Skip to main content

Niosomes-Based Drug Delivery in Targeting the Brain Tumors Via Nasal Delivery

  • Chapter
  • First Online:
Nasal Drug Delivery

Abstract

Targeting tumors has always been a herculean task. Moreover, the presence of blood brain barrier (BBB) acts as a physical barrier and restricts the transportation of therapeutic molecules across the brain. Targeted delivery of the therapeutic payload across the blood brain barrier has gained widespread attention over the past few years. Intranasal route offers delivery to the brain via the trigeminal and olfactory route surpassing BBB. It also offers various other advantages such as surpassing biotransformation, and systemic absorption increasing the efficacy. Over the last few decades, several novel drug delivery systems such as liposomes and other lipid nanoparticles targeting brain, have gained widespread attention. The Niosomes are vesicular nanoparticle flatforms comprised of non-ionic surfactants, which are biodegradable, more stable than liposomes. This current review discusses the potential use of niosomes as a delivery vehicle for targeting brain tumors via the nasal route.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Martins PP, Smyth HD, Cui Z. Strategies to facilitate or block nose-to-brain drug delivery. Int J Pharm. 2019;570:118635.

    Article  CAS  PubMed  Google Scholar 

  2. Pardridge WM. The blood-brain barrier: bottleneck in brain drug development. NeuroRx. 2005;2(1):3–14.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bahadur S, Pardhi DM, Rautio J, Rosenholm JM, Pathak K. Intranasal nanoemulsions for direct nose-to-brain delivery of actives for cns disorders. Pharmaceutics. 2020;12(12):1230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gadhave D, Choudhury H, Kokare C. Neutropenia and leukopenia protective intranasal olanzapine-loaded lipid-based nanocarriers engineered for brain delivery. Appl Nanosci. 2019;9(2):151–68.

    Article  CAS  Google Scholar 

  5. Pardeshi CV, Belgamwar VS. Direct nose to brain drug delivery via integrated nerve pathways bypassing the blood–brain barrier: an excellent platform for brain targeting. Expert Opin Drug Deliv. 2013;10(7):957–72.

    Article  CAS  PubMed  Google Scholar 

  6. Fahmy UA, Badr-Eldin SM, Ahmed OA, Aldawsari HM, Tima S, Asfour HZ, et al. Intranasal niosomal in situ gel as a promising approach for enhancing flibanserin bioavailability and brain delivery: in vitro optimization and ex vivo/in vivo evaluation. Pharmaceutics. 2020;12(6):485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bourganis V, Kammona O, Alexopoulos A, Kiparissides C. Recent advances in carrier mediated nose-to-brain delivery of pharmaceutics. Eur J Pharm Biopharm. 2018;128:337–62.

    Article  CAS  PubMed  Google Scholar 

  8. Sohel MD, Sultana T, Kawsar MH. Largest obstacle of drug delivery to the blood brain barrier and current approach to solve this problem: recent comprehensive review.

    Google Scholar 

  9. Scherrmann J-M. Drug delivery to brain via the blood–brain barrier. Vasc Pharmacol. 2002;38(6):349–54.

    Article  CAS  Google Scholar 

  10. Illum L. Transport of drugs from the nasal cavity to the central nervous system. Eur J Pharm Sci. 2000;11(1):1–18.

    Article  CAS  PubMed  Google Scholar 

  11. Illum L. Is nose-to-brain transport of drugs in man a reality? J Pharm Pharmacol. 2004;56(1):3–17.

    Article  CAS  PubMed  Google Scholar 

  12. Choudhury H, Gorain B, Chatterjee B, K Mandal U, Sengupta P, K Tekade R. Pharmacokinetic and pharmacodynamic features of nanoemulsion following oral, intravenous, topical and nasal route. Curr Pharm Des. 2017;23(17):2504–31.

    Article  PubMed  Google Scholar 

  13. Mistry A, Stolnik S, Illum L. Nose-to-brain delivery: investigation of the transport of nanoparticles with different surface characteristics and sizes in excised porcine olfactory epithelium. Mol Pharm. 2015;12(8):2755–66.

    Article  CAS  PubMed  Google Scholar 

  14. Rassu G, Soddu E, Cossu M, Brundu A, Cerri G, Marchetti N, et al. Solid microparticles based on chitosan or methyl-β-cyclodextrin: a first formulative approach to increase the nose-to-brain transport of deferoxamine mesylate. J Control Release. 2015;201:68–77.

    Article  CAS  PubMed  Google Scholar 

  15. Bors LA, Bajza Á, Mándoki M, Tasi BJ, Cserey G, Imre T, et al. Modulation of nose-to-brain delivery of a P-glycoprotein (MDR1) substrate model drug (quinidine) in rats. Brain Res Bull. 2020;160:65–73.

    Article  CAS  PubMed  Google Scholar 

  16. Mittal D, Ali A, Md S, Baboota S, Sahni JK, Ali J. Insights into direct nose to brain delivery: current status and future perspective. Drug Deliv. 2014;21(2):75–86.

    Article  CAS  PubMed  Google Scholar 

  17. Casettari L, Illum L. Chitosan in nasal delivery systems for therapeutic drugs. J Control Release. 2014;190:189–200.

    Article  CAS  PubMed  Google Scholar 

  18. Gupta S, Kesarla R, Omri A. Approaches for CNS delivery of drugs–nose to brain targeting of antiretroviral agents as a potential attempt for complete elimination of major reservoir site of HIV to aid AIDS treatment. Expert Opin Drug Deliv. 2019;16(3):287–300.

    Article  CAS  PubMed  Google Scholar 

  19. Ruigrok MJ, de Lange EC. Emerging insights for translational pharmacokinetic and pharmacokinetic-pharmacodynamic studies: towards prediction of nose-to-brain transport in humans. AAPS J. 2015;17(3):493–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Samaridou E, Alonso MJ. Nose-to-brain peptide delivery–the potential of nanotechnology. Bioorg Med Chem. 2018;26(10):2888–905.

    Article  CAS  PubMed  Google Scholar 

  21. Lochhead JJ, Thorne RG. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev. 2012;64(7):614–28.

    Article  CAS  PubMed  Google Scholar 

  22. Mistry A, Stolnik S, Illum L. Nanoparticles for direct nose-to-brain delivery of drugs. Int J Pharm. 2009;379(1):146–57.

    Article  CAS  PubMed  Google Scholar 

  23. Feng Y, He H, Li F, Lu Y, Qi J, Wu W. An update on the role of nanovehicles in nose-to-brain drug delivery. Drug Discov Today. 2018;23(5):1079–88.

    Article  CAS  PubMed  Google Scholar 

  24. Kozlovskaya L, Abou-Kaoud M, Stepensky D. Quantitative analysis of drug delivery to the brain via nasal route. J Control Release. 2014;189:133–40.

    Article  CAS  PubMed  Google Scholar 

  25. Graff CL, Pollack GM. Nasal drug administration: potential for targeted central nervous system delivery. J Pharm Sci. 2005;94(6):1187–95.

    Article  CAS  PubMed  Google Scholar 

  26. Thorne RG, Frey WH. Delivery of neurotrophic factors to the central nervous system. Clin Pharmacokinet. 2001;40(12):907–46.

    Article  CAS  PubMed  Google Scholar 

  27. Angeli E, Nguyen TT, Janin A, Bousquet G. How to make anticancer drugs cross the blood–brain barrier to treat brain metastases. Int J Mol Sci. 2020;21(1):22.

    Article  CAS  Google Scholar 

  28. Musumeci T, Bonaccorso A, Puglisi G. Epilepsy disease and nose-to-brain delivery of polymeric nanoparticles: an overview. Pharmaceutics. 2019;11(3):118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Craft S, Raman R, Chow TW, Rafii MS, Sun C-K, Rissman RA, et al. Safety, efficacy, and feasibility of intranasal insulin for the treatment of mild cognitive impairment and Alzheimer disease dementia: a randomized clinical trial. JAMA Neurol. 2020;77(9):1099–109.

    Article  PubMed  Google Scholar 

  30. Jullaphant T, Nakpeng T, Srichana T. Montelukast nasal spray: formulation development and in vitro evaluation. Pharm Dev Technol. 2019;24(4):494–503.

    Article  CAS  PubMed  Google Scholar 

  31. Kitiyodom S, Kaewmalun S, Nittayasut N, Suktham K, Surassmo S, Namdee K, et al. The potential of mucoadhesive polymer in enhancing efficacy of direct immersion vaccination against Flavobacterium columnare infection in tilapia. Fish Shellfish Immunol. 2019;86:635–40.

    Article  CAS  PubMed  Google Scholar 

  32. Lengyel M, Kállai-Szabó N, Antal V, Laki AJ, Antal I. Microparticles, microspheres, and microcapsules for advanced drug delivery. Sci Pharm. 2019;87(3):20.

    Article  CAS  Google Scholar 

  33. Salade L, Wauthoz N, Goole J, Amighi K. How to characterize a nasal product. The state of the art of in vitro and ex vivo specific methods. Int J Pharm. 2019;561:47–65.

    Article  CAS  PubMed  Google Scholar 

  34. Alagusundaram M, Chengaiah B, Gnanaprakash K, Ramkanth S, Chetty CM, Dhachinamoorthi D. Nasal drug delivery system-an overview. Int J Res Pharm Sci. 2010;1(4):454–65.

    CAS  Google Scholar 

  35. Chaturvedi M, Kumar M, Pathak K. A review on mucoadhesive polymer used in nasal drug delivery system. J Adv Pharm Technol Res. 2011;2(4):215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Al Bakri W, Donovan MD, Cueto M, Wu Y, Orekie C, Yang Z. Overview of intranasally delivered peptides: key considerations for pharmaceutical development. Expert Opin Drug Deliv. 2018;15(10):991–1005.

    Article  PubMed  Google Scholar 

  37. Inoue D, Furubayashi T, Tanaka A, Sakane T, Sugano K. Quantitative estimation of drug permeation through nasal mucosa using in vitro membrane permeability across Calu-3 cell layers for predicting in vivo bioavailability after intranasal administration to rats. Eur J Pharm Biopharm. 2020;149:145–53.

    Article  CAS  PubMed  Google Scholar 

  38. Qian S, Wong YC, Zuo Z. Development, characterization and application of in situ gel systems for intranasal delivery of tacrine. Int J Pharm. 2014;468(1–2):272–82.

    Article  CAS  PubMed  Google Scholar 

  39. Mansuri S, Kesharwani P, Jain K, Tekade RK, Jain N. Mucoadhesion: a promising approach in drug delivery system. React Funct Polym. 2016;100:151–72.

    Article  CAS  Google Scholar 

  40. Röhm M, Carle S, Maigler F, Flamm J, Kramer V, Mavoungou C, et al. A comprehensive screening platform for aerosolizable protein formulations for intranasal and pulmonary drug delivery. Int J Pharm. 2017;532(1):537–46.

    Article  PubMed  Google Scholar 

  41. Inoue D, Kimura S, Kiriyama A, Katsumi H, Yamamoto A, Ogawara K-i, et al. Quantitative estimation of the effect of nasal mucociliary function on in vivo absorption of norfloxacin after intranasal administration to rats. Mol Pharm. 2018;15(10):4462–9.

    Article  CAS  PubMed  Google Scholar 

  42. Rohrer J, Lupo N, Bernkop-Schnürch A. Advanced formulations for intranasal delivery of biologics. Int J Pharm. 2018;553(1–2):8–20.

    Article  CAS  PubMed  Google Scholar 

  43. Akel H, Ismail R, Csóka I. Progress and perspectives of brain-targeting lipid-based nanosystems via the nasal route in Alzheimer’s disease. Eur J Pharm Biopharm. 2020;148:38–53.

    Article  CAS  PubMed  Google Scholar 

  44. Badhe RV, Nipate SS. Nasal bioadhesive drug delivery systems and their applications. Bioadhes Drug Deliv. 2020:259–305.

    Google Scholar 

  45. Xu J, Tao J, Wang J. Design and application in delivery system of intranasal antidepressants. Front Bioeng Biotechnol. 2020;8:626882.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Huang CH, Kimura R, Nassar RB, Hussain A. Mechanism of nasal absorption of drugs I: physicochemical parameters influencing the rate of in situ nasal absorption of drugs in rats. J Pharm Sci. 1985;74(6):608–11.

    Article  CAS  PubMed  Google Scholar 

  47. Shinichiro H, Takatsuka Y, Hiroyuki M. Mechanisms for the enhancement of the nasal absorption of insulin by surfactants. Int J Pharm. 1981;9(2):173–84.

    Article  Google Scholar 

  48. Duvvuri S, Majumdar S, Mitra AK. Drug delivery to the retina: challenges and opportunities. Expert Opin Biol Ther. 2003;3(1):45–56.

    Article  CAS  PubMed  Google Scholar 

  49. Ghori MU, Mahdi MH, Smith AM, Conway BR. Nasal drug delivery systems: an overview. Am J Pharmacol Sci. 2015;3(5):110–9.

    CAS  Google Scholar 

  50. Touitou E, Barry BW. Enhancement in drug delivery. CRC Press; 2006.

    Book  Google Scholar 

  51. Kushwaha SK, Keshari RK, Rai A. Advances in nasal trans-mucosal drug delivery. J Appl Pharm Sci. 2011;1(7):21.

    Google Scholar 

  52. Crowe TP, Greenlee MHW, Kanthasamy AG, Hsu WH. Mechanism of intranasal drug delivery directly to the brain. Life Sci. 2018;195:44–52.

    Article  CAS  PubMed  Google Scholar 

  53. Ali J, Ali M, Baboota S, Kaur Sahni J, Ramassamy C, Dao L. Potential of nanoparticulate drug delivery systems by intranasal administration. Curr Pharm Des. 2010;16(14):1644–53.

    Article  CAS  PubMed  Google Scholar 

  54. Keojampa BK, Nguyen MH, Ryan MW. Effects of buffered saline solution on nasal mucociliary clearance and nasal airway patency. Otolaryngology. 2004;131(5):679–82.

    Article  Google Scholar 

  55. Illum L. Nasal drug delivery—possibilities, problems and solutions. J Control Release. 2003;87(1–3):187–98.

    Article  CAS  PubMed  Google Scholar 

  56. Grassin-Delyle S, Buenestado A, Naline E, Faisy C, Blouquit-Laye S, Couderc L-J, et al. Intranasal drug delivery: an efficient and non-invasive route for systemic administration: focus on opioids. Pharmacol Ther. 2012;134(3):366–79.

    Article  CAS  PubMed  Google Scholar 

  57. Powitzky ES, Khaitan L, Richards WO, Garrett CG, Courey M. Symptoms, quality of life, videolaryngoscopy, and twenty-four-hour triple-probe pH monitoring in patients with typical and extraesophageal reflux. Ann Otol Rhinol Laryngol. 2003;112(10):859–65.

    Article  PubMed  Google Scholar 

  58. Vyas TK, Shahiwala A, Marathe S, Misra A. Intranasal drug delivery for brain targeting. Curr Drug Deliv. 2005;2(2):165–75.

    Article  CAS  PubMed  Google Scholar 

  59. Yenil Ö, Kahraman E, Algın Yapar E, Cevher E, Özkırımlı S, Özsoy Y. Preparation and evaluation of bioadhesive inserts containing verapamil hydrochloride for nasal delivery. Lat Am J Pharm. 2013;32(8):1170–7.

    CAS  Google Scholar 

  60. Messina A, Nannelli A, Fiorio R, Longo V, Gervasi P. Expression and inducibility of CYP1A1, 1A2, 1B1 by β-naphthoflavone and CYP2B22, 3A22, 3A29, 3A46 by rifampicin in the respiratory and olfactory mucosa of pig. Toxicology. 2009;260(1–3):47–52.

    Article  CAS  PubMed  Google Scholar 

  61. Robert-Hazotte A, Schoumacker R, Semon E, Briand L, Guichard E, Le Quéré J-L, et al. Ex vivo real-time monitoring of volatile metabolites resulting from nasal odorant metabolism. Sci Rep. 2019;9(1):1–13.

    Google Scholar 

  62. Heydel J-M, Faure P, Neiers F. Nasal odorant metabolism: enzymes, activity and function in olfaction. Drug Metab Rev. 2019;51(2):224–45.

    Article  CAS  PubMed  Google Scholar 

  63. Frey WH. Intranasal delivery: Bypasing the blood-brain barrier to deliver therapeutic agents to the brain and spinal cord. Drug Deliv Technol. 2002;2(5):46–9.

    Google Scholar 

  64. Kern W, Peters A, Fruehwald-Schultes B, Deininger E, Born J, Fehm HL. Improving influence of insulin on cognitive functions in humans. Neuroendocrinology. 2001;74(4):270–80.

    Article  CAS  PubMed  Google Scholar 

  65. Route BTN. Direct and enhanced delivery of nanoliposomes to the brain of anti schizophrenic agent through nasal route. 2016.

    Google Scholar 

  66. Mukherjee S, Baidoo J, Fried A, Atwi D, Dolai S, Boockvar J, et al. Curcumin changes the polarity of tumor-associated microglia and eliminates glioblastoma. Int J Cancer. 2016;139(12):2838–49.

    Article  CAS  PubMed  Google Scholar 

  67. Sun H, Luo G, Chen D, Xiang Z. A comprehensive and system review for the pharmacological mechanism of action of rhein, an active anthraquinone ingredient. Front Pharmacol. 2016;7:247.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Blacher E, Ben Baruch B, Levy A, Geva N, Green KD, Garneau-Tsodikova S, et al. Inhibition of glioma progression by a newly discovered CD38 inhibitor. Int J Cancer. 2015;136(6):1422–33.

    Article  CAS  PubMed  Google Scholar 

  69. Shingaki T, Hidalgo IJ, Furubayashi T, Katsumi H, Sakane T, Yamamoto A, et al. The transnasal delivery of 5-fluorouracil to the rat brain is enhanced by acetazolamide (the inhibitor of the secretion of cerebrospinal fluid). Int J Pharm. 2009;377(1–2):85–91.

    Article  CAS  PubMed  Google Scholar 

  70. Uldall M, Botfield H, Jansen-Olesen I, Sinclair A, Jensen R. Acetazolamide lowers intracranial pressure and modulates the cerebrospinal fluid secretion pathway in healthy rats. Neurosci Lett. 2017;645:33–9.

    Article  CAS  PubMed  Google Scholar 

  71. Shingaki T, Inoue D, Furubayashi T, Sakane T, Katsumi H, Yamamoto A, et al. Transnasal delivery of methotrexate to brain tumors in rats: a new strategy for brain tumor chemotherapy. Mol Pharm. 2010;7(5):1561–8.

    Article  CAS  PubMed  Google Scholar 

  72. Hagner N, Joerger M. Cancer chemotherapy: targeting folic acid synthesis. Cancer Manag Res. 2010;2:293.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Abolmaali SS, Tamaddon AM, Dinarvand R. A review of therapeutic challenges and achievements of methotrexate delivery systems for treatment of cancer and rheumatoid arthritis. Cancer Chemother Pharmacol. 2013;71(5):1115–30.

    Article  CAS  PubMed  Google Scholar 

  74. Sun Y, Shi K, Wan F. Methotrexate-loaded microspheres for nose to brain delivery: in vitro/in vivo evaluation. J Drug Deliv Sci Technol. 2012;22(2):167–74.

    Article  CAS  Google Scholar 

  75. Li Y, Gao Y, Liu G, Zhou X, Wang Y, Ma L. Intranasal administration of temozolomide for brain-targeting delivery: therapeutic effect on glioma in rats. Nan fang yi ke da xue xue bao. 2014;34(5):631–5.

    CAS  PubMed  Google Scholar 

  76. Baker SD, Wirth M, Statkevich P, Reidenberg P, Alton K, Sartorius SE, et al. Absorption, metabolism, and excretion of 14C-temozolomide following oral administration to patients with advanced cancer. Clin Cancer Res. 1999;5(2):309–17.

    CAS  PubMed  Google Scholar 

  77. Mrugala MM, Chamberlain MC. Mechanisms of disease: temozolomide and glioblastoma—look to the future. Nat Clin Pract Oncol. 2008;5(8):476–86.

    Article  CAS  PubMed  Google Scholar 

  78. Pineda J, Jeitany M, Andrieux A, Junier M, Chneiweiss H, Boussin F. Intranasal administration of temozolomide delayed the development of brain tumors initiated by human glioma stem-like cell in nude mice. Cancer Sci Ther. 2017;9:374–8.

    CAS  Google Scholar 

  79. Witika BA, Makoni PA, Matafwali SK, Chabalenge B, Mwila C, Kalungia AC, et al. Biocompatibility of biomaterials for nanoencapsulation: current approaches. Nano. 2020;10(9):1649.

    CAS  Google Scholar 

  80. Quesada-González D, Merkoçi A. Nanomaterial-based devices for point-of-care diagnostic applications. Chem Soc Rev. 2018;47(13):4697–709.

    Article  PubMed  Google Scholar 

  81. Guterres SS, Alves MP, Pohlmann AR. Polymeric nanoparticles, nanospheres and nanocapsules, for cutaneous applications. Drug Target Insights. 2007;2:117739280700200002.

    Article  Google Scholar 

  82. Diljyot K. Niosomes: a new approach to targeted drug delivery. Int J Pharm Phytopharmacol Res. 2012;2(1):53–9.

    Google Scholar 

  83. Sagar GH, Arunagirinathan M, Bellare JR. Self-assembled surfactant nano-structures important in drug delivery: a review. 2007.

    Google Scholar 

  84. Kumar GP, Rajeshwarrao P. Nonionic surfactant vesicular systems for effective drug delivery—an overview. Acta Pharm Sin B. 2011;1(4):208–19.

    Article  Google Scholar 

  85. Biju S, Talegaonkar S, Mishra P, Khar R. Vesicular systems: an overview. Indian J Pharm Sci. 2006;68(2).

    Google Scholar 

  86. Gandhi A, Sen SO, Paul A. Current trends in niosome as vesicular drug delivery system. Asian J Pharm Life Sci ISSN. 2012;2231:4423.

    Google Scholar 

  87. Kazi KM, Mandal AS, Biswas N, Guha A, Chatterjee S, Behera M, et al. Niosome: a future of targeted drug delivery systems. J Adv Pharm Technol Res. 2010;1(4):374.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Yeo PL, Lim CL, Chye SM, Ling AK, Koh RY. Niosomes: a review of their structure, properties, methods of preparation, and medical applications. Asian Biomed. 2017;11(4):301–13.

    Article  Google Scholar 

  89. Bhardwaj P, Tripathi P, Gupta R, Pandey S. Niosomes: a review on niosomal research in the last decade. J Drug Deliv Sci Technol. 2020;56:101581.

    Article  CAS  Google Scholar 

  90. Mokale V. Niosomes as an ideal drug delivery system. J Nanosci Res Reports SRC/JNSRR-126; 2021.

    Google Scholar 

  91. Ag Seleci D, Seleci M, Walter J-G, Stahl F, Scheper T. Niosomes as nanoparticular drug carriers: fundamentals and recent applications. J Nanomater. 2016;2016:1.

    Article  Google Scholar 

  92. Primavera R, Palumbo P, Celia C, Cinque B, Carata E, Carafa M, et al. An insight of in vitro transport of PEGylated non-ionic surfactant vesicles (NSVs) across the intestinal polarized enterocyte monolayers. Eur J Pharm Biopharm. 2018;127:432–42.

    Article  PubMed  Google Scholar 

  93. Puras G, Mashal M, Zárate J, Agirre M, Ojeda E, Grijalvo S, et al. A novel cationic niosome formulation for gene delivery to the retina. J Control Release. 2014;174:27–36.

    Article  CAS  PubMed  Google Scholar 

  94. Barani M, Mirzaei M, Torkzadeh-Mahani M, Nematollahi MH. Lawsone-loaded niosome and its antitumor activity in MCF-7 breast cancer cell line: a nano-herbal treatment for cancer. DARU J Pharm Sci. 2018;26(1):11–7.

    Article  CAS  Google Scholar 

  95. Hv B, Thota B, Wyszogrodzka M, De Carlo S, Haag R, Böttcher C. Controlled self-assembly of stomatosomes by use of single-component fluorinated dendritic amphiphiles. Soft Matter. 2018;14(25):5256–69.

    Article  Google Scholar 

  96. Mokhtar M, Sammour OA, Hammad MA, Megrab NA. Effect of some formulation parameters on flurbiprofen encapsulation and release rates of niosomes prepared from proniosomes. Int J Pharm. 2008;361(1–2):104–11.

    Article  CAS  PubMed  Google Scholar 

  97. Chen S, Hanning S, Falconer J, Locke M, Wen J. Recent advances in non-ionic surfactant vesicles (niosomes): fabrication, characterization, pharmaceutical and cosmetic applications. Eur J Pharm Biopharm. 2019;144:18–39.

    Article  PubMed  Google Scholar 

  98. Mittal S, Chaudhary A, Chaudhary A, Kumar A. Proniosomes: the effective and efficient drug-carrier system. Ther Deliv. 2020;11(2):125–37.

    Article  CAS  PubMed  Google Scholar 

  99. Muzzalupo R, Tavano L. Niosomal drug delivery for transdermal targeting: recent advances. Res Reports Transdermal Drug Deliv. 2015;4:23–33.

    Article  CAS  Google Scholar 

  100. Sahoo RK, Biswas N, Guha A, Kuotsu K. Maltodextrin based proniosomes of nateglinide: bioavailability assessment. Int J Biol Macromol. 2014;69:430–4.

    Article  CAS  PubMed  Google Scholar 

  101. Verma P, Pathak K. Therapeutic and cosmeceutical potential of ethosomes: an overview. J Adv Pharm Technol Res. 2010;1(3):274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Touitou E, Dayan N, Bergelson L, Godin B, Eliaz M. Ethosomes—novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. J Control Release. 2000;65(3):403–18.

    Article  CAS  PubMed  Google Scholar 

  103. Abdulbaqi IM, Darwis Y, Khan NAK, Abou Assi R, Khan AA. Ethosomal nanocarriers: the impact of constituents and formulation techniques on ethosomal properties, in vivo studies, and clinical trials. Int J Nanomedicine. 2016;11:2279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Moolakkadath T, Aqil M, Ahad A, Imam SS, Praveen A, Sultana Y, et al. Fisetin loaded binary ethosomes for management of skin cancer by dermal application on UV exposed mice. Int J Pharm. 2019;560:78–91.

    Article  CAS  PubMed  Google Scholar 

  105. Van Tran V, Moon J-Y, Lee Y-C. Liposomes for delivery of antioxidants in cosmeceuticals: challenges and development strategies. J Control Release. 2019;300:114–40.

    Article  PubMed  Google Scholar 

  106. Zhou Y, Wei Y, Liu H, Zhang G, Xa W. Preparation and in vitro evaluation of ethosomal total alkaloids of Sophora alopecuroides loaded by a transmembrane pH-gradient method. AAPS PharmSciTech. 2010;11(3):1350–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhang Y, Xia Q, Li Y, He Z, Li Z, Guo T, et al. CD44 assists the topical anti-psoriatic efficacy of curcumin-loaded hyaluronan-modified ethosomes: a new strategy for clustering drug in inflammatory skin. Theranostics. 2019;9(1):48.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Shen L-N, Zhang Y-T, Wang Q, Xu L, Feng N-P. Enhanced in vitro and in vivo skin deposition of apigenin delivered using ethosomes. Int J Pharm. 2014;460(1–2):280–8.

    Article  CAS  PubMed  Google Scholar 

  109. Song CK, Balakrishnan P, Shim C-K, Chung S-J, Chong S, Kim D-D. A novel vesicular carrier, transethosome, for enhanced skin delivery of voriconazole: characterization and in vitro/in vivo evaluation. Colloids Surf B: Biointerfaces. 2012;92:299–304.

    Article  CAS  PubMed  Google Scholar 

  110. Ascenso A, Raposo S, Batista C, Cardoso P, Mendes T, Praça FG, et al. Development, characterization, and skin delivery studies of related ultradeformable vesicles: transfersomes, ethosomes, and transethosomes. Int J Nanomedicine. 2015;10:5837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Paolino D, Cosco D, Muzzalupo R, Trapasso E, Picci N, Fresta M. Innovative bola-surfactant niosomes as topical delivery systems of 5-fluorouracil for the treatment of skin cancer. Int J Pharm. 2008;353(1–2):233–42.

    Article  CAS  PubMed  Google Scholar 

  112. Abdelkader H, Alani AW, Alany RG. Recent advances in non-ionic surfactant vesicles (niosomes): self-assembly, fabrication, characterization, drug delivery applications and limitations. Drug Deliv. 2014;21(2):87–100.

    Article  CAS  PubMed  Google Scholar 

  113. Gopinath D, Ravi D, Rao B, Apte S, Renuka D, Rambhau D. Ascorbyl palmitate vesicles (Aspasomes): formation, characterization and applications. Int J Pharm. 2004;271(1–2):95–113.

    Article  CAS  PubMed  Google Scholar 

  114. Moribe K, Limwikrant W, Higashi K, Yamamoto K. Drug nanoparticle formulation using ascorbic acid derivatives. J Drug Deliv. 2011;2011:1.

    Article  Google Scholar 

  115. Moghassemi S, Hadjizadeh A. Nano-niosomes as nanoscale drug delivery systems: an illustrated review. J Control Release. 2014;185:22–36.

    Article  CAS  PubMed  Google Scholar 

  116. Kauslya A, Borawake PD, Shinde JV, Chavan RS. Niosomes: a novel carrier drug delivery system. J Drug Deliv Ther. 2021;11(1):162–70.

    Article  Google Scholar 

  117. Khan R, Irchhaiya R. Niosomes: a potential tool for novel drug delivery. J Pharm Investig. 2016;46(3):195–204.

    Article  CAS  Google Scholar 

  118. Gharbavi M, Amani J, Kheiri-Manjili H, Danafar H, Sharafi A. Niosome: a promising nanocarrier for natural drug delivery through blood-brain barrier. Adv Pharmacol Sci. 2018;2018:1.

    Google Scholar 

  119. Mozafari MR. A new technique for the preparation of non-toxic liposomes and nanoliposomes: the heating method. Nanoliposomes: from fundamentals to recent developments. Trafford Publishing; 2005. p. 91–8.

    Google Scholar 

  120. Mozafari MR, Reed C, Rostron C. Cytotoxicity evaluation of anionic nanoliposomes and nanolipoplexes prepared by the heating method without employing volatile solvents and detergents. Die Pharmazie. 2007;62(3):205–9.

    CAS  PubMed  Google Scholar 

  121. Bartelds R, Nematollahi MH, Pols T, Stuart MC, Pardakhty A, Asadikaram G, et al. Niosomes, an alternative for liposomal delivery. PLoS One. 2018;13(4):e0194179.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Bayindir ZS, Yuksel N. Characterization of niosomes prepared with various nonionic surfactants for paclitaxel oral delivery. J Pharm Sci. 2010;99(4):2049–60.

    Article  CAS  PubMed  Google Scholar 

  123. Lo CT, Jahn A, Locascio LE, Vreeland WN. Controlled self-assembly of monodisperse niosomes by microfluidic hydrodynamic focusing. Langmuir. 2010;26(11):8559–66.

    Article  CAS  PubMed  Google Scholar 

  124. Hope M, Bally M, Mayer L, Janoff A, Cullis P. Generation of multilamellar and unilamellar phospholipid vesicles. Chem Phys Lipids. 1986;40(2–4):89–107.

    Article  Google Scholar 

  125. Manosroi A, Chutoprapat R, Abe M, Manosroi J. Characteristics of niosomes prepared by supercritical carbon dioxide (scCO2) fluid. Int J Pharm. 2008;352(1–2):248–55.

    Article  CAS  PubMed  Google Scholar 

  126. Manosroi A, Ruksiriwanich W, Abe M, Sakai H, Manosroi W, Manosroi J. Biological activities of the rice bran extract and physical characteristics of its entrapment in niosomes by supercritical carbon dioxide fluid. J Supercrit Fluids. 2010;54(2):137–44.

    Article  CAS  Google Scholar 

  127. Mahale N, Thakkar P, Mali R, Walunj D, Chaudhari S. Niosomes: novel sustained release nonionic stable vesicular systems—an overview. Adv Colloid Interf Sci. 2012;183:46–54.

    Article  Google Scholar 

  128. Naderinezhad S, Amoabediny G, Haghiralsadat F. Co-delivery of hydrophilic and hydrophobic anticancer drugs using biocompatible pH-sensitive lipid-based nano-carriers for multidrug-resistant cancers. RSC Adv. 2017;7(48):30008–19.

    Article  CAS  Google Scholar 

  129. Aboul-Einien MH, Kandil SM, Abdou EM, Diab HM, Zaki MS. Ascorbic acid derivative-loaded modified aspasomes: formulation, in vitro, ex vivo and clinical evaluation for melasma treatment. J Liposome Res. 2020;30(1):54–67.

    Article  CAS  PubMed  Google Scholar 

  130. Ma H, Guo D, Fan Y, Wang J, Cheng J, Zhang X. Paeonol-loaded ethosomes as transdermal delivery carriers: design, preparation and evaluation. Molecules. 2018;23(7):1756.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Rinaldi F, Hanieh PN, Chan LKN, Angeloni L, Passeri D, Rossi M, et al. Chitosan glutamate-coated niosomes: a proposal for nose-to-brain delivery. Pharmaceutics. 2018;10(2):38.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Sharma D, Ali AAE, Aate JR. Niosomes as novel drug delivery system. PharmTutor. 2018;6(3):58–65.

    Article  CAS  Google Scholar 

  133. Verma S, Singh S, Syan N, Mathur P, Valecha V. Nanoparticle vesicular systems: a versatile tool for drug delivery. J Chem Pharm Res. 2010;2(2):496–509.

    CAS  Google Scholar 

  134. Shilpa S, Srinivasan B, Chauhan M. Niosomes as vesicular carriers for delivery of proteins and biologicals. Int J Drug Deliv. 2011;3(1):14–24.

    Article  CAS  Google Scholar 

  135. Manosroi A, Wongtrakul P, Manosroi J, Sakai H, Sugawara F, Yuasa M, et al. Characterization of vesicles prepared with various non-ionic surfactants mixed with cholesterol. Colloids Surf B: Biointerfaces. 2003;30(1–2):129–38.

    Article  CAS  Google Scholar 

  136. Rajera R, Nagpal K, Singh SK, Mishra DN. Niosomes: a controlled and novel drug delivery system. Biol Pharm Bull. 2011;34(7):945–53.

    Article  CAS  PubMed  Google Scholar 

  137. Manosroi A, Khanrin P, Lohcharoenkal W, Werner RG, Götz F, Manosroi W, et al. Transdermal absorption enhancement through rat skin of gallidermin loaded in niosomes. Int J Pharm. 2010;392(1–2):304–10.

    Article  CAS  PubMed  Google Scholar 

  138. Madhav N, Saini A. Niosomes: a novel drug delivery system. Int J Res Pharm Chem. 2011;1(3):498–511.

    CAS  Google Scholar 

  139. Marianecci C, Di Marzio L, Rinaldi F, Celia C, Paolino D, Alhaique F, et al. Niosomes from 80s to present: the state of the art. Adv Colloid Interf Sci. 2014;205:187–206.

    Article  CAS  Google Scholar 

  140. Di Marzio L, Marianecci C, Petrone M, Rinaldi F, Carafa M. Novel pH-sensitive non-ionic surfactant vesicles: comparison between Tween 21 and Tween 20. Colloids Surf B: Biointerfaces. 2011;82(1):18–24.

    Article  PubMed  Google Scholar 

  141. Pozzi D, Caminiti R, Marianecci C, Carafa M, Santucci E, De Sanctis SC, et al. Effect of cholesterol on the formation and hydration behavior of solid-supported niosomal membranes. Langmuir. 2010;26(4):2268–73.

    Article  CAS  PubMed  Google Scholar 

  142. Vishwas S, Gulati M, Kapoor B, Gupta S, Singh SK, Awasthi A, et al. Expanding the arsenal against Huntington’s disease-herbal drugs and their nanoformulations. Curr Neuropharmacol. 2021;19(7):957–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. McClean E, McGrath L, Archbold G. Comparison of two fluorescent probes for the measurement of erythrocyte membrane fluidity in renal dialysis patients. Ir J Med Sci. 1995;164(4):289–92.

    Article  CAS  PubMed  Google Scholar 

  144. Martin F. Pharmaceutical manufacturing of liposomes. Drugs Pharm Sci. 1990;41:267–316.

    CAS  Google Scholar 

  145. De A, Venkatesh N, Senthil M, Sanapalli BKR, Shanmugham R, Karri VVSR. Smart niosomes of temozolomide for enhancement of brain targeting. Nano. 2018;5:1849543518805355.

    Google Scholar 

  146. Radhi AA. Benazepril hydrochloride loaded niosomal formulation for oral delivery: formulation and characterization. Int J Appl Pharm. 2018;10:66–70.

    Article  CAS  Google Scholar 

  147. Alemi A, Reza JZ, Haghiralsadat F, Jaliani HZ, Karamallah MH, Hosseini SA, et al. Paclitaxel and curcumin coadministration in novel cationic PEGylated niosomal formulations exhibit enhanced synergistic antitumor efficacy. J Nanobiotechnol. 2018;16(1):1–20.

    Article  Google Scholar 

  148. Ammar H, Haider M, Ibrahim M, El Hoffy N. In vitro and in vivo investigation for optimization of niosomal ability for sustainment and bioavailability enhancement of diltiazem after nasal administration. Drug Deliv. 2017;24(1):414–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Agarwal S, Mohamed MS, Raveendran S, Rochani AK, Maekawa T, Kumar DS. Formulation, characterization and evaluation of morusin loaded niosomes for potentiation of anticancer therapy. RSC Adv. 2018;8(57):32621–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Onochie I, Nwakile C, Umeyor C, Uronnachi E, Osonwa U, Attama A, et al. Formulation and evaluation of niosomes of benzyl penicillin. J Appl Pharm Sci. 2013;3(12):66.

    CAS  Google Scholar 

  151. Kopermsub P, Mayen V, Warin C. Potential use of niosomes for encapsulation of nisin and EDTA and their antibacterial activity enhancement. Food Res Int. 2011;44(2):605–12.

    Article  CAS  Google Scholar 

  152. Isnan AP, editor. Formulation of niosomal gel with green tea extract (Camellia sinensis L. Kuntze) using thin layer method. In: 1st International Conference on Advance Pharmacy and Pharmaceutical Sciences; 2016.

    Google Scholar 

  153. Bini K, Akhilesh D, Prabhakara P, Kamath J. Development and characterization of non-ionic surfactant vesicles (niosomes) for oral delivery of lornoxicam. Int J Drug Dev Res. 2012;4(3):147–54.

    CAS  Google Scholar 

  154. Bansal S, Aggarwal G, Chandel P, Harikumar S. Design and development of cefdinir niosomes for oral delivery. J Pharm Bioallied Sci. 2013;5(4):318.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Arunachalam A, Jeganath S, Yamini K, Tharangini K. Niosomes: a novel drug delivery system. Int J Novel Trends Pharm Sci. 2012;2(1):25–31.

    Google Scholar 

  156. Waddad AY, Abbad S, Yu F, Munyendo WL, Wang J, Lv H, et al. Formulation, characterization and pharmacokinetics of Morin hydrate niosomes prepared from various non-ionic surfactants. Int J Pharm. 2013;456(2):446–58.

    Article  CAS  PubMed  Google Scholar 

  157. He R-X, Ye X, Li R, Chen W, Ge T, Huang T-Q, et al. PEGylated niosomes-mediated drug delivery systems for Paeonol: preparation, pharmacokinetics studies and synergistic anti-tumor effects with 5-FU. J Liposome Res. 2017;27(2):161–70.

    Article  PubMed  Google Scholar 

  158. Wilkhu J. Non-ionic surfactant technology for the delivery and administration of sub-unit flu antigens. Aston University; 2013.

    Google Scholar 

  159. Mohawed OA, El-Ashmoony M, Elgazayerly ON. Niosome-encapsulated clomipramine for transdermal controlled delivery. Int J Pharm Pharm Sci. 2014;6(9):567–75.

    CAS  Google Scholar 

  160. Patel KK, Kumar P, Thakkar HP. Formulation of niosomal gel for enhanced transdermal lopinavir delivery and its comparative evaluation with ethosomal gel. AAPS PharmSciTech. 2012;13(4):1502–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Manosroi A, Chankhampan C, Manosroi W, Manosroi J. Transdermal absorption enhancement of papain loaded in elastic niosomes incorporated in gel for scar treatment. Eur J Pharm Sci. 2013;48(3):474–83.

    Article  CAS  PubMed  Google Scholar 

  162. Sandeep G, Reddy DV, Devireddy SR. Formulation and evaluation of fluconazole pro-niosomal gel for topical administration. J Appl Pharm Sci. 2014;4(7):98–104.

    Google Scholar 

  163. Abdelbary AA, AbouGhaly MH. Design and optimization of topical methotrexate loaded niosomes for enhanced management of psoriasis: application of Box–Behnken design, in-vitro evaluation and in-vivo skin deposition study. Int J Pharm. 2015;485(1–2):235–43.

    Article  CAS  PubMed  Google Scholar 

  164. Jose J, Priya S, Shastry C. Influence of bioenhancers on the release pattern of niosomes containing methotrexate. J Health Allied Sci NU. 2012;2(02):36–40.

    Article  Google Scholar 

  165. Junyaprasert VB, Singhsa P, Suksiriworapong J, Chantasart D. Physicochemical properties and skin permeation of span 60/tween 60 niosomes of ellagic acid. Int J Pharm. 2012;423(2):303–11.

    Article  CAS  PubMed  Google Scholar 

  166. Junyaprasert VB, Singhsa P, Jintapattanakit A. Influence of chemical penetration enhancers on skin permeability of ellagic acid-loaded niosomes. Asian J Pharm Sci. 2013;8(2):110–7.

    Article  CAS  Google Scholar 

  167. Shilakari Asthana G, Asthana A, Singh D, Sharma PK. Etodolac containing topical niosomal gel: formulation development and evaluation. J Drug Deliv. 2016;2016:1.

    Article  Google Scholar 

  168. Auda SH, Fathalla D, Fetih G, El-Badry M, Shakeel F. Niosomes as transdermal drug delivery system for celecoxib: in vitro and in vivo studies. Polym Bull. 2016;73(5):1229–45.

    Article  CAS  Google Scholar 

  169. Mohamed A, Bendas ER, Mohamed S, Abdel-Jaleel GA, Nasr-Alla SM. Formulation and evaluation of topical niosomal gel of baclofen. J Chem Pharm Res. 2015;7(1):277–88.

    Google Scholar 

  170. Pando D, Matos M, Gutiérrez G, Pazos C. Formulation of resveratrol entrapped niosomes for topical use. Colloids Surf B: Biointerfaces. 2015;128:398–404.

    Article  CAS  PubMed  Google Scholar 

  171. Madni A, Rahim MA, Mahmood MA, Jabar A, Rehman M, Shah H, et al. Enhancement of dissolution and skin permeability of pentazocine by proniosomes and niosomal gel. AAPS PharmSciTech. 2018;19(4):1544–53.

    Article  CAS  PubMed  Google Scholar 

  172. Bendas ER, Abdullah H, El-Komy MH, Kassem MA. Hydroxychloroquine niosomes: a new trend in topical management of oral lichen planus. Int J Pharm. 2013;458(2):287–95.

    Article  CAS  PubMed  Google Scholar 

  173. Kamboj S, Saini V, Bala S. Formulation and characterization of drug loaded nonionic surfactant vesicles (niosomes) for oral bioavailability enhancement. Sci World J. 2014;2014:1.

    Article  Google Scholar 

  174. Samyuktha R, Vedha H. Niosomal formulation of orlistat: formulation and in-vitro evaluation. Int J Drug Dev Res. 2011;3:300–11.

    Google Scholar 

  175. Moghassemi S, Parnian E, Hakamivala A, Darzianiazizi M, Vardanjani MM, Kashanian S, et al. Uptake and transport of insulin across intestinal membrane model using trimethyl chitosan coated insulin niosomes. Mater Sci Eng C. 2015;46:333–40.

    Article  CAS  Google Scholar 

  176. Biswas GR, Majee SB. Niosomes in ocular drug delivery. Eur J Pharm Med Res. 2017;4:813–9.

    Google Scholar 

  177. Mishra M. Handbook of encapsulation and controlled release. CRC Press; 2015.

    Book  Google Scholar 

  178. Abdelkader H, Ismail S, Kamal A, Alany RG. Design and evaluation of controlled-release niosomes and discomes for naltrexone hydrochloride ocular delivery. J Pharm Sci. 2011;100(5):1833–46.

    Article  CAS  PubMed  Google Scholar 

  179. Zeng W, Li Q, Wan T, Liu C, Pan W, Wu Z, et al. Hyaluronic acid-coated niosomes facilitate tacrolimus ocular delivery: Mucoadhesion, precorneal retention, aqueous humor pharmacokinetics, and transcorneal permeability. Colloids Surf B: Biointerfaces. 2016;141:28–35.

    Article  CAS  PubMed  Google Scholar 

  180. Gaafar PM, Abdallah OY, Farid RM, Abdelkader H. Preparation, characterization and evaluation of novel elastic nano-sized niosomes (ethoniosomes) for ocular delivery of prednisolone. J Liposome Res. 2014;24(3):204–15.

    Article  CAS  PubMed  Google Scholar 

  181. Marianecci C, Paolino D, Celia C, Fresta M, Carafa M, Alhaique F. Non-ionic surfactant vesicles in pulmonary glucocorticoid delivery: characterization and interaction with human lung fibroblasts. J Control Release. 2010;147(1):127–35.

    Article  CAS  PubMed  Google Scholar 

  182. Ghorbanizamani F, Moulahoum H, Bayir E, Zihnioglu F, Timur S. Glutathione encapsulation in core-shell drug nanocarriers (polymersomes and niosomes) prevents advanced glycation end-products toxicities. Int J Pept Res Ther. 2021:1–13.

    Google Scholar 

  183. Pardakhty A, Moazeni E, Varshosaz J, Hajhashemi V, Najafabadi AR. Pharmacokinetic study of niosome-loaded insulin in diabetic rats. DARU J Pharm Sci. 2011;19(6):404.

    CAS  Google Scholar 

  184. Khaksa G, D’Souza R, Lewis S, Udupa N. Pharmacokinetic study of niosome encapsulated insulin. 2000.

    Google Scholar 

  185. Shatalebi M, Mostafavi S, Moghaddas A. Niosome as a drug carrier for topical delivery of N-acetyl glucosamine. Res Pharm Sci. 2010;5(2):107.

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Moghassemi S, Hadjizadeh A, Omidfar K. Formulation and characterization of bovine serum albumin-loaded niosome. AAPS Pharmscitech. 2017;18(1):27–33.

    Article  CAS  PubMed  Google Scholar 

  187. Kanaani L. Effects of Cisplatin-Loaded Niosomal Nanoparticleson BT-20 Human Breast Carcinoma Cells. Asian Pac J Cancer Prevent. 2017;18(2):365.

    Google Scholar 

  188. Abdelbary A, Salem HF, Khallaf RA. Niosomal 5-Flourouracil gel for effective treatment of skin cancer; in-vitro and in-vivo evaluation. Int J Drug Deliv. 2016;7(4):223–32.

    Google Scholar 

  189. Alvi IA, Madan J, Kaushik D, Sardana S, Pandey RS, Ali A. Comparative study of transfersomes, liposomes, and niosomes for topical delivery of 5-fluorouracil to skin cancer cells: preparation, characterization, in-vitro release, and cytotoxicity analysis. Anti-Cancer Drugs. 2011;22(8):774–82.

    Article  CAS  PubMed  Google Scholar 

  190. Ali MA, Mohamed MI, Megahed MA, Abdelghany TM, El-Say KM. Cholesterol-based nanovesicles enhance the in vitro cytotoxicity, ex vivo intestinal absorption, and in vivo bioavailability of flutamide. Pharmaceutics. 2021;13(11):1741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Faheela M, Malathi S. In-vitro characterization of pluronic P 123 based niosome for targeted delivery of doxorubicin. Mater Today. 2021.

    Google Scholar 

  192. Abtahi NA, Naghib SM, Ghalekohneh SJ, Mohammadpour Z, Nazari H, Mosavi SM, et al. Multifunctional stimuli-responsive niosomal nanoparticles for co-delivery and co-administration of gene and bioactive compound: In vitro and in vivo studies. Chem Eng J. 2022;429:132090.

    Article  CAS  Google Scholar 

  193. Hosseinzadeh S, Nazari H, Esmaeili E, Hatamie S. Polyethylene glycol triggers the anti-cancer impact of curcumin nanoparticles in sw-1736 thyroid cancer cells. J Mater Sci. 2021;32(9):1–15.

    Google Scholar 

  194. Lin T, Fang Q, Peng D, Huang X, Zhu T, Luo Q, et al. PEGylated non-ionic surfactant vesicles as drug delivery systems for Gambogenic acid. Drug Deliv. 2013;20(7):277–84.

    Article  CAS  PubMed  Google Scholar 

  195. Sharma V, Anandhakumar S, Sasidharan M. Self-degrading niosomes for encapsulation of hydrophilic and hydrophobic drugs: an efficient carrier for cancer multi-drug delivery. Mater Sci Eng C. 2015;56:393–400.

    Article  CAS  Google Scholar 

  196. Moser P, Marchand-Arvier M, Labrude P, Handjani-Vila R, Vigneron C. Hemoglobin niosomes. I. Preparation, functional and physico-chemical properties, and stability. Pharm Acta Helv. 1989;64(7):192–202.

    CAS  PubMed  Google Scholar 

  197. House PS. Formulation and in-vitro evaluation of lamivudine niosomes. 2016.

    Google Scholar 

  198. Shreedevi H, Nesalin JAJ, Mani TT. Development and evaluation of stavudine niosome by ether injection method.

    Google Scholar 

  199. Ruckmani K, Sankar V. Formulation and optimization of zidovudine niosomes. AAPS PharmSciTech. 2010;11(3):1119–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Ranga P, Natarajan R, Rajendran N. Formulation and evaluation of zidovudine loaded niosomes. J Pharm Nanotechnol. 2013;1:12–8.

    Google Scholar 

  201. Gupta PN, Mishra V, Rawat A, Dubey P, Mahor S, Jain S, et al. Non-invasive vaccine delivery in transfersomes, niosomes and liposomes: a comparative study. Int J Pharm. 2005;293(1-2):73–82.

    Article  CAS  PubMed  Google Scholar 

  202. Okore V, Attama A, Ofokansi K, Esimone C, Onuigbo E. Formulation and evaluation of niosomes. Indian J Pharm Sci. 2011;73(3):323.

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Rentel C-O, Bouwstra J, Naisbett B, Junginger H. Niosomes as a novel peroral vaccine delivery system. Int J Pharm. 1999;186(2):161–7.

    Article  CAS  PubMed  Google Scholar 

  204. Jain S, Vyas S. Mannosylated niosomes as carrier adjuvant system for topical immunization. J Pharm Pharmacol. 2005;57(9):1177–84.

    Article  CAS  PubMed  Google Scholar 

  205. Lakshmi P, Devi GS, Bhaskaran S, Sacchidanand S. Niosomal methotrexate gel in the treatment of localized psoriasis: Phase I and phase II studies. Indian J Dermatol Venereol Leprol. 2007;73(3):157.

    Article  CAS  PubMed  Google Scholar 

  206. Hashim IIA, El-Magd NFA, El-Sheakh AR, Hamed MF, Abd El AE-GH. Pivotal role of Acitretin nanovesicular gel for effective treatment of psoriasis: ex vivo–in vivo evaluation study. Int J Nanomed. 2018;13:1059.

    Article  Google Scholar 

  207. Mostafavi M, Khazaeli P, Sharifi I, Farajzadeh S, Sharifi H, Keyhani A, et al. A novel niosomal combination of selenium coupled with glucantime against Leishmania tropica. Korean J Parasitol. 2019;57(1):1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Mostafavi M, Sharifi I, Farajzadeh S, Khazaeli P, Sharifi H, Pourseyedi E, et al. Niosomal formulation of amphotericin B alone and in combination with glucantime: In vitro and in vivo leishmanicidal effects. Biomed Pharmacother. 2019;116:108942.

    Article  CAS  PubMed  Google Scholar 

  209. Tavano L, Muzzalupo R, Mauro L, Pellegrino M, Ando S, Picci N. Transferrin-conjugated pluronic niosomes as a new drug delivery system for anticancer therapy. Langmuir. 2013;29(41):12638–46.

    Article  CAS  PubMed  Google Scholar 

  210. Brewer J, Alexander J. The adjuvant activity of non-ionic surfactant vesicles (niosomes) on the BALB/c humoral response to bovine serum albumin. Immunology. 1992;75(4):570.

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Wilkhu JS, McNeil SE, Anderson DE, Perrie Y. Characterization and optimization of bilosomes for oral vaccine delivery. J Drug Target. 2013;21(3):291–9.

    Article  CAS  PubMed  Google Scholar 

  212. Radha G, Rani TS, Sarvani B. A review on proniosomal drug delivery system for targeted drug action. J Basic Clin Pharm. 2013;4(2):42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Kieburtz KD, Seidlin M, Lambert JS, Dolin R, Reichman R, Valentine F. Extended follow-up of peripheral neuropathy in patients with AIDS and AIDS-related complex treated with dideoxyinosine. J Acquir Immune Defic Syndr. 1992;5(1):60–4.

    CAS  PubMed  Google Scholar 

  214. Shreedevi H, Nesalin JAJ, Mani TT. Development and evaluation of Stavudineniosome by ether injection method. Int J Pharm Sci Res. 2016;7:38–46.

    CAS  Google Scholar 

  215. Baillie A, Florence A, Hume L, Muirhead G, Rogerson A. The preparation and properties of niosomes—non-ionic surfactant vesicles. J Pharm Pharmacol. 1985;37(12):863–8.

    Article  CAS  PubMed  Google Scholar 

  216. Abedullahh MH. Preparation and in-vitro evaluation of diclofenac sodium niosomal formulations. 2013.

    Google Scholar 

  217. Sullivan JR, Preda VA. Treatments for severe psoriasis. Australian Prescriber. 2009;32(1):14–8.

    Article  Google Scholar 

  218. Baillie A, Coombs G, Dolan T, Laurie J. Non-ionic surfactant vesicles, niosomes, as a delivery system for the anti-leishmanial drug, sodium stibogluconate. J Pharm Pharmacol. 1986;38(7):502–5.

    Article  CAS  PubMed  Google Scholar 

  219. Mujoriya R, Bodla RB, Dhamande K, Singh D, Patle L. Niosomal drug delivery system: The magic bullet. J Appl Pharm Sci. 2011;1(09):20–3.

    Google Scholar 

  220. Pardakhty A, Shakibaie M, Daneshvar H, Khamesipour A, Mohammadi-Khorsand T, Forootanfar H. Preparation and evaluation of niosomes containing autoclaved Leishmania major: a preliminary study. J Microencapsul. 2012;29(3):219–24.

    Article  CAS  PubMed  Google Scholar 

  221. Korkmaz M, Özer A, Hincal A. DTPA niosomes in diagnostic imaging. Synthetic surfactant vesicles. CRC Press; 2000. p. 263–78.

    Google Scholar 

  222. Kaur D, Kumar S. Niosomes: present scenario and future aspects. J Drug Deliv Ther. 2018;8(5):35–43.

    Article  Google Scholar 

  223. Luciani A, Olivier J-C, Clement O, Siauve N, Brillet P-Y, Bessoud B, et al. Glucose-receptor MR imaging of tumors: study in mice with PEGylated paramagnetic niosomes. Radiology. 2004;231(1):135–42.

    Article  PubMed  Google Scholar 

  224. Masotti A. Niosomes as candidate bioconjugates for imaging and pH-sensitive drug delivery nanocarriers for rare pediatric tumors. J Drug Deliv Sci Technol. 2013;23(1):22–4.

    Article  CAS  Google Scholar 

  225. Masotti A, Mangiola A, Sabatino G, Maira G, Denaro L, Conti F, et al. Intracerebral diffusion of paramagnetic cationic liposomes containing Gd (DTPA) 2-followed by MRI spectroscopy: assessment of patternc diffusion and time steadiness of a non-viral vector model. Int J Immunopathol Pharmacol. 2006;19(2):379–90.

    Article  CAS  PubMed  Google Scholar 

  226. Rome C, Couillaud F, Moonen CT. Gene expression and gene therapy imaging. Eur Radiol. 2007;17(2):305–19.

    Article  PubMed  Google Scholar 

  227. Shah K, Jacobs A, Breakefield X, Weissleder R. Molecular imaging of gene therapy for cancer. Gene Ther. 2004;11(15):1175–87.

    Article  CAS  PubMed  Google Scholar 

  228. Masotti A, Vicennati P, Boschi F, Calderan L, Sbarbati A, Ortaggi G. A novel near-infrared indocyanine dye− polyethylenimine conjugate allows DNA delivery imaging in vivo. Bioconjug Chem. 2008;19(5):983–7.

    Article  CAS  PubMed  Google Scholar 

  229. Masotti A, Pampaloni F. Polyethylenimine bioconjugates for imaging and DNA delivery in vivo. Bioconjugation protocols. Springer; 2011. p. 145–65.

    Google Scholar 

  230. Khallaf RA, Aboud HM, Sayed OM. Surface modified niosomes of olanzapine for brain targeting via nasal route; preparation, optimization, and in vivo evaluation. J Liposome Res. 2020;30(2):163–73.

    Article  CAS  PubMed  Google Scholar 

  231. Cirillo C, Capoccia E, Iuvone T, Cuomo R, Sarnelli G, Steardo L, et al. S100B inhibitor pentamidine attenuates reactive gliosis and reduces neuronal loss in a mouse model of Alzheimer’s disease. BioMed Res Int. 2015;2015:11.

    Article  Google Scholar 

  232. Capoccia E, Cirillo C, Marchetto A, Tiberi S, Sawikr Y, Pesce M, et al. S100B-p53 disengagement by pentamidine promotes apoptosis and inhibits cellular migration via aquaporin-4 and metalloproteinase-2 inhibition in C6 glioma cells. Oncol Lett. 2015;9(6):2864–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Hartman KG, McKnight LE, Liriano MA, Weber DJ. The evolution of S100B inhibitors for the treatment of malignant melanoma. Future Med Chem. 2013;5(1):97–109.

    Article  CAS  PubMed  Google Scholar 

  234. Wang Z, Xiong G, Tsang WC, Schätzlein AG, Uchegbu IF. Nose-to-brain delivery. J Pharmacol Exp Ther. 2019;370(3):593–601.

    Article  CAS  PubMed  Google Scholar 

  235. Agrawal M, Saraf S, Saraf S, Antimisiaris SG, Chougule MB, Shoyele SA, et al. Nose-to-brain drug delivery: An update on clinical challenges and progress towards approval of anti-Alzheimer drugs. J Control Release. 2018;281:139–77.

    Article  CAS  PubMed  Google Scholar 

  236. Alexander A, Agrawal M, Chougule MB, Saraf S, Saraf S. Nose-to-brain drug delivery: an alternative approach for effective brain drug targeting. Nanopharmaceuticals. Elsevier; 2020. p. 175–200.

    Google Scholar 

  237. Dingezweni S. The blood–brain barrier. South African J Anaesth Analg. 2020;26(6):S32–4.

    Article  Google Scholar 

  238. Rhea EM, Banks WA. Role of the blood-brain barrier in central nervous system insulin resistance. Front Neurosci. 2019;13:521.

    Article  PubMed  PubMed Central  Google Scholar 

  239. Dhuyvetter D, Tekle F, Nazarov M, Vreeken RJ, Borghys H, Rombouts F, et al. Direct nose to brain delivery of small molecules: critical analysis of data from a standardized in vivo screening model in rats. Drug Deliv. 2020;27(1):1597–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Maglalang PD, Rautiola D, Siegel RA, Fine JM, Hanson LR, Coles LD, et al. Rescue therapies for seizure emergencies: new modes of administration. Epilepsia. 2018;59:207–15.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Sharafi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gharbavi, M., Parvanian, S., Leilan, M.P., Tavangar, S., Parchianlou, M., Sharafi, A. (2023). Niosomes-Based Drug Delivery in Targeting the Brain Tumors Via Nasal Delivery. In: Pathak, Y.V., Yadav, H.K.S. (eds) Nasal Drug Delivery. Springer, Cham. https://doi.org/10.1007/978-3-031-23112-4_14

Download citation

Publish with us

Policies and ethics