Skip to main content

Different Strategies for Nose-to-Brain Delivery of Small Molecules

  • Chapter
  • First Online:
Nasal Drug Delivery

Abstract

The intranasal (IN) route of drug administration has emerged as an alternative route over the systemic (oral and parenteral) drug delivery to the brain.

The intranasal route of drug administration exhibits as a non-invasive technique to bypass the BBB for the delivery of drugs inside the brain and the CNS. This method is helpful for those drugs that are unable to invade the BBB to show its action in the CNS and thus erase the demand of systemic delivery and shrink systemic side effects. Drug delivery from the nose to the brain/CNS takes very less time through both olfactory and trigeminal nerves. Intranasal delivery does not require the involvement of any receptor as it occurs through an extracellular route. The delivery of the drug via an IN route offers various advantages over a systemic drug delivery system as it directly delivers the drug into the brain via the olfactory route. The presence of drugs in the olfactory bulb, in turn, increases the drug bioavailability in the brain and reduces degradation as well as wastage of the drug through systemic clearance. However, there are some limitations associated with IN like poor drug permeation through the nasal mucosa and mucociliary clearance. There are many novel drug delivery strategies (nano-drug carrier system, colloidal carriers, mucoadhesive devices, controlled delivery system, pro-drug, etc.) are adapted to overcome the above-stated limitations. Nose-to-brain delivery also involves nasal-associated lymphatic tissues (NALT) and deep cervical lymph nodes. This review focuses on different strategies for nose-to-brain delivery of small molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yang H. Nanoparticle-mediated brain-specific drug delivery, imaging, and diagnosis. Pharm Res. 2010;27:1759–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wong HL, Chattopadhyay N, Wu XY, Bendayan R. Nanotechnology applications for improved delivery of antiretroviral drugs to the brain. Adv Drug Deliv Rev. 2010;62:503–17.

    Article  CAS  PubMed  Google Scholar 

  3. Biddlestone-Thorpe L, Marchi N, Guo K, Ghosh C, Janigro D, Valerie K, Yang H. Nanomaterial-mediated CNS delivery of diagnostic and therapeutic agents. Adv Drug Deliv Rev. 2012;64:605–13.

    Article  CAS  PubMed  Google Scholar 

  4. Wong HL, Wu XY, Bendayan R. Nanotechnological advances for the delivery of CNS therapeutics. Adv Drug Deliv Rev. 2012;64:686–700.

    Article  CAS  PubMed  Google Scholar 

  5. Patel T, Zhou J, Piepmeier JM, Saltzman WM. Polymeric nanoparticles for drug delivery to the central nervous system. Adv Drug Deliv Rev. 2012;64:701–5.

    Article  CAS  PubMed  Google Scholar 

  6. Gao H. Progress and perspectives on targeting nanoparticles for brain drug delivery. Acta Pharm Sin B. 2016;6:268–86.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Agrawal M, Ajazuddin, Tripathi DK, Saraf S, Antimisiaris SG, Mourtas S, Hammarlund-Udenaes M, Alexander A. Recent advancements in liposomes targeting strategies to cross blood-brain barrier (BBB) for the treatment of Alzheimer’s disease. J Control Release. 2017;260:61–77.

    Article  CAS  PubMed  Google Scholar 

  8. Invernici G, Cristini S, Alessandri G, Navone SE, Canzi L, Tavian D, Redaelli C, Acerbi F, Parati EA. Nanotechnology advances in brain tumors: the state of the art. Recent Pat Anticancer Drug Discov. 2011;6:58–69.

    Article  CAS  PubMed  Google Scholar 

  9. Chaturvedi M, Kumar M, Pathak K. A review on mucoadhesive polymer used in nasal drug delivery system. J Adv Pharm Technol Res. 2011;2:215–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Baltzley S, Mohammad A, Malkawi AH, Al-Ghananeem AM. Intranasal drug delivery of olanzapine-loaded chitosan nanoparticles. AAPS PharmSciTech. 2014;15:1598–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Al-Ghananeem AM, Saeed H, Florence R, Yokel RA, Malkawi AH. Intranasal drug delivery of didanosine-loaded chitosan nanoparticles for brain targeting; an attractive route against infections caused by aids viruses. J Drug Target. 2009;18:381–8.

    Article  Google Scholar 

  12. Elnaggar YSR, Etman SM, Abdelmonsif DA, Abdallah OY. Intranasal piperine-loaded chitosan nanoparticles as brain-targeted therapy in Alzheimer’s disease: optimization, biological efficacy, and potential toxicity. J Pharm Sci. 2015;104:3544–56.

    Article  CAS  PubMed  Google Scholar 

  13. Haque S, Md S, Sahni JK, Ali J, Baboota S. Development and evaluation of brain targeted intranasal alginate nanoparticles for treatment of depression. J Psychiatr Res. 2014;48:1–12.

    Article  PubMed  Google Scholar 

  14. Lu CT, Jin RR, Jiang YN, Lin Q, Yu WZ, Mao KL, Tian FR, Zhao YP, Zhao YZ. Gelatin nanoparticle-mediated intranasal delivery of substance P protects against 6-hydroxydopamine-induced apoptosis: an in vitro and in vivo study. Drug Des Devel Ther. 2015;9:1955.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Van Woensel M, Wauthoz N, Rosière R, Mathieu V, Kiss R, Lefranc F, Steelant B, Dilissen E, Van Gool SW, Mathivet T, Gerhardt H, Amighi K, De Vleeschouwer S. Development of siRNA-loaded chitosan nanoparticles targeting Galectin-1 for the treatment of glioblastoma multiforme via intranasal administration. J Control Release. 2016;227:71–81.

    Article  PubMed  Google Scholar 

  16. Gao X, Tao W, Lu W, Zhang Q, Zhang Y, Jiang X, Fu S. Lectin-conjugated PEG–PLA nanoparticles: preparation and brain delivery after intranasal administration. Biomaterials. 2006;27:3482–90.

    Article  CAS  PubMed  Google Scholar 

  17. Gao X, Wu B, Zhang Q, Chen J, Zhu J, Zhang W, Rong Z, Chen H, Jiang X. Brain delivery of vasoactive intestinal peptide enhanced with the nanoparticles conjugated with wheat germ agglutinin following intranasal administration. J Control Release. 2007;121:156–67.

    Article  CAS  PubMed  Google Scholar 

  18. Liu Q, Shao X, Chen J, Shen Y, Feng C, Gao X, Zhao Y, Li J, Zhang Q, Jiang X. In vivo toxicity and immunogenicity of wheat germ agglutinin conjugated poly (ethylene glycol)-poly (lactic acid) nanoparticles for intranasal delivery to the brain. Toxicol Appl Pharmacol. 2011;251:79–84.

    Article  CAS  PubMed  Google Scholar 

  19. Lavelle EC, Grant G, Pusztai A, Pfüller U, O’Hagan DT. Mucosal immunogenicity of plant lectins in mice. Immunology. 2000;99:30–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lavelle EC, Grant G, Pfuller U, O’Hagan DT. Immunological implications of the use of plant lectins for drug and vaccine targeting to the gastrointestinal tract. J Drug Target. 2004;12:89–95.

    Article  CAS  PubMed  Google Scholar 

  21. Li J, Wu H, Hong J, Xu X, Yang H, Wu B, Wang Y, Zhu J, Lai R, Jiang X, Lin D, Prescott MC, Rees HH. Odorranalectin is a small peptide lectin with potential for drug delivery and targeting. PLoS One. 2008;3:e2381.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lundh B, Brockstedt U, Kristensson K. Lectin-binding pattern of neuroepithelial and respiratory epithelial cells in the mouse nasal cavity. Histochem J. 1989;21:33–43.

    Article  CAS  PubMed  Google Scholar 

  23. Abuirmeileh A, Harkavyi A, Kingsbury A, Lever R, Whitton PS. The CRF-like peptide urocortin produces a long-lasting recovery in rats made hemiparkinsonian by 6-hydroxydopamine or lipopolysaccharide. J Neurol Sci. 2008;271:131–6.

    Article  CAS  PubMed  Google Scholar 

  24. Abuirmeileh A, Lever R, Kingsbury AE, Lees AJ, Locke IC, Knight RA, Chowdrey HS, Biggs CS, Whitton PS. The corticotrophin-releasing factor-like peptide urocortin reverses key deficits in two rodent models of Parkinson’s disease. Eur J Neurosci. 2007;26:417–23.

    Article  PubMed  Google Scholar 

  25. Wen Z, Yan Z, Hu K, Pang Z, Cheng X, Guo L, Zhang Q, Jiang X, Fang L, Lai R. Odorranalectin-conjugated nanoparticles: preparation brain delivery and pharmacodynamic study on Parkinson’s disease following intranasal administration. J Control Release. 2011;151:131–8.

    Article  CAS  PubMed  Google Scholar 

  26. Wu H, Li J, Zhang Q, Yan X, Guo L, Gao X, Qiu M, Jiang X, Lai R, Chen H. A novel small Odorranalectin-bearing cubosomes: preparation, brain delivery and pharmacodynamic study on amyloid- β25–35-treated rats following intranasal administration. Eur J Pharm Biopharm. 2012;80:368–78.

    Article  CAS  PubMed  Google Scholar 

  27. Fillebeen C, Descamps L, Dehouck MP, Fenart L, Benaïssa M, Spik G, Cecchelli R, Pierce A. Receptor-mediated transcytosis of lactoferrin through the blood-brain barrier. J Biol Chem. 1999;274:7011–7.

    Article  CAS  PubMed  Google Scholar 

  28. Huang RQ, Ke WL, Qu YH, Zhu JH, Pei YY, Jiang C. Characterization of lactoferrin receptor in brain endothelial capillary cells and mouse brain. J Biomed Sci. 2007;14:121–8.

    Article  CAS  PubMed  Google Scholar 

  29. Suzuki YA, Lopez V, Lönnerdal B. Mammalian lactoferrin receptors: structure and function. Cell Mol Life Sci. 2005;62:2560–75.

    Article  CAS  PubMed  Google Scholar 

  30. Bi C, Wang A, Chu Y, Liu S, Mu H, Liu W, Wu Z, Sun K, Li Y. Intranasal delivery of rotigotine to the brain with lactoferrin-modified PEG-PLGA nanoparticles for Parkinson’s disease treatment. Int J Nanomedicine. 2016;11:6547–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Devalia JL, Sapsford RJ, Wells CW, Richman P, Davies RJ. Culture and comparison of human bronchial and nasal epithelial cells in vitro. Respir Med. 1990;84:303–12.

    Article  CAS  PubMed  Google Scholar 

  32. Liu Z, Jiang M, Kang T, Miao D, Gu G, Song Q, Yao L, Hu Q, Tu Y, Pang Z, Chen H, Jiang X, Gao X, Chen J. Lactoferrin-modified PEG-o-PCL nanoparticles for enhanced brain delivery of NAPde following intranasal administration. Biomaterials. 2013;34:3870–81.

    Article  CAS  PubMed  Google Scholar 

  33. Mussbach F, Franke M, Zoch A, Schaefer B, Reissmann S. Transduction of peptides and proteins into live cells by cell penetrating peptides. J Cell Biochem. 2011;112:3824–33.

    Article  CAS  PubMed  Google Scholar 

  34. Mussbach F, Franke M, Zoch A, Schaefer B, Reissmann S. Transduction of peptides. Proteins and nucleotides into live cells by cell penetrating peptides. ChemPlusChem. 2015;13:90–5.

    Google Scholar 

  35. Meade BR, Dowdy SF. Exogenous siRNA delivery using peptide transduction domains/cell penetrating peptides. Adv Drug Deliv Rev. 2007;59:134–40.

    Article  CAS  PubMed  Google Scholar 

  36. Meade BR, Dowdy SF. Enhancing the cellular uptake of siRNA duplexes following noncovalent packaging with protein transduction domain peptides. Adv Drug Deliv Rev. 2008;60:530–6.

    Article  CAS  PubMed  Google Scholar 

  37. Koren E, Torchilin VP. Cell-penetrating peptides: breaking through to the other side. Trends Mol Med. 2012;18:385–93.

    Article  CAS  PubMed  Google Scholar 

  38. Lehto T, Kurrikoff K, Langel Ü. Cell-penetrating peptides for the delivery of nucleic acids. Expert Opin Drug Deliv. 2012;9:823–36.

    Article  CAS  PubMed  Google Scholar 

  39. Margus H, Padari K, Pooga M. Cell-penetrating peptides as versatile vehicles for oligonucleotide delivery. Mol Ther. 2012;20:525–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jaafari M, Tafaghodi M, Sa ST. Evaluation of the clearance characteristics of liposomes in the human nose by gamma-scintigraphy. Iran J Pharm Res. 2005;1:3–11.

    Google Scholar 

  41. Andresen TL, Jensen SS, Jørgensen K. Advanced strategies in liposomal cancer therapy: problems and prospects of active and tumor specific drug release. Prog Lipid Res. 2005;44:68–97.

    Article  CAS  PubMed  Google Scholar 

  42. Li SD, Huang L. Stealth nanoparticles: high density but sheddable PEG is a key for tumor targeting. J Control Release. 2010;145:178–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Touitou E, Dayan N, Bergelson L, Godin B, Eliaz M. Ethosomes - novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. J Control Release. 2000;65:403–18.

    Article  CAS  PubMed  Google Scholar 

  44. Elsayed MM, Abdallah OY, Naggar VF, Khalafallah NM. Deformable liposomes and ethosomes: mechanism of enhanced skin delivery. Int J Pharm. 2006;322:60–6.

    Article  CAS  PubMed  Google Scholar 

  45. Jain S, Jain P, Umamaheshwari RB, Jain NK. Transfersomes—a novel vesicular carrier for enhanced transdermal delivery: development. Characterization and performance evaluation. Drug Dev Ind Pharm. 2003;29:1013–26.

    Article  CAS  PubMed  Google Scholar 

  46. Li W, Zhou Y, Zhao N, Hao B, Wang X, Kong P, et al. Pharmacokinetic behavior and efficiency of acetylcholinesterase inhibition in rat brain after intranasal administration of galanthamine hydrobromide loaded flexible liposomes. Environ Toxicol Pharmacol. 2012;34:272–9.

    Article  PubMed  Google Scholar 

  47. Tenovuo O. Central acetylcholinesterase inhibitors in the treatment of chronic traumatic brain injury - clinical experience in 111 patients. Prog Neuropsychopharmacol Biol Psychiatry. 2005;29:61–7.

    Article  CAS  PubMed  Google Scholar 

  48. Venkatesh K, Bullock R, Akbaş A. Strategies to improve tolerability of rivastigmine: a case series. Curr Med Res Opin. 2007;23:93–5.

    Article  CAS  PubMed  Google Scholar 

  49. Lamb HM, Goa KL. Rivastigmine - A pharmacoeconomic review of its use in Alzheimer’s disease. PharmacoEconomics. 2001;19:303–18.

    Article  CAS  PubMed  Google Scholar 

  50. Spencer CM, Noble S. Rivastigmine - A review of its use in Alzheimer’s disease. Drugs Aging. 1998;13:391–411.

    Article  CAS  PubMed  Google Scholar 

  51. Zomer A, Vendrig T, Hopmans ES, van Eijndhoven M, Middeldorp JM, Pegtel DM. Exosomes: fit to deliver small RNA. Commun Integr Biol. 2010;3:447–50.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–9.

    Article  CAS  PubMed  Google Scholar 

  53. El-Andaloussi S, Lakhal S, Mäger I, Wood MJ. Exosomes for targeted siRNA delivery across biological barriers. Adv Drug Deliv Rev. 2013;65:391–7.

    Article  CAS  PubMed  Google Scholar 

  54. Lai CP, Breakefield XO. Role of exosomes/microvesicles in the nervous system and use in emerging therapies. Front Physiol. 2012;3:228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sun D, Zhuang X, Xiang X, Liu Y, Zhang S, Liu C, Barnes S, Grizzle W, Miller D, Zhang HG. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther. 2010;18:1606–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Born J, Lange T, Kern W, et al. Sniffi ng neuropeptides: a transnasal approach to the human brain. Nat Neurosci. 2002;5:514–6.

    Article  CAS  PubMed  Google Scholar 

  57. Fehm HL, Perras B, Smolink R, et al. Manipulating neuropeptidergic pathways in expert Opin. Drug Deliv. Downloaded from informahealthcare.com by Dalhousie University on 07/25/12 For personal humans: a novel approach to neuropharmacology. Eur J Pharmacol. 2000;405:43–54.

    Article  CAS  PubMed  Google Scholar 

  58. Sakane T, Akizuki M, Yamashita S, et al. The transport of a drug to the cerebrospinal fluid directly from the nasal cavity: the relation to the lipophilicity of the drug. Chem Pharm Bull. 1991;39:2456–85.

    Article  CAS  Google Scholar 

  59. Jiang XG, Lu X, Cui JB, et al. Studies on octanol-water partition coefficient and nasal drug absorption. Acta Pharm Sin. 1997;32:458–60.

    CAS  Google Scholar 

  60. Sakane T, Akizuki M, Yamashita S, et al. Direct drug transport from the nasal cavity to the cerebrospinal fluid: the relation to the dissociation of the drug. J Pharm Pharmacol. 1994;46:378.

    Article  CAS  PubMed  Google Scholar 

  61. Alagusundara M, Chengaiah B, Gnanaprakash K, et al. Nasal drug delivery system; an overview. Int J Pharm Sci Res. 2010;1(4):454–65.

    Google Scholar 

  62. Maliheh G, Young PM, Traini D, et al. Strategies to enhance drug absorption via nasal and pulmonary routes; A review. Pharmaceutics. 2019;11:113.

    Google Scholar 

  63. Aurora J. Development of nasal drug delivery system; A review. Drug Deliv Technol. 2002;2(7):1–8.

    Google Scholar 

  64. Chhajed S, Sangale S, Barhate SD. Advantageous nasal drug delivery system: A review. ijpsr. 2011;2(6):1322–36.

    CAS  Google Scholar 

  65. Jassim ZE, Al Akkam EJ. A review on strategies for improving nasal drug delivery system. Drug Invention Today. 2018;10:1.

    Google Scholar 

  66. Jadhav K, Manoj NG, Shaikh IM, et al. Nasal drug delivery system- factors affecting and applications. Current Drug Therapy. 2007;2(1):27–38.

    Google Scholar 

  67. Prajapati M, Mandloi R, Pillai S, et al. The review on the nasal drug delivery. Asian J Pharm Res. 2020;10(2):110–6.

    Article  Google Scholar 

  68. Dhakar RC, Maurya SD, Tilak VK, et al. A review on Factor affecting the design of nasal drug delivery system. Int J Drug Deliv. 2011;(3):194–208.

    Google Scholar 

  69. Erdoa F, Borsa LA, Farkasa D, Bajzaa A, Gizurarsonb S. Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Res Bull. 2018;143:155–70, 165.

    Article  Google Scholar 

  70. Jassim ZE, Al-Akkam EJ. A review on strategies for improving nasal drug delivery systems. Drug Invention Today. 2018;10(Special Issue 1):2861.

    Google Scholar 

  71. Savale S, Mahajan H. Nose to brain: a versatile mode of drug delivery system. Asian J Biomater Res. 2017;3(1):16–38, 31.

    Google Scholar 

  72. Djupesland G, Messina JC, Mahmoud RA. The nasal approach to delivering treatment for brain diseases: an anatomic, physiologic, and delivery technology overview. Ther Deliv. 2014;5(6):709–33, 722.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Borkar, S.P., Raizaday, A. (2023). Different Strategies for Nose-to-Brain Delivery of Small Molecules. In: Pathak, Y.V., Yadav, H.K.S. (eds) Nasal Drug Delivery. Springer, Cham. https://doi.org/10.1007/978-3-031-23112-4_17

Download citation

Publish with us

Policies and ethics