Skip to main content

Novel Mucoadhesive Polymers for Nasal Drug Delivery

  • Chapter
  • First Online:
Nasal Drug Delivery

Abstract

Nasal drug administration is attractive noninvasive approach to rapidly achieve local or systemic effects of small molecular drugs, proteins, and peptides, as well as for nasal immunization and nose-to-brain targeted delivery. However, conventional nasal dosage forms such as nasal drops, sprays, and nasal powders, are often suboptimal to provide bioavailability higher than 10% of drug molecules with high lipophilicity, hydrophilicity, or molecular mass, due to the nasal mucociliary clearance mechanism. The most extensively investigated formulation strategy for improving nasal bioavailability is the development of mucoadhesive drug delivery systems. Novel nasal liquid preparations with in situ gelling polymers have been proposed as a promising concept suitable for convinient instillation, precise dosing, good spreadability, enhanced nasal retention, and achievement of controlled drug release. Furthermore, mucoadhesive polymeric nanoparticles (up to 300 nm) have been evaluated as carriers for increased nose-to-brain bioavailability. This chapter reviews widely used mucoadhesive polymers and their derivatives considered so far as components of nasal drug delivery systems, including: natural polymers (chitosan, cellulose, starch, xanthan gum, gellan gum, pectins, alginates, gelatin) and their derivatives, synthetic polymers (polyacrylates, polycarbophils), copolymers and polymer blends (physical mixtures, polyelectrolyte complexes, cross-linked polymers). Many of novel polymers enable enhanced permeation enhancement capacity, in situ gelling and drug delivery control in response to nasal temperature, pH, ions, or enzymes, thus providing significant improvements in bioavailability of both small molecules and macromolecules. The versatility of the concept grows continuously by combining such responsive (smart) polymers or by functionalization of polymers by targeting ligands. Future prospects in development of mucoadhesive polymers as pharmaceutical excipients for nasal application are also briefly overviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tai J, Lee K, Kim TH. Current perspective on nasal delivery systems for chronic rhinosinusitis. Pharmaceutics. 2021;13(2):246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Illum L. Nasal drug delivery: new developments and strategies. Drug Discov Today. 2002;7(23):1184–9.

    Article  CAS  PubMed  Google Scholar 

  3. Illum L. Nasal drug delivery-possibilities, problems and solutions. J Control Release. 2003;87(1–3):187–98.

    Article  CAS  PubMed  Google Scholar 

  4. Bitter C, Suter-Zimmermann K, Surber C. Nasal drug delivery in humans. Curr Probl Dermatol. 2011;40:20–35.

    Article  CAS  PubMed  Google Scholar 

  5. Nave R, Schmitt H, Popper L. Faster absorption and higher systemic bioavailability of intranasal fentanyl spray compared to oral transmucosal fentanyl citrate in healthy subjects. Drug Deliv. 2012;20(5):216–23.

    Article  Google Scholar 

  6. Ozsoy Y, Gungor S, Cevher E. Nasal delivery of high molecular weight drugs. Molecules. 2009;14:3754–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Arora P, Sharma S, Garg S. Permeability issues in nasal drug delivery. Drug Discov Today. 2002;7(18):967–75.

    Article  CAS  PubMed  Google Scholar 

  8. Mato YL. Nasal route for vaccine and drug delivery: features and current opportunities. Int J Pharm. 2019;572:118813.

    Article  Google Scholar 

  9. van den Berg AIS, Yun C-O, Schiffelers RM, Hennink WE. Polymeric delivery systems for nucleic acid therapeutics: approaching the clinic. J Control Release. 2021;331:121–41.

    Article  PubMed  Google Scholar 

  10. Rhea EM, Salameh TS, Banks WA. Intranasal delivery of proteins and peptides in the treatment of neurodegenerative diseases. AAPS J. 2015;17(4):780–7.

    Article  Google Scholar 

  11. Charlton S, Jones NS, Davis SS, Illum L. Distribution and clearance of bioadhesive formulations from the olfactory region in man: effect of polymer type and nasal delivery device. Eur J Pharma Sci. 2007;30(3–4):295–302.

    Article  CAS  Google Scholar 

  12. Agrawal M, Saraf S, Saraf S, et al. Nose-to-brain drug delivery: an update on clinical challenges and progress towards approval of anti-Alzheimer drugs. J Control Release. 2018;281:139–77.

    Article  CAS  PubMed  Google Scholar 

  13. Alexander A, Agrawal M, Chougule MB, Saraf S, Saraf S. Nose-to-brain drug delivery: an alternative approach for effective brain drug targeting. In: Shegokar R, editor. Nanopharmaceuticals, volume 1: expectations and realities of multifunctional drug delivery systems. Amsterdam/New York: Elsevier; 2020. p. 175–200.

    Chapter  Google Scholar 

  14. Giunchedi P, Gavini E, Bonferoni MC. Nose-to-brain delivery. Pharmaceutics. 2020;12(2):138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang Z, Xiong G, Tsang WC, Schätzlein AG, Uchegbu IF. Nose-to-brain delivery. J Pharmacol Exp Ther. 2019;370(3):593–601.

    Article  CAS  PubMed  Google Scholar 

  16. Khan AR, Liu M, Khan MW, Zhai G. Progress in brain targeting drug delivery system by nasal route. J Control Release. 2017;268:364–89.

    Article  CAS  PubMed  Google Scholar 

  17. Kozlovskaya L, Abou-Kaoud M, Stepensky D. Quantitative analysis of drug delivery to the brain via nasal route. J Control Release. 2014;189:133–40.

    Article  CAS  PubMed  Google Scholar 

  18. Bustamante-Marin XM, Ostrowski LE. Cilia and mucociliary clearance. Cold Spring Harb Perspect Biol. 2017;9(4):a028241.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Illum L. Is nose-to-brain transport of drugs in man a reality? J Pharm Pharmacol. 2004;56(1):3–17.

    Article  CAS  PubMed  Google Scholar 

  20. Pathak K. Mucoadhesion; A prerequisite or a constraint in nasal drug delivery? Int J Pharm Investig. 2011;1(2):62–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chaturvedi M, Kumar M, Pathak K. A review on mucoadhesive polymer used in nasal drug delivery system. J Adv Pharm Technol Res. 2011;2(4):215–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bertram U, Bodmeier R. In situ gelling, bioadhesive nasal inserts for extended drug delivery: in vitro characterization of a new nasal dosage form. Eur J Pharm Sci. 2006;27:62–71.

    Article  CAS  PubMed  Google Scholar 

  23. Jelkmann M, Leichner C, Zaichik S, Laffleur F, Bernkop-Schnürch A. A gellan gum derivative as in-situ gelling cationic polymer for nasal drug delivery. Int J Biol Macromol. 2020;158:1037–46.

    Article  CAS  PubMed  Google Scholar 

  24. Olafsson DR, Gizurarson S. Access to the olfactory region. Proc Control Release Bioact Mater. 2000;27:6318.

    Google Scholar 

  25. Manniello MD, Hosseini S, Alfaifi A, et al. In vitro evaluation of regional nasal drug delivery using multiple anatomical nasal replicas of adult human subjects and two nasal sprays. Int J Pharm. 2021;593:120103.

    Article  CAS  PubMed  Google Scholar 

  26. Abd El-Hameed MD, Kellaway IW. Preparation and in vitro characterisation of mucoadhesive polymeric microspheres as intra-nasal delivery systems. Eur J Pharm Biopharm. 1997;44:53–60.

    Article  Google Scholar 

  27. Trows S, Scherließ R. Carrier-based dry powder formulation for nasal delivery of vaccines utilizing BSA as model drug. Powder Technol. 2016;292:223–31.

    Article  CAS  Google Scholar 

  28. Javia A, Kore G, Misra A. Polymers in nasal drug delivery: an overview. In: Misra A, Shahiwala A, editors. Applications of polymers in drug delivery. 2nd ed. Amsterdam/New York: Elsevier; 2021. p. 305–32.

    Chapter  Google Scholar 

  29. Dong J, Shang Y, Inthavong K, Chan H-K, Tu J. Partitioning of dispersed nanoparticles in a realistic nasal passage for targeted drug delivery. Int J Pharm. 2018;543:83–95.

    Article  CAS  PubMed  Google Scholar 

  30. Fasiolo LT, Manniello MD, Tratta E, Buttini F, Rossi A, Sonvico F, Bortolotti F, Russo P, Colombo G. Opportunity and challenges of nasal powders: drug formulation and delivery. Eur J Pharm Sci. 2018;113:2–1.

    Article  Google Scholar 

  31. Feczko T. Polymeric nanotherapeutics acting at special regions of body. J Drug Deliv Sci Technol. 2021;64:102597.

    Article  CAS  Google Scholar 

  32. Inthavonga K, Tiana ZF, Jy T, Yang W, Xue C. Optimising nasal spray parameters for efficient drug delivery using computational fluid dynamics. Comput Biol Med. 2008;38:713–26.

    Article  Google Scholar 

  33. Prajapati SK, Jain A, Jain A, Jain S. Biodegradable polymers and constructs: a novel approach in drug delivery. Eur Polym J. 2019;120:109191.

    Article  CAS  Google Scholar 

  34. Ritthidej GC. Nasal delivery of peptides and proteins with chitosan and related mucoadhesive polymers. In: Van Der Walle C, editor. Peptide and protein delivery. Elsevier: Academic Press; 2011. p. 47–68.

    Chapter  Google Scholar 

  35. Djekic L, Martinovic M. In vitro, ex vivo and in vivo methods for characterization of bioadhesiveness of drug delivery systems. In: Mittal KL, Bakshi IS, Narang JK, editors. Bioadhesives in drug delivery. Wiley/Scrivener Publishing; 2020. p. 57–98.

    Chapter  Google Scholar 

  36. Kumar K, Dhawan N, Sharma H, Vaidya S, Vaidya B. Bioadhesive polymers: novel tool for drug delivery. Artif Cells, Nanomed Biotechnol. 2014;42:274–83.

    Article  CAS  PubMed  Google Scholar 

  37. Casettari L, Illum L. Chitosan in nasal delivery systems for therapeutic drugs. J Control Release. 2014;190:189–200.

    Article  CAS  PubMed  Google Scholar 

  38. Khan S, Patil K, Bobade N, Yeole P, Gaikwad R. Formulation of intranasal mucoadhesive temperature-mediated in situ gel containing ropinirole and evaluation of brain targeting efficiency in rats. J Drug Target. 2010;18:223–34.

    Article  CAS  PubMed  Google Scholar 

  39. Patil S, Sawant K. Chitosan microspheres as a delivery system for nasal insufflation. Colloids Surf B Biointerfaces. 2011;84(2):384–9.

    Article  CAS  PubMed  Google Scholar 

  40. Sun M, Yu X, Wang T, Bi S, Liu Y, Chen X. Nasal adaptive chitosan-based nano-vehicles for anti-allergic drug delivery. Int J Biol Macromol. 2019;135:1182–92.

    Article  CAS  PubMed  Google Scholar 

  41. Chonkar A, Nayak U, Udupa N. Smart polymers in nasal drug delivery. Indian J Pharm Sci. 2015;77(4):367–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ćirić A, Krajišnik D, Čalija B, Đekić L. Biocompatible non-covalent complexes of chitosan and different polymers: characteristics and application in drug delivery. Arch Pharm. 2020;70(4):173–97.

    Google Scholar 

  43. Ćirić A, Medarević Đ, Čalija B, Dobričić V, Mitrić M, Djekic L. Study of chitosan/xanthan gum polyelectrolyte complexes formation, solid state and influence on ibuprofen release kinetics. Int J Biol Macromol. 2020;148:942–955.r.

    Article  PubMed  Google Scholar 

  44. Abdel Mouez M, Zaki NM, Mansour S, Geneidi AS. Bioavailability enhancement of verapamil HCl via intranasal chitosan microspheres. Eur J Pharm Sci. 2014;51:59–66.

    Article  CAS  PubMed  Google Scholar 

  45. Patil S, Babbar A, Mathur R, Mishra A, Sawant K. Mucoadhesive chitosan microspheres of carvedilol for nasal administration. J Drug Target. 2010;18:321–31.

    Article  CAS  PubMed  Google Scholar 

  46. Pavis H, Wilcock A, Edgecombe J, et al. Pilot study of nasal morphine–chitosan for the relief of breakthrough pain in patients with cancer. J Pain Symptom Manag. 2002;24:598–602.

    Article  CAS  Google Scholar 

  47. Stoker DG, Reber KR, Waltzman LS, et al. Analgesic efficacy and safety of morphine–chitosan nasal solution in patients with moderate to severe pain following orthopedic surgery. Pain Med. 2008;9:3–12.

    Article  PubMed  Google Scholar 

  48. Roon KI, Soons PA, Uitendaal MP, De Beukelaar F, Ferrari MD. Pharmacokinetic profile of alniditan nasal spray during and outside migraine attacks. Br J Clin Pharmacol. 1999;47:285–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Illum L, Davis SS. Chitosan as a delivery system for the transmucosal administration of drugs. In: Dumitriu S, editor. Polysaccharides. New York: Marcel Dekker; 2005. p. 643–60.

    Google Scholar 

  50. Gavini E, Hegge AB, Rassu G, et al. Nasal administration of carbamazepine using chitosan microspheres: in vitro/in vivo studies. Int J Pharm. 2006;307:9–15.

    Article  CAS  PubMed  Google Scholar 

  51. Wang X, Chi N, Tang X. Preparation of estradiol chitosan nanoparticles for improving nasal absorption and brain targeting. Eur J Pharm Biopharm. 2008;70:735–40.

    Article  CAS  PubMed  Google Scholar 

  52. Varshosaz J, Sadrai H, Alinagari R. Nasal delivery of insulin using chitosan microspheres. J Microencapsul. 2004;21:761–74.

    Article  CAS  PubMed  Google Scholar 

  53. Illum L, Watts P, Fisher AN, Jabbal Gill I, Davis SS. Novel chitosan-based delivery systems for the nasal administration of a LHRH-analogue. STP Pharm Sci. 2000;10:89–94.

    CAS  Google Scholar 

  54. Snegovskikh DV. Intranasal morphine. In: Sinatra SR, Jahr JS, Watkins-Pitchford JM, editors. The essence of analgesia and analgesics. Cambridge: Cambridge University Press; 2010. p. 437–9.

    Chapter  Google Scholar 

  55. Borchard G, Lueβen HL, de Boer AG, Verhoef JC, Lehr CM, Junginger HE. The potential of mucoadhesive polymers in enhancing intestinal peptide drug absorption. III: effects of chitosan-glutamate and carbomer on epithelial tight junctions in vitro. J Control Release. 1996;39(2–3):131–8.

    Article  CAS  Google Scholar 

  56. Chenite A, Chaput C, Wang D, et al. Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials. 2000;21:2155–61.

    Article  CAS  PubMed  Google Scholar 

  57. Sofi HS, Abdal-hay A, Ivanovski S, Zhang YS, Sheikh FA. Electrospun nanofibers for the delivery of active drugs through nasal, oral and vaginal mucosa: current status and future perspectives. Mater Sci Eng C. 2020;111:110756.

    Article  CAS  Google Scholar 

  58. England RJA, Homer JJ, Knight LC, Ell SR. Nasal pH measurement: a reliable and repeatable parameter. Clin Otolaryngol Allied Sci. 1999;24:67–8.

    Article  CAS  PubMed  Google Scholar 

  59. Nazar H, Fatouros DG, van der Merwe SM, et al. Thermosensitive hydrogels for nasal drug delivery: the formulation and characterisation of systems based on N-trimethyl chitosan chloride. Eur J Pharm Biopharm. 2011;77:225–32.

    Article  CAS  PubMed  Google Scholar 

  60. Chung T, Liu D, Yang J. Effects of interpenetration of thermosensitive gels by crosslinking of chitosan on nasal delivery of insulin: in vitro characterization and in vivo study. Carbohydr Polym. 2010;82(2):316–22.

    Article  CAS  Google Scholar 

  61. Al-Ghananeem AM, Saeed H, Florence R, Yokel RA, Malkawi AH. Intranasal drug delivery of didanosine-loaded chitosan nanoparticles for brain targeting; an attractive route against infections caused by aids viruses. J Drug Target. 2010;18:381–8.

    Article  CAS  PubMed  Google Scholar 

  62. Haque S, Md S, Fazil M, Kumar M, Sahni JK, Ali J, Baboota S. Venlafaxine loaded chitosan NPs for brain targeting: pharmacokinetic and pharmacodynamic evaluation. Carbohydr Polym. 2021;89:72–9.

    Article  Google Scholar 

  63. Md S, Khan RA, Mustafa G, et al. Bromocriptine loaded chitosan nanoparticles intended for direct nose to brain delivery: pharmacodynamic, pharmacokinetic and scintigraphy study in mice model. Eur J Pharm Sci. 2013;48:393–405.

    Article  CAS  PubMed  Google Scholar 

  64. Fazil M, Md S, Haque S, et al. Development and evaluation of rivastigmine loaded chitosan nanoparticles for brain targeting. Eur J Pharm Sci. 2012;47:6–15.

    Article  CAS  PubMed  Google Scholar 

  65. Vaka SRK, Sammeta SM, Day LB, Murthy SN. Delivery of nerve growth factor to brain via intranasal administration and enhancement of brain uptake. J Pharm Sci. 2009;98:3640–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Alhalaweh A, Andersson S, Velaga SP. Preparation of zolmitriptan–chitosan microparticles by spray drying for nasal delivery. Eur J Pharm Sci. 2009;38:206–14.

    Article  CAS  PubMed  Google Scholar 

  67. Gungor S, Okyar A, Erturk-Toker S, Baktir G, Ozsoy Y. Ondansetron-loaded chitosan microspheres for nasal antiemetic drug delivery: an alternative approach to oral and parenteral routes. Drug Dev Ind Pharm. 2010;36:806–13.

    Article  CAS  PubMed  Google Scholar 

  68. Akel H, Ismail R, Katona G, Sabir F, Ambrus R, Csóka. A comparison study of lipid and polymeric nanoparticles in the nasal delivery of meloxicam: formulation, characterization, and in vitro evaluation. Int J Pharm. 2021;604:120724.

    Article  CAS  PubMed  Google Scholar 

  69. Soane RJ, Hinchcliffe M, Davis SS, Illum L. Clearance characteristics of chitosan based formulations in the sheep nasal cavity. Int J Pharm. 2001;217:183–91.

    Article  CAS  PubMed  Google Scholar 

  70. Illum L, Jabbal-Gill I, Hinchcliffe M, Fisher AN, Davis SS. Chitosan as a novel nasal delivery system for vaccines. Adv Drug Deliv Rev. 2001;51:81–96.

    Article  CAS  PubMed  Google Scholar 

  71. Kang ML, Cho CS, Yoo HS. Application of chitosan microspheres for nasal delivery of vaccines. Biotechnol Adv. 2009;27:857–65.

    Article  CAS  PubMed  Google Scholar 

  72. Vila A, Sánchez A, Janes K, et al. Low molecular weight chitosan nanoparticles as new carriers for nasal vaccine delivery in mice. Eur J Pharm Biopharm. 2004;57:123–31.

    Article  CAS  PubMed  Google Scholar 

  73. van der Lubben IM, Kersten G, Fretz MM, Beuvery C, Verhoef JC, Junginger HE. Chitosan microparticles for mucosal vaccination against diphtheria: oral and nasal efficacy studies in mice. Vaccine. 2003;21(13–14):1400–8.

    Article  PubMed  Google Scholar 

  74. Bacon A, Makin J, Sizer PJ, et al. Carbohydrate biopolymers enhance antibody responses to mucosally delivered vaccine antigens. Infect Immun. 2000;68:5764–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Amidi M, Romeijn SG, Borchard G, Junginger HE, Hennink WE, Jiskoot W. Preparation and characterization of protein-loaded N-trimethyl chitosan nanoparticles as nasal delivery system. J Control Release. 2006;111:107–16.

    Article  CAS  PubMed  Google Scholar 

  76. Bernkop-Schnürch A, Hornof M, Zoidl T. Thiolated polymers-thiomers: synthesis and in vitro evaluation of chitosan–2-iminothiolane conjugates. Int J Pharm. 2003;260(2):229–37.

    Article  PubMed  Google Scholar 

  77. Krauland AH, Guggi D, Bernkop-Schnurch A. Thiolated chitosan microparticles: a vehicle for nasal peptide drug delivery. Int J Pharm. 2006;307:270–7.

    Article  CAS  PubMed  Google Scholar 

  78. Vetter A, Bernkop-Schnürch A. Nasal delivery of antisense oligonucleotides: in vitro evaluation of a thiomer/glutathione microparticulate delivery system. J Drug Target. 2010;18:303–12.

    Article  CAS  PubMed  Google Scholar 

  79. Palmbereger TF, Augustijns P, Vetter A, Bernkop-Schnürch A. Safety assessment of thiolated polymers: effect on ciliary beat frequency in human nasal epithelial cells. Drug Dev Ind Pharm. 2011;37(12):1455–62.

    Article  Google Scholar 

  80. Hornof MD, Kast CE, Bernkop-Schnurch A. In vitro evaluation of the viscoelastic properties of chitosanethioglycolic acid conjugates. Eur J Pharm Biopharm. 2003;55:185–90.

    Article  CAS  PubMed  Google Scholar 

  81. Patel D, Naik S, Misra A. Improved transnasal transport and brain uptake of tizanidine HCl-loaded thiolated chitosan nanoparticles for alleviation of pain. J Pharm Sci. 2012;101:690–706.

    Article  CAS  PubMed  Google Scholar 

  82. Shahnaz G, Vetter A, Barthelmes J, et al. Thiolated chitosan nanoparticles for the nasal administration of leuprolide: bioavailability and pharmacokinetic characterization. Int J Pharm. 2012;428:164–70.

    Article  CAS  PubMed  Google Scholar 

  83. Nazar H, Caliceti P, Carpenter B, et al. A once-a-day dosage form for the delivery of insulin through the nasal route: in vitro assessment and in vivo evaluation. Biomater Sci. 2013;1:306–14.

    Article  CAS  PubMed  Google Scholar 

  84. Wang X, Zheng C, Wu Z, et al. Chitosan-NAC nanoparticles as a vehicle for nasal absorption enhancement of insulin. J Biomed Mater Res B Appl Biomater. 2009;88(1):150–61.

    Article  CAS  PubMed  Google Scholar 

  85. Thanou M, Verhoef JC, Verheijden JH, Junginger HE. Intestinal absorption of octeriotide: N-trimethyl chitosan chloride (TMC) ameliorates the permeability and absorption properties of the somatostatin analogue in vitro and in vivo. J Pharm Sci. 2000;89:951–7.

    Article  CAS  PubMed  Google Scholar 

  86. Hamman JH, Stander M, Kotze AF. Effect of the degree of quaternisation of N-trimethyl chitosan chloride on absorption enhancement: in vivo evaluation in rat nasal epithelia. Int J Pharm. 2002;232:235–42.

    Article  CAS  PubMed  Google Scholar 

  87. du Plessis LH, Kotzé AF, Junginger HE. Nasal and rectal delivery of insulin with chitosan and N-trimethyl chitosan chloride. Drug Deliv. 2010;17:399–407.

    Article  PubMed  Google Scholar 

  88. Domard A, Rinaudo M, Terrassin C. New method for the quaternization of chitosan. Int J Biol Macromol. 1986;8:105–7.

    Article  CAS  Google Scholar 

  89. Kotze AF, Thanou MM, Luessen HL, De Boer ABG, Verhoef JC, Junginger HE. Effect of the degree of quaternization of N-trimethyl chitosan chloride on the permeability of intestinal epithelial cells (Caco-2). Eur J Pharm Biopharm. 1999;47:269–74.

    Article  CAS  PubMed  Google Scholar 

  90. Kumar M, Pandey RS, Patra KC, et al. Evaluation of neuropeptide loaded trimethyl chitosan nanoparticles for nose to brain delivery. Int J Biol Macromol. 2013;61:189–95.

    Article  CAS  PubMed  Google Scholar 

  91. Chen KH, Di Sabatino M, Albertini B, Passerini N, Kett VL. The effect of polymer coatings on physicochemical properties of spray-dried liposomes for nasal delivery of BSA. Eur J Pharm Sci. 2013;50:312–22.

    Article  CAS  PubMed  Google Scholar 

  92. Mei D, Mao S, Sun W, Wang Y, Kissel T. Effect of chitosan structure properties and molecular weight on the intranasal absorption of tetramethylpyrazine phosphate in rats. Eur J Pharm Biopharm. 2008;70:874–81.

    Article  CAS  PubMed  Google Scholar 

  93. Rassu G, Gavini E, Jonassen H, et al. New chitosan derivatives for the preparation of rokitamycin loaded microspheres designed for ocular or nasal administration. J Pharm Sci. 2009;98(12):4852–65.

    Article  CAS  PubMed  Google Scholar 

  94. Gavini E, Rassu G, Muzzarelli C, Cossu M, Giunchedi P. Spray-dried microspheres based on methylpyrrolidinone chitosan as new carrier for nasal administration of metoclopramide. Eur J Pharm Biopharm. 2008;68(2):245–52.

    Article  CAS  PubMed  Google Scholar 

  95. Na L, Mao S, Wang J, Sun W. Comparison of different absorption enhancers on the intranasal absorption of isosorbide dinitrate in rats. Int J Pharm. 2010;397(1–2):59–66.

    Article  CAS  PubMed  Google Scholar 

  96. Elliot JH, Ganz AJ. Some rheological properties of sodium carboxymethylcellulose solutions and gels. Rheol Acta. 1974;13:670–4.

    Article  CAS  Google Scholar 

  97. El-Gizawy SA, Osman MA, El-Hagaar SM, Hisham DM. Nasal drug delivery of a mucoadhesive oxybutynin chloride gel: in vitro evaluation and in vivo in situ study in experimental rats. Drug Del Sci Tech. 2013;23(6):569–75. Zhou N, Donovan MD. Intranasal mucociliary clearance of putative bioadhesive polymer gels. Int J Pharm. 1996;135:115–25.

    Article  CAS  Google Scholar 

  98. Zaki NM, Awada GA, Mortadaa ND, Abd ElHadyb SS. Enhanced bioavailability of metoclopramide HCl by intranasal administration of mucoadhesive in situ gel with modulated rheological and mucociliary transport properties. Eur J Pharm Sci. 2007;32:296–307.

    Article  CAS  PubMed  Google Scholar 

  99. Suzuki Y, Makino Y. Mucosal drug delivery using cellulose derivatives as a functional polymer. J Control Release. 1999;62(1–2):101–7.

    Article  CAS  PubMed  Google Scholar 

  100. Ugwoke MI, Agu RU, Vanbilloen H, et al. Scintigraphic evaluation in rabbits of nasal drug delivery systems based on carbopol 971p and carboxymethylcellulose. J Control Release. 2000;68:207–14.

    Article  CAS  PubMed  Google Scholar 

  101. Quadir M, Zia H, Needham TE. Development and evaluation of nasal formulations of ketorolac. Drug Deliv. 2000;7:223–9.

    Article  CAS  PubMed  Google Scholar 

  102. Illum L, Jorgensen H, Bisgaard H, Krogsgaard O, Rossing N. Bioadhesive microspheres as a potential nasal drug delivery system. Int J Pharm. 1987;39:189–99.

    Article  CAS  Google Scholar 

  103. Torikai Y, Sasaki Y, Sasaki K, Kyuno A, Haruta S, Tanimoto A. Evaluation of systemic and mucosal immune responses induced by a nasal powder delivery system in conjunction with an OVA antigen in cynomolgus monkeys. J Pharm Sci. 2021;110:2038–46.

    Article  CAS  PubMed  Google Scholar 

  104. Pearson RG, Masud T, Blackshaw E, et al. Nasal administration and plasma pharmacokinetics of parathyroid hormone peptide PTH 1-34 for the treatment of osteoporosis. Pharmaceutics. 2019;11(6):265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Duan X, Mao S. New strategies to improve the intranasal absorption of insulin. Drug Discov Today. 2010;15(11–12):416–27.

    Article  CAS  PubMed  Google Scholar 

  106. D'Souza SA, Ray J, Pandey S, Udupa N. Absorption of ciprofloxacin and norfloxacin when administered as niosome-encapsulated inclusion complexes. J Pharm Pharmacol. 1997;49(2):145–9.

    Article  CAS  PubMed  Google Scholar 

  107. Ikeda K, Murata K, Kobayashi M, Noda K. Enhancement of bioavailability of dopamine via nasal route in beagle dogs. Chem Pharm Bull. 1992;40:2155–8.

    Article  CAS  Google Scholar 

  108. Tester RF, Karkalas J, Qi X. Starch – composition, fine structure and architecture. J Cereal Sci. 2004;39:151–65.

    Article  CAS  Google Scholar 

  109. Callens C, Pringels E, Remon JP. Influence of multiple nasal administrations of bioadhesive powders on the insulin bioavailability. Int J Pharm. 2003;250:415–22.

    Article  CAS  PubMed  Google Scholar 

  110. Yadav AV, Mote HH. Development of biodegradable starch microspheres for intranasal delivery. Indian J Pharm Sci. 2008;70(2):170–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Jain AK, Khar RK, Ahmed FJ, Diwan PV. Effective insulin delivery using starch nanoparticles as a potential trans-nasal mucoadhesive carrier. Eur J Pharm Biopharm. 2008;69:426–35.

    Article  CAS  PubMed  Google Scholar 

  112. Illum L, Fisher AN, Jabbal-Gill I, Davis SS. Bioadhesive starch microspheres and absorption enhancing agents act synergistically to enhance the nasal absorption of polypeptides. Int J Pharm. 2001;222:109–19.

    Article  CAS  PubMed  Google Scholar 

  113. Abu Elella MH, Sabaa MW, Hanna DH, Abdel-Aziz MM, Mohamed RR. Antimicrobial pH-sensitive protein carrier based on modified xanthan gum. J Drug Deliv Sci Technol. 2020;57:101673.

    Article  CAS  Google Scholar 

  114. El-Sawy NM, Raafat AI, Badawy NA, Mohamed AM. Radiation development of pH-responsive (xanthan-acrylic acid)/MgO nanocomposite hydrogels for controlled delivery of methotrexate anticancer drug. Int J Biol Macromol. 2020;142:254–64.

    Article  CAS  PubMed  Google Scholar 

  115. Kennedy JRM, Kent KE, Brown JR. Rheology of dispersions of xanthan gum, locust bean gum and mixed biopolymer gel with silicon dioxide nanoparticles. Mater Sci Eng C. 2015;48:347–53.

    Article  CAS  Google Scholar 

  116. Kumar A, Rao KM, Han SS. Application of xanthan gum as polysaccharide in tissue engineering: a review. Carbohydr Polym. 2018;180:128–44.

    Article  CAS  PubMed  Google Scholar 

  117. Morariu S, Bercea M, Brunchi CE. Phase separation in xanthan solutions. Cellul Chem Technol. 2018;52:569–76.

    CAS  Google Scholar 

  118. Gils PS, Ray D, Sahoo PK. Characteristics of xanthan gum-based biodegradable superporous hydrogel. Int J Biol Macromol. 2009;45:364–71.

    Article  CAS  PubMed  Google Scholar 

  119. Kang M, Oderinde O, Liu S, et al. Characterization of Xanthan gum-based hydrogel with Fe3+ ions coordination and its reversible sol-gel conversion. Carbohydr Polym. 2019;203:139–47.

    Article  CAS  PubMed  Google Scholar 

  120. Petri DFS. Xanthan gum: a versatile biopolymer for biomedical and technological applications. J Appl Polym Sci. 2015;132(23):42035.

    Article  Google Scholar 

  121. Huang J, Deng Y, Ren J, et al. Novel in situ forming hydrogel based on xanthan and chitosan re-gelifying in liquids for local drug delivery. Carbohydr Polym. 2018;186:54–63.

    Article  CAS  PubMed  Google Scholar 

  122. Bernkop-Schnürch A, Obermair K, Greimel A, et al. In vitro evaluation of the potential of thiomers for the nasal administration of Leu-enkephalin. Amino Acids. 2006;30:417–23.

    Article  PubMed  Google Scholar 

  123. Peppas NA, Carr DA. Impact of absorption and transport on intelligent therapeutics and nanoscale delivery of protein therapeutic agents. Chem Eng Sci. 2009;64(22):4553–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Hintzen F, Hauptstein S, Perera G, Bernkop-Schnürch A. Synthesis and in vitro characterization of entirely S-protected thiolated pectin for drug delivery. Eur J Pharma Biopharm. 2013;85(3):1266–73.

    Article  CAS  Google Scholar 

  125. Menzel C, Jelkmann M, Laffleur F, Bernkop-Schnürch A. Nasal drug delivery: design of a novel mucoadhesive and in situ gelling polymer. Int J Pharm. 2017;517:196–202.

    Article  CAS  PubMed  Google Scholar 

  126. Yuguchi Y, Urakawa H, Kitamura S, Wataoka I, Kajiwara K. The sol-gel transition of gellan gum aqueous solutions in the presence of various metal salts. Progr Colloid Polym Sci. 1999;114:41–7.

    Article  CAS  Google Scholar 

  127. Mahdi MH, Conway BR, Smith AM. Evaluation of gellan gum fluid gels as modified release oral liquids. Int J Pharm. 2014;475(1–2):335–43.

    Article  CAS  PubMed  Google Scholar 

  128. Cao SL, Zhang QZ, Jiang XG. Preparation of ion-activated in situ gel systems of scopolamine hydrobromide and evaluation of its antimotion sickness efficacy. Acta Pharmacol Sin. 2007;28:584–90.

    Article  CAS  PubMed  Google Scholar 

  129. Picone CSF, Cunha RL. Influence of pH on formation and properties of gellan gels. Carbohydr Polym. 2011;84(1):662–8.

    Article  CAS  Google Scholar 

  130. Salunke SR, Patil SB. Ion activated in situ gel of gellan gum containing salbutamol sulphate for nasal administration. Int J Biol Macromol. 2016;87:41–7.

    Article  CAS  PubMed  Google Scholar 

  131. Krauland AH, Leitner VM, Bernkop-Schnürch A. Improvement in the in situ gelling properties of deacetylated gellan gum by the immobilization of thiol groups. J Pharm Sci. 2003;92:1234–41.

    Article  CAS  PubMed  Google Scholar 

  132. Hao J, Zhao J, Zhang S, Tong T, Zhuang Q, Jin K, Chen W, Tang H. Fabrication of an ionic-sensitive in situ gel loaded with resveratrol nanosuspensions intended for direct nose-to-brain delivery. Colloids Surf B Biointerfaces. 2016;147:376–86.

    Article  CAS  PubMed  Google Scholar 

  133. Liu L, Fishman ML, Hicks KB. Pectin in controlled drug delivery – a review. Cellulose. 2007;14:15–24.

    Article  Google Scholar 

  134. Illum L. Transport of drugs from the nasal cavity to the central nervous system. Eur J Pharm Sci. 2000;11:1–18.

    Article  CAS  PubMed  Google Scholar 

  135. Watts P, Smith A. PecSys: in situ gelling system for optimised nasal drug delivery. Expert Opin Drug Deliv. 2009;6(5):543–52.

    Article  CAS  PubMed  Google Scholar 

  136. Fisher T, Knight A, Watling M, Smith A. Fentanyl pectin nasal spray (FPNS) with PecSys® provides most favorable pharmacokinetic/tolerability profile compared with nasal chitosan-based fentanyl and oral transmucosal fentanyl citrate (OTFC). J Pain. 2009;10(Suppl):S45.

    Google Scholar 

  137. Rajaonarivony M, Vauthier C, Couarraze G, Puisieux F, Couvreur P. Development of a new drug carrier made from alginate. J Pharm Sci. 1993;82(9):912–7.

    Article  CAS  PubMed  Google Scholar 

  138. Kesavan K, Nath G, Pandit JK. Sodium alginate based mucoadhesive system for gatifloxacin and its in vitro antibacterial activity. Sci Pharm. 2010;78(4):941–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wee S, Gombotz WR. Protein release from alginate matrices. Adv Drug Deliv Rev. 1998;31(3):267–85.

    Article  CAS  PubMed  Google Scholar 

  140. Bernkop-Schnurch A. Mucoadhesive polymers. In: Dumitriu S, editor. Polymer biomaterial. 2nd ed. New York: Marcel Dekker; 2002. p. 147–65.

    Google Scholar 

  141. Braccini I, Pérez S. Molecular basis of Ca2+-induced gelation in alginates and pectins: the egg-box model revisited. Biomacromolecules. 2001;2(4):1089–96.

    Article  CAS  PubMed  Google Scholar 

  142. Morimoto K, Katsumata H, Yabuta T, et al. Evaluation of gelatin microspheres for nasal and intramuscular administrations of salmon calcitonin. Eur J Pharm Sci. 2001;13:179e185.

    Article  Google Scholar 

  143. Wang J, Sakai S, Deguchi Y, Bi D, Tabata Y, Morimoto K. Aminated gelatin as a nasal absorption enhancer for peptide drugs: evaluation of absorption enhancing effect and nasal mucosa perturbation in rats. J Pharm Pharmacol. 2002;54:181e188.

    Google Scholar 

  144. Wang J, Tabata Y, Morimoto K. Aminated gelatin microspheres as a nasal delivery system for peptide drugs: evaluation of in vitro release and in vivo insulin absorption in rats. J Control Release. 2006;113(1):31–7.

    Article  CAS  PubMed  Google Scholar 

  145. Seki T, Kanbayashi H, Chono S, Tabata Y, Morimoto K. Effects of a sperminated gelatin on the nasal absorption of insulin. Int J Pharm. 2007;338:213–8.

    Article  CAS  PubMed  Google Scholar 

  146. Hanif M, Zaman M, Qureshi S. Thiomers: a blessing to evaluating era of pharmaceuticals. Int J Polym Sci. 2015;146329

    Google Scholar 

  147. Kun N, Bae YH. pH sensitive polymers for drug delivery. In: Kwon GS, editor. Polymeric drug delivery systems. 1st ed. Talor and Francis Group: Florida; 2005. p. 129–94.

    Google Scholar 

  148. Rathnam G, Narayanan N, Ilavarasan R. Carbopol-based gels for nasal delivery of progesterone. AAPS PharmSciTech. 2008;9(4):1078–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Najafabadi AR, Moslemi P, Tajerzadeh H. Intranasal bioavailability of insulin from carbopol-based gel spray in rabbits. Drug Deliv. 2004;11(5):295–300.

    Article  CAS  PubMed  Google Scholar 

  150. Ugwoke MI, Sam E, Van Den Mooter G, Verbeke N, Kinget R. Bioavailability of apomorphine following intranasal administration of mucoadhesive drug delivery systems in rabbits. Eur J Pharm Sci. 1999;9:213–9.

    Article  CAS  PubMed  Google Scholar 

  151. Nandgude T, Thube R, Jaiswal N, Deshmukh P, Chatap V, Hire N. Formulation and evaluation pH induced in-situ nasal gel of salbutamol sulphate. Int J Pharm Sci Nanotechnol. 2008;1:177–83.

    CAS  Google Scholar 

  152. Ravi V, Mahendra C, Datta MV, Gowda DV, Shivakumar HG, Bhargav E. Thiomers fresh drift of polymers & their prospective in pharmaceuticals: a review. World J Pharm Pharm Sci. 2013;3(1):204–20.

    Google Scholar 

  153. Kafedjiiski K, Franzens L. Multifunctional polymeric excipients in no-invasive delivery of hydrophilic macromolecular drugs: the thiomer-technology. The Drug Delivery Companies Report Autumn/Winter 47, The Drug Delivery Companies. 2004. https://www.semanticscholar.org/paper/Multifunctional-Polymeric-Excipients-in-Delivery-of-Kafedjiiski/c3f0d72d433dc58d12bfca74853fc0df37785b2e.

  154. Greimel A, Del Curto MD, D’Antonio M, Palmberger T, Sprinzl GM, Bernkop-Schnürch A. In vitro evaluation of thiomer microparticles for nasal drug delivery. J Drug Del Sci Tech. 2006;16:103–8.

    Article  CAS  Google Scholar 

  155. Aikawa K, Matsumoto K, Uda H, et al. Hydrogel formation of the pH response polymer polyvinylacetal diethylaminoacetate (AEA). Int J Pharm. 1998;167(1–2):97–104.

    Article  CAS  Google Scholar 

  156. Migniani S, Shi X, Karpus A, Majoral J-P. Non-invasive intranasal administration route directly to the brain using dendrimer nanoplatforms: an opportunity to develop new CNS drugs. Eur J Med Chem. 2021;209:112905.

    Article  Google Scholar 

  157. Xie H, Li L, Sun Y, et al. An available strategy for nasal brain transport of nanocomposite based on PAMAM dendrimers via in situ gel. Nanomaterials (Basel). 2019;9(2):147.

    Article  CAS  PubMed  Google Scholar 

  158. Janaszewska A, Studzian M, Petersen JF, et al. Modified PAMAM dendrimer with 4-carbomethoxypyrrolidone surface groups-its uptake, efflux, and location in a cell. Colloids Surf B Biointerfaces. 2017;159:211–6.

    Article  CAS  PubMed  Google Scholar 

  159. Esfand R, Tomalia DA. Poly (amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov Today. 2001;6(8):427–36.

    Article  CAS  PubMed  Google Scholar 

  160. Otto DP, de Villiers MM. Poly (amidoamine) dendrimers as a pharmaceutical excipient. Are we there yet? J Pharm Sci. 2018;107(1):75–83.

    Article  CAS  PubMed  Google Scholar 

  161. Xia H, Gao X, Gu G, et al. Low molecular weight protamine functionalized nanoparticles for drug delivery to the brain after intranasal administration. Biomaterials. 2011;32:9888–98.

    Article  CAS  PubMed  Google Scholar 

  162. Kamei N, Takeda-Morishita M. Brain delivery of insulin boosted by intranasal coadministration with cell-penetrating peptides. J Control Release. 2015;197:105–10.

    Article  CAS  PubMed  Google Scholar 

  163. Mattiuz E, Franklin R, Gillespie T, et al. Disposition and metabolism of olanzapine in mice, dogs, and rhesus monkeys. Drug Metab Dispos. 1997;25:573–83.

    PubMed  Google Scholar 

  164. Roy S, Pal K, Anis A, Pramanik K, Prabhakar B. Polymers in mucoadhesive drug-delivery systems: a brief note. Des Monomers Polym. 2009;12:483–95.

    Article  CAS  Google Scholar 

  165. Laffleur F, Bauer B. Progress in nasal drug delivery systems. Int J Pharm. 2021;607:120994.

    Article  CAS  PubMed  Google Scholar 

  166. Emanuele M, Balasubramaniam B. Differential effects of commercial-grade and purified poloxamer 188 on renal function. Drugs R D. 2014;14:73–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Cho H-J, Balakrishnan P, Park E-K, et al. Poloxamer/cyclodextrin/chitosan-based thermoreversible gel for intranasal delivery of fexofenadine hydrochloride. J Pharm Sci. 2011;100(2):681–91.

    Article  CAS  PubMed  Google Scholar 

  168. Katakam M, Ravis WR, Banga AK. Controlled release of human growth hormone in rats following parenteral administration of poloxamer gels. J Control Release. 1997;49(1):21–6.

    Article  CAS  Google Scholar 

  169. Fakhari A, Corcoran M, Schwarz A. Thermogelling properties of purified poloxamer 407. Heliyon. 2017;3(8):e00390.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Russo E, Villa C. Poloxamer hydrogels for biomedical applications. Pharmaceutics. 2019;11:671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Bromberg LE. Enhanced nasal retention of hydrophobically modified polyelectrolytes. J Pharm Pharmacol. 2001;53:109–14.

    Article  CAS  PubMed  Google Scholar 

  172. Uttarwar S. Formulation and development of in situ gelling system for nasal administration for an antiemetic drug ondansetron hydrochloride by using Pluronics 127P and Pluronics 68. Int J Res Pharm Biomed Sci. 2012;3:1103–18.

    CAS  Google Scholar 

  173. Kandimella KK, Donovan MD. Localization and differential activity of P-glycoprotein in the bovine olfactory and nasal respiratory mucosae. Pharm Res. 2005;22:1121–8.

    Article  Google Scholar 

  174. Kabanov AV, Batrakova EV, Miller DW. Pluronic block copolymers as modulators of drug efflux transporter activity in the blood-brain barrier. Adv Drug Deliv Rev. 2003;55(1):151–64.

    Article  CAS  PubMed  Google Scholar 

  175. Bromberg L. Poly(ethylene oxide)-b-poly(propylene oxide)-bpoly(ethylene oxide)-g-poly(acrylic acid) copolymers as in-situ vehicle for nasal delivery. In: Rathbene MJ, Hadgraft J, Roberts MS, editors. Modified release drug technology. 1st ed. New York: Marcel Dekker; 2002. p. 749–58.

    Chapter  Google Scholar 

  176. Ruel-Gariépy E, Leroux JC. In situ-forming hydrogels – review of temperature-sensitive systems. Eur J Pharm Biopharm. 2004;58:409–26.

    Article  PubMed  Google Scholar 

  177. Jeong B, Kim SW, Bae YH. Thermosensitive sol-gel reversible hydrogels. Adv Drug Deliv Rev. 2002;54:37–51.

    Article  CAS  PubMed  Google Scholar 

  178. Rydén L, Edman P. Effect of polymers and microspheres on the nasal absorption of insulin in rats. Int J Pharm. 1982;83:1–10.

    Article  Google Scholar 

  179. Porfiryeva NN, Nasibullin SF, Abdullina SG, et al. Acrylated Eudragit® E PO as a novel polymeric excipient with enhanced mucoadhesive properties for application in nasal drug delivery. Int J Pharm. 2019;562:241–8.

    Article  CAS  PubMed  Google Scholar 

  180. Casettari L, Vllasaliu D, Mantovani G, Howdle SM, Stolnik S, Illum L. Effect of PEGylation on the toxicity and permeability enhancement of chitosan. Biomacromolecules. 2010;11:2854–65.

    Article  CAS  PubMed  Google Scholar 

  181. Casettari L, Vllasaliu D, Castagnino E, Stolnik S, Howdle S, Illum L. PEGylated chitosan derivatives: synthesis, characterizations and pharmaceutical applications. Prog Polym Sci. 2012;37:659–85.

    Article  CAS  Google Scholar 

  182. Zhang X, Zhang H, Wu Z, Wang Z, Niu H, Li C. Nasal absorption enhancement of insulin using PEG-grafted chitosan nanoparticles. Eur J Pharm Biopharm. 2008;68:526–34.

    Article  CAS  PubMed  Google Scholar 

  183. Gorshkova MY, Volkova IF, Vanchugova LV, et al. Sodium alginate based mucoadhesive hydrogels. Appl Biochem Microbiol. 2019;55:371–4.

    Article  CAS  Google Scholar 

  184. Tafaghodi M, Abolghasem Sajadi Tabassi S, Jaafari M-R, Zakavi SR, Momen-Nejad M. Evaluation of the clearance characteristics of various microspheres in the human nose by gamma-scintigraphy. Int J Pharm. 2004;280:125–35.

    Article  CAS  PubMed  Google Scholar 

  185. Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymer. 2011;3:1377–97.

    Article  CAS  Google Scholar 

  186. Musumeci T, Pellitteri R, Spatuzza M, Puglisi G. Nose-to-brain delivery: evaluation of polymeric nanoparticles on olfactory ensheathing cells uptake. J Pharm Sci. 2014;103:628–35.

    Article  CAS  PubMed  Google Scholar 

  187. Md S, Ali M, Baboota S, Sahni KJ, Bhatnagar A, Ali J. Preparation, characterization, in vivo biodistribution and pharmacokinetic studies of donepezil-loaded PLGA nanoparticles for brain targeting. Drug Dev Ind Pharm. 2014;40(2):278–87.

    Article  PubMed  Google Scholar 

  188. Mythri G, Kavitha K, Kumar MR, Singh SJ. Novel mucoadhesive polymers-a review. J App Pharm Sci. 2011;01(08):37–42.

    Google Scholar 

  189. Gao X, Tao W, Lu W, et al. Lectin-conjugated PEG-PLA nanoparticles: preparation and brain delivery after intranasal administration. Biomaterials. 2006;27(18):3482–90.

    Article  CAS  PubMed  Google Scholar 

  190. Chen J, Zhang C, Liu Q, et al. Solanum tuberosum lectin-conjugated PLGA nanoparticles for nose-to-brain delivery: in vivo and in vitro evaluations. J Drug Target. 2012;20(2):174–84.

    Article  CAS  PubMed  Google Scholar 

  191. Smart JD, Nicholls TJ, Green KL, Rogers DJ, Cook JD. Lectins in drug delivery: a study of the acute local irritancy of the lectins from Solanum tuberosum and Helix pomatia. Eur J Pharm Sci. 1999;9(1):93–8.

    Article  CAS  PubMed  Google Scholar 

  192. Andrews G, Laverty T, Jones D. Mucoadhesive polymeric platforms for controlled drug delivery. Eur J Pharm Biopharm. 2009;71(3):505–18.

    Article  CAS  PubMed  Google Scholar 

  193. Zhang C, Chen J, Feng C, et al. Intranasal nanoparticles of basic fibroblast growth factor for brain delivery to treat Alzheimer's disease. Int J Pharm. 2014;461(1–2):192–202.

    Article  CAS  PubMed  Google Scholar 

  194. Hu K, Shi Y, Jiang W, Han J, Huang S, Jiang X. Lactoferrin conjugated PEG-PLGA nanoparticles for brain delivery: preparation, characterization and efficacy in Parkinson's disease. Int J Pharm. 2011;415(1–2):273–83.

    Article  CAS  PubMed  Google Scholar 

  195. Yan X, Xu L, Bi C, et al. Lactoferrin-modified rotigotine nanoparticles for enhanced nose-to-brain delivery: LESA-MS/MS-based drug biodistribution, pharmacodynamics, and neuroprotective effects. Int J Nanomedicine. 2018;13:273–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Jadhav PP, Jadhav NR, Hosmani AH, Patil S. Development and evaluation of in situ thermoresponsive nasal gel system for Nardostachys jatamansi. Pharm Lett. 2013;5:113–25.

    CAS  Google Scholar 

  197. Srivastava R, Srivastava S, Singh SP. Thermoreversible in-situ nasal gel formulations and their pharmaceutical evaluation for the treatment of allergic rhinitis containing extracts of Moringa olifera and Embelia ribes. Int J App Pharm. 2017;9(6):16–20.

    Article  CAS  Google Scholar 

  198. Shelke S, Shahi S, Jalalpure S, Dhamecha D. Poloxamer 407-based intranasal thermoreversible gel of zolmitriptan-loaded nanoethosomes: formulation, optimization, evaluation and permeation studies. J Liposome Res. 2016;26(4):313–23.

    Article  CAS  PubMed  Google Scholar 

  199. Perez AP, Mundina-Weilenmann C, Romero EL, Morilla MJ. Increased brain radioactivity by intranasal P-labeled siRNA dendriplexes within in situ-forming mucoadhesive gels. Int J Nanomedicine. 2012;7:1373–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Agrawal AK, Gupta PN, Khanna A, et al. Development and characterization of in situ gel system for nasal insulin delivery. Pharmazie. 2010;65:188–93.

    CAS  PubMed  Google Scholar 

  201. Zao J. Chitosan-based gels for the drug delivery system. In: Yao K, Li J, Yao F, Yin Y, editors. Chitosan-based hydrogels: functions and applications. 1st ed. CRC Press; 2011. p. 263–314.

    Google Scholar 

  202. Al-Ghananeem AM, Malkawi AH, Crooks PA. Bioavailability of Δ9-tetrahydrocannabinol following intranasal administration of a mucoadhesive gel spray delivery system in conscious rabbits. Drug Dev Ind Pharm. 2011;37:329–34.

    Article  CAS  PubMed  Google Scholar 

  203. Jose S, Ansa CR, Cinu TA, et al. Thermo-sensitive gels containing lorazepam microspheres for intranasal brain targeting. Int J Pharm. 2013;441:516–26.

    Article  CAS  PubMed  Google Scholar 

  204. Zafar A, Afzal M, Quazi AM, et al. Chitosan-ethyl cellulose microspheres of domperidone for nasal delivery: preparation, in-vitro characterization, in-vivo study for pharmacokinetic evaluation and bioavailability enhancement. J Drug Deliv Sci Technol. 2021;63:102471.

    Article  CAS  Google Scholar 

  205. Gavini E, Rassu G, Ferraro L, et al. Influence of polymeric microcarriers on the in vivo intranasal uptake of an anti-migraine drug for brain targeting. Eur J Pharm Biopharm. 2013;83:174–83.

    Article  CAS  PubMed  Google Scholar 

  206. Wu J, Wei W, Wang LY, Su ZG, Ma GH. A thermosensitive hydrogel based on quaternized chitosan and poly(ethylene glycol) for nasal drug delivery system. Biomaterials. 2007;28:2220–32.

    Article  CAS  PubMed  Google Scholar 

  207. Wu J, Su ZG, Ma GH. A thermo- and pH-sensitive hydrogel composed ofquaternized chitosan/glycerophosphate. Int J Pharm. 2006;315:1–11.

    Article  CAS  PubMed  Google Scholar 

  208. Chenite A, Chaput C, Cpmbes C, Selmani A, Jalal F. Temperature-controlled pH-dependant formation of ionic polysaccharide gels. US Patent 6344488. 2002. https://pubchem.ncbi.nlm.nih.gov/patent/US6344488.

  209. Goycoolea FM, Lollo G, Remuñán-López C, Quaglia F, Alonso M.a.J. Chitosan-alginate blended nanoparticles as carriers for the transmucosal delivery of macromolecules. Biomacromolecules. 2009;10:1736–43.

    Article  CAS  PubMed  Google Scholar 

  210. Verestiuc L, Ivanov C, Barbu E, Tsibouklis J. Dual-stimuli-responsive hydrogels based on poly(N-isopropylacrylamide)/chitosan semi-interpenetrating networks. Int J Pharm. 2004;269:185–94.

    Article  CAS  PubMed  Google Scholar 

  211. El-Dakrouri WA, Ibrahim HK, Ghorab MK, Ghorab MM. Enhancement of the intranasal delivery of insulin via a novel mucoadhesive Carbopol gel. J Pharm Pharmacol. 2010;62(7):866–72.

    Article  CAS  PubMed  Google Scholar 

  212. Dehghan MHG, Kazi M. Lyophilized chitosan/xanthan polyelectrolyte complex based mucoadhesive inserts for nasal delivery of promethazine hydrochloride. Iran J Pharm Res. 2014;13(3):769–184.

    CAS  Google Scholar 

  213. Luppi B, Bigucci F, Mercolini L, et al. Novel mucoadhesive nasal inserts based on chitosan/hyaluronate polyelectrolyte complexes for peptide and protein delivery. J Pharm Pharmacol. 2009;61(2):151–7.

    Article  CAS  PubMed  Google Scholar 

  214. Luppi B, Bigucci F, Abbruzzo A, Corace G, Cerchiara T, Zecchi V. Freeze-dried chitosan/pectin nasal inserts for antipsychotic drug delivery. Eur J Pharm Biopharm. 2010;75(3):381–7.

    Article  CAS  PubMed  Google Scholar 

  215. Deutel B, Laffleur F, Palmberger T, Saxer A, Thaler M, Bernkop-Schnurch A. In vitro characterization of insulin containing thiomeric microparticles as nasal drug delivery system. Eur J Pharm Sci. 2016;81:157–61.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ljiljana Djekic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Djekic, L. (2023). Novel Mucoadhesive Polymers for Nasal Drug Delivery. In: Pathak, Y.V., Yadav, H.K.S. (eds) Nasal Drug Delivery. Springer, Cham. https://doi.org/10.1007/978-3-031-23112-4_11

Download citation

Publish with us

Policies and ethics