Skip to main content

Factors Affecting the Design of Nasal Drug Delivery System

  • Chapter
  • First Online:
Nasal Drug Delivery

Abstract

Over the recent years, many strategies have improved the delivery of bioactive agents to the brain, improving the treatment of several pathologies. Nonetheless, the design of new formulations is highly dependent on the capacity of the drugs to permeate the blood-brain barrier (BBB) and reach a significant effect on the neurological disorders. Therefore, different approaches have been studied in order to facilitate the delivery of different drugs into the brain; for instance, intranasal administration has gained special interest. The nose-to-brain delivery provides a direct pathway of drug delivery to the brain without the need to permeate the BBB, potentially avoiding adverse effects that could occur when the drug is systemically absorbed. Although it may overcome BBB, there are alternative barriers that have to be circumvented for nose-to-brain route and different strategies have been massively studied. This chapter provides a comprehensive overview of factors related to the physiology of nasal cavity, the drug, and the formulation that can affect the development of formulations for nose-to-brain drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Illum L. Bioadhesive formulations for nasal peptide delivery. In: Mathiowitz E, Chickering III DE, Lehr C-M, editors. Bioadhesive drug delivery systems: fundamentals, novel approaches, and development. New York: Marcel Dekker; 1999. p. 507–39.

    Google Scholar 

  2. Touitou E, Illum L. Nasal drug delivery. Drug Deliv Transl Res. 2013;3:1–3.

    Article  PubMed  Google Scholar 

  3. Illum L. Nasal drug delivery: new developments and strategies. Drug Discov Today. 2003;7(23):118–1189.

    Google Scholar 

  4. Arora P, Sharma S, Garg S. Permeability issues in nasal drug delivery. Drug Discov Today [Internet] 2002;7(18):967–75. Available from: https://doi.org/10.1016/S1359-6446(02)02452-2.

  5. Illum L. Nasal drug delivery — possibilities, problems and solutions. J Control Release. 2003;87:187–98.

    Article  CAS  PubMed  Google Scholar 

  6. Bahadur S, Pathak K. Physicochemical and physiological considerations for efficient nose-to-brain targeting Physicochemical and physiological considerations for efficient nose-to-brain targeting. Expert Opin Drug Deliv. 2012;9:19–31.

    Article  CAS  PubMed  Google Scholar 

  7. Wu H, Hu K, Jiang X. From nose to brain: understanding transport capacity and transport rate of drugs. Expert Opin Drug Deliv. 2008;5(10):1159–68.

    Article  CAS  PubMed  Google Scholar 

  8. Grassin-Delyle S, Buenestado A, Naline E, Faisy C, Blouquit-Laye S, Couderc LJ, et al. Intranasal drug delivery: an efficient and non-invasive route for systemic administration - focus on opioids. Pharmacol Ther [Internet]. 2012;134(3):366–79. Available from: https://doi.org/10.1016/j.pharmthera.2012.03.003.

  9. Behl CR, Pimplaskar HK, Sileno AP, DeMeireles J, Romeo VD. Effects of physicochemical properties and other factors on systemic nasal drug delivery. Adv Drug Deliv Rev. 1998;29(1–2):89–116.

    Article  CAS  PubMed  Google Scholar 

  10. Laffleur F, Bauer B. Progress in nasal drug delivery systems. Int J Pharm [Internet]. 2021;607(July):120994. Available from: https://doi.org/10.1016/j.ijpharm.2021.120994.

  11. Vyas TK, Tiwari SB, Amiji MM. Formulation and physiological factors influencing cns delivery upon intranasal administration. Crit Rev Therap Drug Carrier Syst. 2006;23(4):319–47.

    Article  CAS  Google Scholar 

  12. Journal AI, Kaur P, Garg T, Rath G, Goyal AK, Kaur P, et al. In situ nasal gel drug delivery: a novel approach for brain targeting through the mucosal membrane. Artif Cells Nanomed Biotechnol. 2016;44:1167–76.

    Google Scholar 

  13. Jadhav KR, Gambhire MN, Shaikh IM, Kadam VJ, Pisal SS. Nasal drug delivery system-factors affecting and applications. Curr Drug Ther. 2007;2:27–38.

    Article  CAS  Google Scholar 

  14. Singla DR, Kohrt BA, Murray LK, Anand A, Chorpita BF, Patel V. Psychological treatments for the world: lessons from low- and middle-income countries. Annu Rev Clin Psychol. 2017;13:149–81.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Martins PP, Smyth HDC, Cui Z. Strategies to facilitate or block nose-to-brain drug delivery. Int J Pharm. 2019;570(May):118635.

    Article  CAS  PubMed  Google Scholar 

  16. Illum L. Transport of drugs from the nasal cavity to the central nervous system. Eur J Pharm Sci. 2000;11(1):1–18.

    Article  CAS  PubMed  Google Scholar 

  17. Misra A, Ganesh S, Shahiwala A, Shah SP. Drug delivery to the central nervous system: a review. J Pharm Pharm Sci. 2003;6(2):252–73.

    CAS  PubMed  Google Scholar 

  18. Quintana DS, Guastella AJ, Westlye LT, Andreassen OA. The promise and pitfalls of intranasally administering psychopharmacological agents for the treatment of psychiatric disorders. Mol Psychiatry. 2016;21(1):29–38.

    Article  CAS  PubMed  Google Scholar 

  19. Illum L. Nasal drug delivery - recent developments and future prospects. J Control Release [Internet]. 2012;161(2):254–63. Available from: https://doi.org/10.1016/j.jconrel.2012.01.024.

  20. Xi J, Zhang Z, Si XA. Improving intranasal delivery of neurological nanomedicine to the olfactory region using magnetophoretic guidance of microsphere carriers. Int J Nanomedicine. 2015;10:1211–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sakane T, Akizuki M, Taki Y, Yamashita S, Sezaki H, Nadai T. Direct drug transport from the rat nasal cavity to the cerebrospinal fluid: the relation to the molecular weight of drugs. J Pharm Pharmacol. 1995;47(5):379–81.

    Article  CAS  PubMed  Google Scholar 

  22. Horvát S, Fehér A, Wolburg H, Sipos P, Veszelka S, Tóth A, et al. Sodium hyaluronate as a mucoadhesive component in nasal formulation enhances delivery of molecules to brain tissue. Eur J Pharm Biopharm. 2009;72(1):252–9.

    Article  PubMed  Google Scholar 

  23. Li Y, Li J, Zhang X, Ding J, Mao S. Non-ionic surfactants as novel intranasal absorption enhancers: in vitro and in vivo characterization. Drug Deliv. 2016;23(7):2272–9.

    Article  CAS  PubMed  Google Scholar 

  24. Rassu G, Soddu E, Cossu M, Gavini E, Giunchedi P, Dalpiaz A. Particulate formulations based on chitosan for nose-to-brain delivery of drugs. A review. J Drug Deliv Sci Technol [Internet]. 2016;32:77–87. Available from: https://doi.org/10.1016/j.jddst.2015.05.002.

  25. Shi NQ, Qi XR, Xiang B, Zhang Y. A survey on “trojan Horse” peptides: opportunities, issues and controlled entry to “troy.” J Control Release [Internet]. 2014;194:53–70. Available from: https://doi.org/10.1016/j.jconrel.2014.08.014.

  26. Kamei N, Takeda-Morishita M. Brain delivery of insulin boosted by intranasal coadministration with cell-penetrating peptides. J Control Release [Internet]. 2015;197:105–10. Available from: https://doi.org/10.1016/j.jconrel.2014.11.004.

  27. Kanazawa T, Akiyama F, Kakizaki S, Takashima Y, Seta Y. Delivery of siRNA to the brain using a combination of nose-to-brain delivery and cell-penetrating peptide-modified nano-micelles. Biomaterials [Internet]. 2013;34(36):9220–6. Available from: https://doi.org/10.1016/j.biomaterials.2013.08.036.

  28. Khan T, Ranjan R, Dogra Y, Pandya SM, Shafi H, Singh SK, et al. Intranasal eutectic powder of zolmitriptan with enhanced bioavailability in the rat brain. Mol Pharm. 2016;13(9):3234–40.

    Article  CAS  PubMed  Google Scholar 

  29. Li F, Feng J, Cheng Q, Zhu W, Jin Y. Delivery of 125 I-cobrotoxin after intranasal administration to the brain: a microdialysis study in freely moving rats. Int J Pharm. 2007;328:161–7.

    Article  CAS  PubMed  Google Scholar 

  30. Hussain MA, Shenvi AB, Rowe SM, Shefter E. The use of α-aminoboronic acid derivatives to stabilize peptide drugs during their intranasal absorption. Pharm Res. 1989;6:186–9.

    Article  CAS  PubMed  Google Scholar 

  31. Dhamankar V, Donovan MD. Modulating nasal mucosal permeation using metabolic saturation and enzyme inhibition techniques. J Pharm Pharmacol. 2017;69:1075–83.

    Article  CAS  PubMed  Google Scholar 

  32. Shingaki T, Hidalgo IJ, Furubayashi T, Sakane T, Katsumi H, Yamamoto A, et al. Nasal delivery of P-gp substrates to the brain through the nosebrain pathway. Drug Metab Pharmacokinet. 2011;26(3):248–55.

    Article  CAS  PubMed  Google Scholar 

  33. Graff CL, Zhao R, Pollack GM. Pharmacokinetics of substrate uptake and distribution in murine brain after nasal instillation. Pharm Res. 2005;22(2):235–44.

    Article  CAS  PubMed  Google Scholar 

  34. Hada N, Netzer WJ, Belhassan F, Wennogle LP, Gizurarson S. Nose-to-brain transport of imatinib mesylate: a pharmacokinetic evaluation. Eur J Pharm Sci. 2017;102:46–54.

    Article  CAS  PubMed  Google Scholar 

  35. Gao X, Tao W, Lu W, Zhang Q, Zhang Y, Jiang X, et al. Lectin-conjugated PEG-PLA nanoparticles: preparation and brain delivery after intranasal administration. Biomaterials. 2006;27(18):3482–90.

    Article  CAS  PubMed  Google Scholar 

  36. Mistry A, Stolnik S, Illum L. Nanoparticles for direct nose-to-brain delivery of drugs. Int J Pharm. 2009;379(1–2):146–57.

    Article  CAS  PubMed  Google Scholar 

  37. Singh A, Ubrane R, Prasad P, Ramteke S. Preparation and characterization of rizatriptan benzoate loaded solid lipid nanoparticles for brain targeting. Mater Today Proc [Internet]. 2015;2(9):4521–43. Available from: https://doi.org/10.1016/j.matpr.2015.10.067.

  38. Yasir M, Sara UVS. Solid lipid nanoparticles for nose to brain delivery of haloperidol: in vitro drug release and pharmacokinetics evaluation. Acta Pharm Sin B [Internet]. 2014;4(6):454–63. Available from: https://doi.org/10.1016/j.apsb.2014.10.005.

  39. Al Asmari AK, Ullah Z, Tariq M, Fatani A. Preparation, characterization, and in vivo evaluation of intranasally administered liposomal formulation of donepezil. Drug Des Devel Ther. 2016;10:205–15.

    PubMed  PubMed Central  Google Scholar 

  40. Agrawal M, Saraf S, Saraf S, Dubey SK, Puri A, Gupta U, et al. Stimuli-responsive in situ gelling system for nose-to-brain drug delivery. J Control Release [Internet]. 2020;327:235–65. Available from: https://doi.org/10.1016/j.jconrel.2020.07.044.

  41. Emad NA, Ahmed B, Alhalmi A, Alzobaidi N, Al-Kubati SS. Recent progress in nanocarriers for direct nose to brain drug delivery. J Drug Deliv Sci Technol [Internet]. 2021;64(June):102642. Available from: https://doi.org/10.1016/j.jddst.2021.102642.

  42. Pokharkar V, Suryawanshi S, Dhapte-Pawar V. Exploring micellar-based polymeric systems for effective nose-to-brain drug delivery as potential neurotherapeutics. Drug Deliv Transl Res. 2020;10(4):1019–31.

    Article  CAS  PubMed  Google Scholar 

  43. Khutoryanskiy VV. Advances in mucoadhesion and mucoadhesive polymers. Macromol Biosci. 2011;11(6):748–64.

    Article  CAS  PubMed  Google Scholar 

  44. Bassi da Silva J, de Ferreira SBS, de Freitas O, Bruschi ML. A critical review about methodologies for the analysis of mucoadhesive properties of drug delivery systems. Drug Dev Ind Pharm [Internet]. 2017;9045(March):1–67. Available from: https://www.tandfonline.com/doi/full/10.1080/03639045.2017.1294600.

  45. Charlton ST, Davis SS, Illum L. Evaluation of effect of ephedrine on the transport of drugs from the nasal cavity to the systemic circulation and the central nervous system. J Drug Target. 2007;15(5):370–7.

    Article  CAS  PubMed  Google Scholar 

  46. Jansson B, Hägerström H, Fransén N, Edsman K, Björk E. The influence of gellan gum on the transfer of fluorescein dextran across rat nasal epithelium in vivo. Eur J Pharm Biopharm. 2005;59(3):557–64.

    Article  CAS  PubMed  Google Scholar 

  47. Mura P, Mennini N, Nativi C, Richichi B. In situ mucoadhesive-thermosensitive liposomal gel as a novel vehicle for nasal extended delivery of opiorphin. Eur J Pharm Biopharm [Internet]. 2018;122(June 2017):54–61. Available from: https://doi.org/10.1016/j.ejpb.2017.10.008.

  48. Cook MT, Brown MB. Polymeric gels for intravaginal drug delivery. J Control Release [Internet]. 2018;270(December 2017):145–57. Available from: https://doi.org/10.1016/j.jconrel.2017.12.004.

  49. Porfiryeva NN, Semina II, Salakhov IA, Moustafine RI, Khutoryanskiy VV. Mucoadhesive and mucus-penetrating interpolyelectrolyte complexes for nose-to-brain drug delivery. Nanomedicine Nanotechnol Biol Med [Internet]. 2021;37:102432. Available from: https://doi.org/10.1016/j.nano.2021.102432.

  50. da Silva JB, Cook MT, Bruschi ML. Thermoresponsive systems composed of poloxamer 407 and HPMC or NaCMC: mechanical, rheological and sol-gel transition analysis. Carbohydr Polym [Internet]. 2020;240(March):116268. Available from: https://doi.org/10.1016/j.carbpol.2020.116268.

  51. Bruschi ML, de Souza Ferreira SB, Bassi da Silva J. Mucoadhesive and mucus-penetrating polymers for drug delivery. Nanotechnol Oral Drug Deliv. 2020:77–141.

    Google Scholar 

  52. Li L, Shan H, Yue CY, Lam YC, Tam KC, Hu X. Thermally induced association and dissociation of methylcellulose in aqueous solutions. Langmuir. 2002;18(20):7291–8.

    Article  CAS  Google Scholar 

  53. Date AA, Halpert G, Babu T, Ortiz J, Kanvinde P, Dimitrion P, et al. Mucus-penetrating budesonide nanosuspension enema for local treatment of inflammatory bowel disease. Biomaterials [Internet]. 2018;185(June):97–105. Available from: https://doi.org/10.1016/j.biomaterials.2018.09.005.

  54. Dzieciuch M, Rissanen S, Szydłowska N, Bunker A, Kumorek M, Jamróz D, et al. Pegylated liposomes as carriers of hydrophobic porphyrins. J Phys Chem B. 2015;119(22):6646–57.

    Article  CAS  PubMed  Google Scholar 

  55. Dhuria SV, Hanson LR, Frey WH. Intranasal drug targeting of hypocretin-1 (orexin-A) to the central nervous system. J Pharm Sci. 2009;98(7):2501–15.

    Article  CAS  PubMed  Google Scholar 

  56. Bruschi ML, de Toledo LAS. Pharmaceutical applications of iron-oxide magnetic nanoparticles. In: Katz E, editor. Magnetic Nanoparticles. Bassel: MDPI; 2020. p. 408.

    Google Scholar 

  57. Chen H, Yang GZX, Getachew H, Acosta C, Sierra Sánchez C, Konofagou EE. Focused ultrasound-enhanced intranasal brain delivery of brain-derived neurotrophic factor. Sci Rep. 2016;6(June):1–8.

    Google Scholar 

  58. Bruschi ML. Strategies to modify the drug release from pharmaceutical systems. 1st ed. Bruschi ML, editor. Elsevier; 2015. 208 p.

    Google Scholar 

  59. Jassim ZE, Al-Akkam E. A review on strategies for improving nasal drug delivery systems. Drug Innov Today. 2018;10(1):2857–64.

    Google Scholar 

  60. Yu L. Pharmaceutical quality by design: product and process development, understanding, and control. Pharm Res. 2008;25(4):781–91.

    Article  CAS  PubMed  Google Scholar 

  61. ICH Expert Working Group. Pharmaceutical development Q8. ICH Harmon Tripart Guide. 2009;8(August):1–28.

    Google Scholar 

  62. Bruns RE., Scarmínio IS, Barros Neto B. Statistical design - Chemometrics. Amsterdam: Elsevier; 2006. 412 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Luciano Bruschi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

da Silva, J.B., Botan, M.V.G., Bruschi, M.L. (2023). Factors Affecting the Design of Nasal Drug Delivery System. In: Pathak, Y.V., Yadav, H.K.S. (eds) Nasal Drug Delivery. Springer, Cham. https://doi.org/10.1007/978-3-031-23112-4_4

Download citation

Publish with us

Policies and ethics