Skip to main content

Novel Approaches in Nasal In Situ Gel Drug Delivery

  • Chapter
  • First Online:
Nasal Drug Delivery

Abstract

The nasal cavity represents a suitable administration route both for local and systemic treatments. Conventional nasal formulations (liquid, solid, semisolid) show a limited residence time responsible for an incomplete drug absorption with consequent impaired therapeutic efficacy. In situ nasal gels represent a suitable formulative strategy able to overcome this problem. These formulations are liquid at room temperature, making an easy administration, and become gel once in the nasal cavity. This is possible thanks to the use of polymers able to form a viscous gel under specific stimuli as temperature, pH, ions in the nasal fluid. The chapter illustrates the evolution from conventional nasal formulations to innovative in situ gel delivery systems and the advantages of such formulations. It presents also recent approaches, based on the combination of in situ gels with nanocarriers, useful to protect the drug either improve the biopharmaceutical properties and promote a controlled release. The safety aspects have been examined as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Council of Europe – EDQM. European Pharmacopoeia, 10th Edition; 2020.

    Google Scholar 

  2. World Health Organization – WHO. The International Pharmacopoeia, Ninth Edition; 2019.

    Google Scholar 

  3. Illum L. Nasal drug delivery - possibilities, problems and solutions. J Control Release. 2003;87(1–3):187–98.

    Article  CAS  PubMed  Google Scholar 

  4. Mantaj J, Vllasaliu D. Recent advances in the oral delivery of biologics. Pharm J. 2020;304:7933.

    Google Scholar 

  5. Costantino HR, Illum L, Brandt G, Johnson PH, Quay SC. Intranasal delivery: physicochemical and therapeutic aspects. Int J Pharm. 2007;337(1–2):1–24.

    Article  CAS  PubMed  Google Scholar 

  6. Illum L. Transport of drugs from the nasal cavity to the central nervous system. Eur J Pharm Sci. 2000;11(1):1–18.

    Article  CAS  PubMed  Google Scholar 

  7. Misra A, Jogani V, Jinturkar K, Vyas T. Recent patents review on intranasal administration for CNS drug delivery. Recent Pat Drug Deliv Formul. 2008;2(1):25–40.

    Article  PubMed  Google Scholar 

  8. Washington N, McGlashan JA, Jackson SJ, Bush D, Pitt KG, Rawlins DA, Gill DA. The effect of nasal patency on the clearance of radiolabeled saline in healthy volunteers. Pharm Res. 2000;17(6):733–6.

    Article  CAS  PubMed  Google Scholar 

  9. Mygind N, Dahl R. Anatomy, physiology and function of the nasal cavities in health and disease. Adv Drug Deliv Rev. 1998;29(1–2):3–12.

    Article  CAS  PubMed  Google Scholar 

  10. Agnihotri VV, Pardeshi CV, Surana SJ. A current update on advanced drug delivery devices for nasal and pulmonary administration. In: Drug delivery devices and therapeutic systems, 1st ed. New York: Elsevier Inc.; 2021, pp. 213–245.

    Google Scholar 

  11. Khatri K, Jain S, Shilpi S. Nasal in-situ gel: an approach to enhance therapeutic benefits of the drug. Drug Deliv Lett. 2020;10(2):85–95.

    Article  CAS  Google Scholar 

  12. Nele V, Wojciechowski JP, Armstrong JPK, Stevens MM. Tailoring gelation mechanisms for advanced hydrogel applications. Adv Funct Mater. 2020;30(42):2002759.

    Article  CAS  Google Scholar 

  13. Paul A, Fathima K, Nair SC. Intra nasal in situ gelling system of lamotrigine using ion activated Mucoadhesive polymer. Open Med Chem J. 2017;11:222–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen W, Li R, Zhu S, Ma J, Pang L, Ma B, et al. Nasal timosaponin BII dually sensitive in situ hydrogels for the prevention of Alzheimer’s disease induced by lipopolysaccharides. Int J Pharm. 2020;30(578):119115.

    Article  Google Scholar 

  15. Nižić L, Ugrina I, Špoljarić D, Saršon V, Kučuk MS, Pepić I, et al. Innovative sprayable in situ gelling fluticasone suspension: development and optimization of nasal deposition. Int J Pharm. 2019;563:445–56.

    Article  PubMed  Google Scholar 

  16. Turabee MH, Jeong TH, Ramalingam P, Kang JH, Ko YT. N,N,N-trimethyl chitosan embedded in situ Pluronic F127 hydrogel for the treatment of brain tumor. Carbohydr Polym. 2019;203:302–9.

    Article  CAS  PubMed  Google Scholar 

  17. Uppuluri CT, Ravi PR, Dalvi AV, Shaikh SS, Kale SR. Piribedil loaded thermo-responsive nasal in situ gelling system for enhanced delivery to the brain: formulation optimization, physical characterization, and in vitro and in vivo evaluation. Drug Deliv Transl Res. 2021;11(3):909–26.

    Article  CAS  PubMed  Google Scholar 

  18. Sosnik A, Seremeta KP. Polymeric hydrogels as technology platform for drug delivery applications. Gels. 2017;3(3):25.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yurtdaş-Kırımlıoğlu G. A promising approach to design thermosensitive in situ gel based on solid dispersions of desloratadine with Kolliphor® 188 and Pluronic® F127, vol. 147. J Therm Anal Calorim; 2021. p. 1307.

    Google Scholar 

  20. Sridhar V, Tiwari A, Wairkar S, Gupta GL, Gaud R. Pramipexole thermosensitive nasal gel for experimental parkinsonism in rats. J Drug Deliv Sci Technol. 2020;59:101954.

    Article  CAS  Google Scholar 

  21. Verekar RR, Gurav SS, Bolmal U. Thermosensitive mucoadhesive in situ gel for intranasal delivery of Almotriptan malate: formulation, characterization, and evaluation. J Drug Deliv Sci Technol. 2020;58:101778.

    Article  CAS  Google Scholar 

  22. Shelke S, Pathan I, Shinde G, Agrawal G, Damale M, Chouthe R, Panzade P, Kulkarni D. Poloxamer-based in situ nasal gel of naratriptan hydrochloride deformable vesicles for brain targeting. BioNanoScience. 2020;10(2):633–48.

    Article  Google Scholar 

  23. Rao M, Agrawal DK, Shirsath C. Thermoreversible mucoadhesive in situ nasal gel for treatment of Parkinson’s disease. Drug Dev Ind Pharm. 2017;43(1):142–50.

    Article  CAS  PubMed  Google Scholar 

  24. Agrawal M, Saraf S, Saraf S, Dubey SK, Puri A, Gupta U, et al. Stimuli-responsive In situ gelling system for nose-to-brain drug delivery. J Control Release. 2020;327:235–65.

    Article  CAS  PubMed  Google Scholar 

  25. Jaworski Z, Spychaj T, Story A, Story G. Carbomer microgels as model yield-stress fluids. Rev Chem Eng. 2021:1–35.

    Google Scholar 

  26. Bedford JG, Caminschi I, Wakim LM. Intranasal delivery of a chitosan-hydrogel vaccine generates nasal tissue resident memory CD8+ T cells that are protective against influenza virus infection. Vaccine. 2020;8(4):572.

    Article  CAS  Google Scholar 

  27. Chen Y, Liu Y, Xie J, Zheng Q, Yue P, Chen L, et al. Nose-to-brain delivery by nanosuspensions-based in situ gel for breviscapine. Int J Nanomedicine. 2020;15:10435–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dalvi AV, Ravi PR, Uppuluri CT, Mahajan RR, Katke SV, Deshpande VS. Thermosensitive nasal in situ gelling systems of rufinamide formulated using modified tamarind seed xyloglucan for direct nose-to-brain delivery: design, physical characterization, and in vivo evaluation. J Pharm Investig. 2021;51:199–211.

    Article  CAS  Google Scholar 

  29. Pharma Holdings AS. A double-blind, placebo-controlled, interventional parallel group study to evaluate the antiviral effect of a single nasal application of LTX-109 3% gel, in comparison to placebo gel, in subjects with COVID-19 infection. EU Clinical Trials Register; 15/02/2021; TrialID: EUCTR2021-000455-39-SE.

    Google Scholar 

  30. Rabiee N, Ahmadi S, Afshari R, Khalaji S, Rabiee M, Bagherzadeh M, et al. Polymeric nanoparticles for nasal drug delivery to the brain: relevance to Alzheimer’s disease. Adv Ther. 2021;4(3):2000076.

    Article  CAS  Google Scholar 

  31. Touitou E, Natsheh H, Boukeileh S, Awad R. Short onset and enhanced analgesia following nasal administration of non-controlled drugs in nanovesicular systems. Pharmaceutics. 2021;13(7):978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fan Y, Chen M, Zhang J, Maincent P, Xia X, Wu W. Updated progress of nanocarrier-based intranasal drug delivery systems for treatment of brain diseases. Crit Rev Ther Drug Carrier Syst. 2018;35(5):433–67.

    Article  CAS  PubMed  Google Scholar 

  33. Kammoun AK, Khedr A, Hegazy MA, Almalki AJ, Hosny KM, Abualsunun WA. Formulation, optimization, and nephrotoxicity evaluation of an antifungal in situ nasal gel loaded with voriconazole–clove oil transferosomal nanoparticles. Drug Deliv. 2021;28(1):2229–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Aderibigbe BA. In situ-based gels for nose to brain delivery for the treatment of neurological diseases. Pharmaceutics. 2018;10(2):40.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Deshkar SS, Jadhav MS, Shirolkar SV. Development of carbamazepine nanostructured lipid carrier loaded thermosensitive gel for intranasal delivery. Adv Pharm Bull. 2021;11(1):150–62.

    Article  CAS  PubMed  Google Scholar 

  36. Teaima MH, El Mohamady AM, El-Nabarawi MA, Mohamed AI. Formulation and evaluation of niosomal vesicles containing ondansetron HCL for trans-mucosal nasal drug delivery. Drug Dev Ind Pharm. 2020;46(5):1–43.

    Article  Google Scholar 

  37. Hong SS, Oh KT, Choi HG, Lim SJ. Liposomal formulations for nose-to-brain delivery: recent advances and future perspectives. Pharmaceutics. 2019;11(10):540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Adnet T, Groo AC, Picard C, Davis A, Corvaisier S, Since M, et al. Pharmacotechnical development of a nasal drug delivery composite nanosystem intended for alzheimer’s disease treatment. Pharmaceutics. 2020;12(3):251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Costa CP, Barreiro S, Moreira JN, Silva R, Almeida H, Sousa Lobo JM, et al. In vitro studies on nasal formulations of nanostructured lipid carriers (NLC) and solid lipid nanoparticles (SLN). Pharmaceuticals. 2021;14(8):711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mignani S, Shi X, Karpus A, Majoral JP. Non-invasive intranasal administration route directly to the brain using dendrimer nanoplatforms: an opportunity to develop new CNS drugs. Eur J Med Chem. 2021;209:112905.

    Article  CAS  PubMed  Google Scholar 

  41. Vecsernyés M, Fenyvesi F, Bácskay I, Deli MA, Szente L, Fenyvesi É. Cyclodextrins, blood-brain barrier, and treatment of neurological diseases. Arch Med Res. 2014;45(8):711–29.

    Article  PubMed  Google Scholar 

  42. Mura P, Mennini N, Nativi C, Richichi B. In situ mucoadhesive-thermosensitive liposomal gel as a novel vehicle for nasal extended delivery of opiorphin. Eur J Pharm Biopharm. 2018;122:54–61.

    Article  CAS  PubMed  Google Scholar 

  43. El-Shenawy AA, Mahmoud RA, Mahmoud EA, Mohamed MS. Intranasal in situ gel of Apixaban-loaded Nanoethosomes: preparation, optimization, and in vivo evaluation. AAPS PharmSciTech. 2021;22(4):147.

    Article  CAS  PubMed  Google Scholar 

  44. Hosny KM, Alhakamy NA. Nasal gel loaded with amphotericin nanotransferosomes as antifungal treatment for fungal sinusitis. Pharmaceutics. 2021;13(1):35.

    Article  CAS  Google Scholar 

  45. Omar MM, Eleraky NE, El Sisi AM, Hasan OA. Development and evaluation of in-situ nasal gel formulations of nanosized transferosomal sumatriptan: design, optimization, in vitro and in vivo evaluation. Drug Des Devel Ther. 2019;13:4413–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Abdelnabi DM, Abdallah MH, Elghamry HA. Buspirone hydrochloride loaded in situ Nanovesicular gel as an anxiolytic nasal drug delivery system: in vitro and animal studies. AAPS PharmSciTech. 2019;20(134):1–14.

    Google Scholar 

  47. Cunha S, Forbes B, Lobo JMS, Silva AC. Improving drug delivery for alzheimer’s disease through nose-to-brain delivery using nanoemulsions, nanostructured lipid carriers (NLC) and in situ hydrogels. Int J Nanomedicine. 2021;16:4373–90.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Cunha S, Forbes B, Lobo JMS, Silva AC. Thermosensitive nasal in situ gels of lipid-based Nanosystems to improve the treatment of Alzheimer’s disease. PRO. 2020;78(1):37.

    Google Scholar 

  49. Trapani A, De Giglio E, Cometa S, Bonifacio MA, Dazzi L, Di Gioia S, et al. Dopamine-loaded lipid based nanocarriers for intranasal administration of the neurotransmitter: a comparative study. Eur J Pharm Biopharm. 2021;167:189–200.

    Article  CAS  PubMed  Google Scholar 

  50. Sabir F, Ismail R, Csoka I. Nose-to-brain delivery of antiglioblastoma drugs embedded into lipid nanocarrier systems: status quo and outlook. Drug Discov Today. 2020;25(1):185–94.

    Article  CAS  PubMed  Google Scholar 

  51. Gadhave DG, Kokare CR. Nanostructured lipid carriers engineered for intranasal delivery of teriflunomide in multiple sclerosis: optimization and in vivo studies. Drug Dev Ind Pharm. 2019;45:839–51.

    Article  CAS  PubMed  Google Scholar 

  52. Davidov-Pardo G, McClements DJ. Resveratrol encapsulation: designing delivery systems to overcome solubility, stability and bioavailability issues. Trends Food Sci Technol. 2014;38(2):88–103.

    Article  CAS  Google Scholar 

  53. Rajput AP, Butani SB. Resveratrol anchored nanostructured lipid carrier loaded in situ gel via nasal route: formulation, optimization and in vivo characterization. J Drug Deliv Sci Technol. 2019;51:214–23.

    Article  CAS  Google Scholar 

  54. Qu Y, Li A, Ma L, Iqbal S, Sun X, Ma W, et al. Nose-to-brain delivery of disulfiram nanoemulsion in situ gel formulation for glioblastoma targeting therapy. Int J Pharm. 2021;597:120250.

    Article  CAS  PubMed  Google Scholar 

  55. Elsenosy FM, Abdelbary GA, Elshafeey A, Elsayed I, Fares AR. Brain targeting of duloxetine hcl via intranasal delivery of loaded cubosomal gel: in vitro characterization, ex vivo permeation, and in vivo biodistribution studies. Int J Nanomedicine. 2020;15:9517–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Xie H, Li L, Sun Y, Wang Y, Gao S, Tian Y, et al. An available strategy for nasal brain transport of nanocomposite based on PAMAM dendrimers via in situ gel. Nano. 2019;9(2):147.

    CAS  Google Scholar 

  57. Ahmed OAA, Badr-Eldin SM. In situ misemgel as a multifunctional dual-absorption platform for nasal delivery of raloxifene hydrochloride: formulation, characterization, and in vivo performance. Int J Nanomedicine. 2018;13:6325–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cirri M, Maestrelli F, Nerli G, Mennini N, D’ambrosio M, Luceri C, Mura PA. Development of a cyclodextrin-based mucoadhesive-thermo-sensitive in situ gel for clonazepam intranasal delivery. Pharmaceutics. 2021;13(7):969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Quadir M, Zia H, Needham TE. Toxicological implications of nasal formulations. Drug Deliv. 1999;6(4):227–42.

    Article  CAS  Google Scholar 

  60. Keller LA, Merkel O, Popp A. Intranasal drug delivery: opportunities and toxicologic challenges during drug development. Drug Deliv Transl Res. 2021;25:1–23.

    Google Scholar 

  61. Behl CR, Pimplaskar HK, Sileno AP, DeMeireles J, Romeo VD. Effects of physicochemical properties and other factors on systemic nasal drug delivery. Adv Drug Deliv Rev. 1998;29(1–2):89–116.

    Article  CAS  PubMed  Google Scholar 

  62. Scherließ R. Nasal formulations for drug administration and characterization of nasal preparations in drug delivery. Ther Deliv. 2020;11(3):183–91.

    Article  PubMed  Google Scholar 

  63. Mackie AR, Goycoolea F, Menchicchi B, Caramella CM, Saporito F, Lee S, et al. Innovative methods and applications in mucoadhesion research. Macromol Biosci. 2017;17(8):1600534.

    Article  Google Scholar 

  64. Menchicchi B, Fuenzalida JP, Bobbili KB, Hensel A, Swamy MJ, Goycoolea FM. Structure of chitosan determines its interactions with mucin. Biomacromolecules. 2014;15(10):3550–8.

    Article  CAS  PubMed  Google Scholar 

  65. Rossi S, Ferrari F, Bonferoni MC, Caramella C. Characterization of chitosan hydrochloride-mucin rheological interaction: influence of polymer concentration and polymer:mucin weight ratio. Eur J Pharm Sci. 2001;12(4):479–85.

    Article  CAS  PubMed  Google Scholar 

  66. Wang Y, Jiang S, Wang H, Bie H. A mucoadhesive, thermoreversible in situ nasal gel of geniposide for neurodegenerative diseases. PLoS One. 2017;12(12):e0189478.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cinzia Pagano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pagano, C., Perioli, L., Ricci, M. (2023). Novel Approaches in Nasal In Situ Gel Drug Delivery. In: Pathak, Y.V., Yadav, H.K.S. (eds) Nasal Drug Delivery. Springer, Cham. https://doi.org/10.1007/978-3-031-23112-4_12

Download citation

Publish with us

Policies and ethics