for magnetic brain targeting of clonazepam. J Pharm Sci. 2018;107:2119–27. https://doi.org/10.1016/j.xphs.2018.04.007.

    Article  CAS  PubMed  Google Scholar 

  48. Garkal A, Avachat A. Development and in-vitro in-vivo characterization of in-situ gelling sustained-release nevirapine suspension. J Drug Deliv Sci Technol. 2021:102938. https://doi.org/10.1016/j.jddst.2021.102938.

  49. Kulkarni AD, Vanjari YH, Sancheti KH, Belgamwar VS, Surana SJ, Pardeshi CV. Nanotechnology-mediated nose to brain drug delivery for Parkinson’s disease: a mini-review. J Drug Target. 2015;23:775–88. https://doi.org/10.3109/1061186X.2015.1020809.

    Article  CAS  PubMed  Google Scholar 

  50. Sonvico F, Clementino A, Buttini F, Colombo G, Pescina S, Guterres SS, Pohlmann AR, Nicoli S. Surface-modified nanocarriers for nose-to-brain delivery: From bio adhesion to targeting. Pharmaceutics. 2018;10:34. https://doi.org/10.3390/pharmaceutics10010034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gartziandia O, Egusquiaguirre SP, Bianco J, Pedraz JL, Igartua M, Hernandez RM, Préat V, Beloqui A. Nanoparticle transport across in vitro olfactory cell monolayers. Int J Pharm. 2016;499:81–9. https://doi.org/10.1016/j.ijpharm.2015.12.046.

    Article  CAS  PubMed  Google Scholar 

  52. Ahmad E, Feng Y, Qi J, Fan W, Ma Y, He H, Xia F, Dong X, Zhao W, Lu Y, Wu W. Evidence of nose-to-brain delivery of nanoemulsions: cargoes but not vehicles. Nanoscale. 2017;9:1174–83. https://doi.org/10.1039/c6nr07581a.

    Article  CAS  PubMed  Google Scholar 

  53. Gabal YM, Kamel AO, Sammour OA, Elshafeey AH. Effect of surface charge on the brain delivery of nanostructured lipid carriers in situ gels via the nasal route. Int J Pharm. 2014;473:442–57. https://doi.org/10.1016/j.ijpharm.2014.07.025.

    Article  CAS  PubMed  Google Scholar 

  54. Kanazawa T, Kaneko M, Niide T, Akiyama F, Kakizaki S, Ibaraki H, Shiraishi S, Takashima Y, Suzuki T, Seta Y. Enhancement of nose-to-brain delivery of hydrophilic macromolecules with stearate- or polyethylene glycol-modified arginine-rich peptide. Int J Pharm. 2017;530:195–200. https://doi.org/10.1016/j.ijpharm.2017.07.077.

    Article  CAS  PubMed  Google Scholar 

  55. UGWOKE M, AGU R, VERBEKE N, KINGET R. Nasal mucoadhesive drug delivery: background, applications, trends and future perspectives. Adv Drug Deliv Rev. 2005;57:1640–65. https://doi.org/10.1016/j.addr.2005.07.009.

    Article  CAS  PubMed  Google Scholar 

  56. Charlton S, Jones NS, Davis SS, Illum L. Distribution and clearance of bioadhesive formulations from the olfactory region in man: effect of polymer type and nasal delivery device. Eur J Pharm Sci. 2007;30:295–302. https://doi.org/10.1016/j.ejps.2006.11.018.

    Article  CAS  PubMed  Google Scholar 

  57. Horvát S, Fehér A, Wolburg H, Sipos P, Veszelka S, Tóth A, Kis L, Kurunczi A, Balogh G, Kürti L, Erős I, Szabó-Révész P, Deli MA. Sodium hyaluronate as a mucoadhesive component in nasal formulation enhances delivery of molecules to brain tissue. Eur J Pharm Biopharm. 2009;72:252–9. https://doi.org/10.1016/j.ejpb.2008.10.009.

    Article  CAS  PubMed  Google Scholar 

  58. De Jong WH, Borm PJA. Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine. 2008;3:133–49. https://doi.org/10.2147/ijn.s596.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Alavi M, Karimi N, Safaei M. Application of various types of liposomes in drug delivery systems. Adv Pharm Bull. 2017;7:3–9. https://doi.org/10.15171/apb.2017.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dimov N, Kastner E, Hussain M, Perrie Y, Szita N. Formation and purification of tailored liposomes for drug delivery using a module-based micro continuous-flow system. Sci Rep. 2017;7:12045. https://doi.org/10.1038/s41598-017-11533-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. ud Din F, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S, Zeb A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine. 2017;12:7291–309. https://doi.org/10.2147/IJN.S146315.

    Article  CAS  Google Scholar 

  62. Islam SU, Shehzad A, Ahmed MB, Lee YS. Intranasal delivery of nanoformulations: a potential way of treatment for neurological disorders. Molecules. 2020;25:1929. https://doi.org/10.3390/molecules25081929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sousa F, Dhaliwal HK, Gattacceca F, Sarmento B, Amiji MM. Enhanced anti-angiogenic effects of bevacizumab in glioblastoma treatment upon intranasal administration in polymeric nanoparticles. J Control Release. 2019;309:37–47. https://doi.org/10.1016/j.jconrel.2019.07.033.

    Article  CAS  PubMed  Google Scholar 

  64. de Oliveira Junior ER, Nascimento TL, Salomão MA, da Silva ACG, Valadares MC, Lima EM. Increased nose-to-brain delivery of melatonin mediated by Polycaprolactone nanoparticles for the treatment of glioblastoma. Pharm Res. 2019;36:131. https://doi.org/10.1007/s11095-019-2662-z.

    Article  CAS  PubMed  Google Scholar 

  65. Khan A, Aqil M, Imam SS, Ahad A, Sultana Y, Ali A, Khan K. Temozolomide loaded nano lipid-based chitosan hydrogel for a nose to brain delivery: characterization, nasal absorption, histopathology, and cell line study. Int J Biol Macromol. 2018;116:1260–7. https://doi.org/10.1016/j.ijbiomac.2018.05.079.

    Article  CAS  PubMed  Google Scholar 

  66. Chu L, Wang A, Ni L, Yan X, Song Y, Zhao M, Sun K, Mu H, Liu S, Wu Z, Zhang C. Nose-to-brain delivery of temozolomide-loaded PLGA nanoparticles functionalized with anti-EPHA3 for glioblastoma targeting. Drug Deliv. 2018;25:1634–41. https://doi.org/10.1080/10717544.2018.1494226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Madane RG, Mahajan HS. Curcumin-loaded nanostructured lipid carriers (NLCs) for nasal administration: design, characterization, and in vivo study. Drug Deliv. 2016;23:1326–34. https://doi.org/10.3109/10717544.2014.975382.

    Article  CAS  PubMed  Google Scholar 

  68. Jain DS, Bajaj AN, Athawale RB, Shikhande SS, Pandey A, Goel PN, Gude RP, Patil S, Raut P. Thermosensitive PLA based nanodispersion for targeting brain tumor via intranasal route. Mater Sci Eng C. 2016;63:411–21. https://doi.org/10.1016/j.msec.2016.03.015.

    Article  CAS  Google Scholar 

  69. Bruinsmann FA, Richter Vaz G, de Cristo Soares Alves A, Aguirre T, Raffin Pohlmann A, Stanisçuaski Guterres S, Sonvico F. Nasal drug delivery of anticancer drugs for the treatment of glioblastoma: preclinical and clinical trials. Molecules. 2019;24:4312. https://doi.org/10.3390/molecules24234312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Akel H, Ismail R, Katona G, Sabir F, Ambrus R, Csóka I. A comparison study of lipid and polymeric nanoparticles in the nasal delivery of meloxicam: formulation, characterization, and in vitro evaluation. Int J Pharm. 2021;604:120724. https://doi.org/10.1016/j.ijpharm.2021.120724.

    Article  CAS  PubMed  Google Scholar 

  71. Sipos B, Csóka I, Budai-Szűcs M, Kozma G, Berkesi D, Kónya Z, Balogh GT, Katona G. Development of dexamethasone-loaded mixed polymeric micelles for nasal delivery. Eur J Pharm Sci. 2021;166:105960. https://doi.org/10.1016/j.ejps.2021.105960.

    Article  CAS  PubMed  Google Scholar 

  72. Chivate A, Garkal A, Hariharan K, Mehta T. Exploring novel carrier for improving the bioavailability of Itraconazole: solid dispersion through hot-melt extrusion. J Drug Deliv Sci Technol. 2021;63:102541. https://doi.org/10.1016/j.jddst.2021.102541.

    Article  CAS  Google Scholar 

  73. Amit C, Viral P, Om Prakash S, Atul G. Application and functional characterization of Kollicoat Smartseal 30D as a solid dispersion carrier for improving solubility; 2020.

    Google Scholar 

  74. Deshmukh S, Avachat A, Garkal A, Khurana N, Cardot JM. Optimization of a dissolution method in early development based on IVIVC using small animals: application to a BCS class II drug. Dissolution Technol. 2016;23:34–41. https://doi.org/10.14227/DT230416P34.

    Article  CAS  Google Scholar 

  75. Chivate A, Garkal A, Dhas N, Mehta T. Three dimensional printing by hot-melt extrusion; new era for development of personalized medicines and continuous manufacturing of pharmaceuticals. Int J Pharm Investig. 2020;10:233–6. https://doi.org/10.5530/ijpi.2020.3.43.

    Article  CAS  Google Scholar 

  76. Chivate A, Garkal AD, Dhas NL, Mehta DTA. Hot Melt extrusion: An emerging technique for solubility enhancement of poorly water-soluble drugs. PDA J Pharm Sci Technol. 2021; https://doi.org/10.5731/pdajpst.2019.011403.

  77. Teixeira MI, Lopes CM, Amaral MH, Costa PC. Current insights on lipid nanocarrier-assisted drug delivery in the treatment of neurodegenerative diseases. Eur J Pharm Biopharm. 2020;149:192–217. https://doi.org/10.1016/j.ejpb.2020.01.005.

    Article  CAS  PubMed  Google Scholar 

  78. Lobaina Mato Y. Nasal route for vaccine and drug delivery: features and current opportunities. Int J Pharm. 2019;572:118813. https://doi.org/10.1016/j.ijpharm.2019.118813.

    Article  CAS  PubMed  Google Scholar 

  79. Amidi M, Romeijn SG, Verhoef JC, Junginger HE, Burgener L, Huckriede A, Crommelin DJA, Jiskoot W. N-Trimethyl chitosan (TMC) nanoparticles loaded with influenza subunit antigen for intranasal vaccination: biological properties and immunogenicity in a mouse model. Vaccine. 2007;25:144–53. https://doi.org/10.1016/j.vaccine.2006.06.086.

    Article  CAS  PubMed  Google Scholar 

  80. Veronesi MC, Graner BD, Cheng S-H, Zamora M, Zarrinmayeh H, Chen C-T, Das SK, Vannier MW. Aerosolized in vivo 3D localization of nose-to-brain Nanocarrier delivery using multimodality neuroimaging in a rat model—protocol development. Pharmaceutics. 2021;13:391. https://doi.org/10.3390/pharmaceutics13030391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ahmed MZ, Khan UA, Haye A, Agarwal NB, Alhakamy NA, Alhadrami HA, Warsi MH, Jain GK. Liquid crystalline nanoparticles for nasal delivery of rosuvastatin: implications on therapeutic efficacy in the management of epilepsy. Pharmaceuticals. 2020;13:1–15. https://doi.org/10.3390/ph13110356.

    Article  CAS  Google Scholar 

  82. Mai Y, Guo J, Zhao Y, Ma S, Hou Y, Yang J. Intranasal delivery of cationic liposome-protamine complex mRNA vaccine elicits effective anti-tumor immunity. Cell Immunol. 2020;354:104143. https://doi.org/10.1016/j.cellimm.2020.104143.

    Article  CAS  PubMed  Google Scholar 

  83. Kaplan M, Tuğcu-Demiröz F, Vural İ, Çelebi N. Development and characterization of gels and liposomes containing ovalbumin for nasal delivery. J Drug Deliv Sci Technol. 2018;44:108–17. https://doi.org/10.1016/j.jddst.2017.12.006.

    Article  CAS  Google Scholar 

  84. Mura P, Mennini N, Nativi C, Richichi B. In situ mucoadhesive-thermosensitive liposomal gel as a novel vehicle for nasal extended delivery of opiorphin. Eur J Pharm Biopharm. 2018;122:54–61. https://doi.org/10.1016/j.ejpb.2017.10.008.

    Article  CAS  PubMed  Google Scholar 

  85. Pokharkar VB, Jolly MR, Kumbhar DD. Engineering of a hybrid polymer–lipid nanocarrier for the nasal delivery of tenofovir disoproxil fumarate: physicochemical, molecular, microstructural, and stability evaluation. Eur J Pharm Sci. 2015;71:99–111. https://doi.org/10.1016/j.ejps.2015.02.009.

    Article  CAS  PubMed  Google Scholar 

  86. Kanazawa T, Taki H, Okada H. Nose-to-brain drug delivery system with ligand/cell-penetrating peptide-modified polymeric nano-micelles for intracerebral gliomas. Eur J Pharm Biopharm. 2020;152:85–94. https://doi.org/10.1016/j.ejpb.2020.05.001.

    Article  CAS  PubMed  Google Scholar 

  87. Jain R, Nabar S, Dandekar P, Hassan P, Aswal V, Talmon Y, Shet T, Borde L, Ray K, Patravale V. Formulation and evaluation of novel micellar nanocarrier for nasal delivery of sumatriptan. Nanomedicine. 2010;5:575–87. https://doi.org/10.2217/nnm.10.28.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Nirma University, India for providing financial assistance in the form of Nirma University fellowship-SRF to Atul Garkal (NU/Ph.D./IP/GAD/19-20/1496).

Conflicts of Interest

The authors declare that there are no conflicts of interest for this publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tejal Mehta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dhas, N. et al. (2023). Biomedical Applications of Nanocarriers in Nasal Delivery. In: Pathak, Y.V., Yadav, H.K.S. (eds) Nasal Drug Delivery. Springer, Cham. https://doi.org/10.1007/978-3-031-23112-4_7

Download citation

Publish with us

Policies and ethics