Skip to main content

Nanosuspension – A Novel Drug Delivery System via Nose-to-Brain Drug Delivery

  • Chapter
  • First Online:
Nasal Drug Delivery

Abstract

Nanosuspension administration via the nasal route of administration appears to be an effective pathway of nose-to-brain drug delivery. The nasal cavity is highly vascularized and innervated by nerves, making it an attractive route of administration that bypasses many oral or parenteral limitations and challenges, thus having more advantages and being an effective treatment choice, especially for neuronal diseases. Nanosuspension was found to be an enhancer of drug absorption though the nasal route of administration due to its small particle size and its capability of optimizing the hydrophilic drugs within it to increase its solubility. Intranasal nanosuspensions are currently being investigated to improve nose-to-brain drug delivery. Nose-to-brain drug delivery and nanosuspension application (insight for nose-to-brain drug delivery) are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lee D, Minko T. Nanotherapeutics for nose-to-brain drug delivery: an approach to bypass the blood brain barrier. Pharmaceutics [Internet]. 2021 [cited 10 November 2021];13(12):2049. Available from: https://doi.org/10.3390/pharmaceutics13122049.

  2. Agrawal Y, Patel V. Nanosuspension: an approach to enhance solubility of drugs. J Adv Pharm Technol Res. 2011;2(2):81.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Verma S, Gokhale R, Burgess D. A comparative study of top-down and bottom-up approaches for the preparation of micro/nanosuspensions. Int J Pharm. 2009;380(1–2):216–22.

    Article  CAS  PubMed  Google Scholar 

  4. Verma S, Lan Y, Gokhale R, Burgess D. Quality by design approach to understand the process of nanosuspension preparation. Int J Pharm [Internet]. 2009 [cited 5 December 2021];377(1–2):185–98. Available from: https://doi.org/10.1016/j.ijpharm.2009.05.006.

  5. Erdő F, Bors L, Farkas D, Bajza Á, Gizurarson S. Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Res Bull [Internet]. 2018 [cited 7 December 2021];143:155–70. Available from: https://doi.org/10.1016/j.brainresbull.2018.10.009.

  6. Cassano R, Servidio C, Trombino S. Biomaterials for drugs nose–brain transport: a new therapeutic approach for neurological diseases. Materials [Internet]. 2021 [cited 10 December 2021];14(7):1802. Available from: https://doi.org/10.3390/ma14071802.

  7. Veronesi M. Imaging of intranasal drug delivery to the brain. Am J Nucl Med Mol Imaging. 2020 [PubMed] [cited 4 December 2021];10(1):1–31. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7076302/.

  8. Crowe TP, Greenlee MHW, Kanthasamy AG, Hsu WH. Mechanism of intranasal drug delivery directly to the brain. Life Sci. 2018;195:44–52. https://doi.org/10.1016/j.lfs.2017.12.025.

    Article  CAS  PubMed  Google Scholar 

  9. Hasnain S, Nayak A. Natural polysaccharides in drug delivery and biomedical applications. San Diego: Elsevier Inc.; 2019. p. 2–152.

    Google Scholar 

  10. Bhatia S. Natural polymer drug delivery systems; nanoparticles, plants, and algae. Springer International Publishing Switzerland; 2016. p. 95–118. https://doi.org/10.1007/978-3-319-41129-3.

    Book  Google Scholar 

  11. Sahoo R, Sahoo S, Azizi S. Tamarind seed polysaccharides and their nanocomposites for drug delivery: an economical, eco-friendly and novel approach. MJMS. 2017;2(2):32–40.

    Google Scholar 

  12. Shao H, Zhang H, Tian Y, Song Z, Lai PFH, Ai L. Composition and rheological properties of polysaccharide extracted from tamarind (Tamarindus indica L.) seed. Molecules. 2019;24(7):1218. https://doi.org/10.3390/molecules24071218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Goel S, Sachdeva M, Agarwal V. Nanosuspension technology: recent patents on drug delivery and their characterizations. Recent Pat Drug Deliv Formul. 2019;13(2):91–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Piacentini E. Encapsulation efficiency. In: Encyclopedia of membranes; 2016; pp. 706–7.

    Google Scholar 

  15. Database.ich.org. 2021. [online] Available at: https://database.ich.org/sites/default/files/Q1A%28R2%29%20Guideline.pdf. Accessed 12 Feb 2021.

  16. Westin U, Piras E, Jansson B, Bergström U, Dahlin M, Brittebo E, Björk E. Transfer of morphine along the olfactory pathway to the central nervous system after nasal administration to rodents. Eur J Pharm Sci. 2005;24:565–73. https://doi.org/10.1016/j.ejps.2005.01.009.

    Article  CAS  PubMed  Google Scholar 

  17. Gonçalves VSS, Matias AA, Poejo J, Serra AT, Duarte CMM. Application of RPMI 2650 as a cell model to evaluate solid formulations for intranasal delivery of drugs. Int J Pharm. 2016;515:1–10. https://doi.org/10.1016/j.ijpharm.2016.09.086.

    Article  CAS  PubMed  Google Scholar 

  18. Qian S, He L, Wang Q, Wong YC, Mak M, Ho CY, Han Y, Zuo Z. Intranasal delivery of a novel acetylcholinesterase inhibitor HLS-3 for treatment of Alzheimer’s disease. Life Sci. 2018;207:428–35. https://doi.org/10.1016/j.lfs.2018.06.032.

    Article  CAS  PubMed  Google Scholar 

  19. Dolberg AM, Reichl S. Expression of P-glycoprotein in excised human nasal mucosa and optimized models of RPMI 2650 cells. Int J Pharm. 2016;508:22–33. https://doi.org/10.1016/j.ijpharm.2016.05.010.

    Article  CAS  PubMed  Google Scholar 

  20. Cho HJ, Termsarasab U, Kim JS. In vitro nasal cell culture systems for drug transport studies. J Pharm Investig. 2010;40:321–32. https://doi.org/10.4333/kps.2010.40.6.321.

    Article  Google Scholar 

  21. Selvaraj K, Gowthamarajan K, Karri VVSR. Nose to brain transport pathways an overview: potential of nanostructured lipid carriers in nose to brain targeting. Artif Cells Nanomed Biotechnol. 2018;46(8):2088–95. https://doi.org/10.1080/21691401.2017.1420073.

    Article  CAS  PubMed  Google Scholar 

  22. Eskandari S, Varshosaz J, Minaiyan M, et al. Brain delivery of valproic acid via intranasal administration of nanostructured lipid carriers: in vivo pharmacodynamic studies using rat electroshock model. Int J Nanomedicine. 2011;6:363–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Alam MI, Baboota S, Ahuja A, Ali M, et al. Intranasal infusion of nanostructured lipid carriers (NLCS) containing CNS acting drug and estimation in brain and blood. Drug Deliv. 2013;20:247–51.

    Article  CAS  PubMed  Google Scholar 

  24. Jain K, Sood S, Gowthamarajan K. Optimization of artemether loaded NLCS for intranasal delivery using central composite design. Drug Deliv. 2015;22:940–54.

    Article  CAS  PubMed  Google Scholar 

  25. Khan A, Imam SS, Aqil M, et al. Brain targeting of temozolomide via the intranasal route using lipid-based nanoparticles: brain pharmacokinetic and scintigraphic analyses. Mol Pharm. 2016;13:3773–82.

    Article  CAS  PubMed  Google Scholar 

  26. Singh SK, Dadhania P, Vuddanda PR, et al. Intranasal delivery of asenapine loaded nanostructured lipid carriers: formulation, characterization, pharmacokinetic and behavioural assessment. RSC Adv. 2016;6:2032–45.

    Article  CAS  Google Scholar 

  27. Ross TM. Intranasal administration of interferon beta bypasses the blood–brain barrier to target the central nervous system and cervical lymph nodes: a non-invasive treatment strategy for multiple sclerosis. J Neuroimmunol. 2004;151(1–2):66–77. https://doi.org/10.1016/j.jneuroim.2004.02.011.

    Article  CAS  PubMed  Google Scholar 

  28. Ahmed M, Khan U, Haye A, Agarwal N, Alhakamy N, Alhadrami H, et al. Liquid crystalline nanoparticles for nasal delivery of rosuvastatin: implications on therapeutic efficacy in management of epilepsy. Pharmaceuticals. 2020;13(11):356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. EU Clinical Trials Register - Update [Internet]. Clinicaltrialsregistereu. 2022 [cited 9 January 2022]. Available from: https://www.clinicaltrialsregister.eu/.

  30. Evaluation of ivermectin mucoadhesive nanosuspension as nasal spray in management of early covid-19 - Full Text View - ClinicalTrials.gov [Internet]. Clinicaltrials.gov. 2022 [cited 9 January 2022]. Available from: https://clinicaltrials.gov/ct2/show/nct04716569.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yadav, H.K.S., Alabdin, R.Z. (2023). Nanosuspension – A Novel Drug Delivery System via Nose-to-Brain Drug Delivery. In: Pathak, Y.V., Yadav, H.K.S. (eds) Nasal Drug Delivery. Springer, Cham. https://doi.org/10.1007/978-3-031-23112-4_15

Download citation

Publish with us

Policies and ethics