Skip to main content

The Development of the Cerebellum: From the Beginnings

  • Chapter
  • First Online:
Development of the Cerebellum from Molecular Aspects to Diseases

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

  • 463 Accesses

Abstract

Sotelo stated in his introduction for a consensus paper on cerebellar development (Leto et al. Cerebellum 15:789, 2015) that “The work done in the late nineteenth century until the late 1970s provided substantial and significant information; however, it was only descriptive and barely addressed the mechanisms involved.” Observations and their description, the nomenclature that evolved from these studies and the ideas they fostered, indeed, formed the basis for our understanding of the mechanisms that underlie the complex development of the cerebellum, to be reviewed in this volume. This chapter will highlight some of these early contributions to the origin of the cerebellum, its histogenesis, the migration of its neurons, the development of the longitudinal Purkinje cell zones, their target nuclei and their connections, and the folial pattern of the cerebellum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. His W. Zur Geschichte des Gehirns sowie der centralen und peripherischen Nervenbahnen beim menschlichen Embryo. Abhandlungen der mathematisch-physichen Classe der Königl. Sachsichen Gesellschaft der Wissenschaften VII; 1888, 341–392.

    Google Scholar 

  2. His W. Die Entwicklug des menschlichen Rautenhirns vom Ende des ersten bis am Beginn des dritten Monats. Abandlungen der mathematischen-physischen Classe der Königl. Sachsichen Gesellschaft der Wissenschaften. 1891;17:1–74.

    Google Scholar 

  3. Rüdeberg S-I. Morphogenetic studies on the cerebellar nuclei and their homologization in different vertebrates including man. Lund: Hakan Olssons; 1961.

    Google Scholar 

  4. Vaage S. The segmentation of the primitive neural tube in chick embryos (Gallus domesticus). A morphological, histochemical and autoradiographical investigation. Adv Anat Embryol Cll Biol. 1969;41:1–81.

    Google Scholar 

  5. Martinez S, Alvarado-Mallart R-M. Rostral cerebellum originates from the caudal portion of the so-called ‘mesencephalic’ vesicle: a study using chick/quail chimeras. J Neurosci. 1989;1:549–60.

    Google Scholar 

  6. Hallonet MR, Teillet M-A, Le Douarin NM. A new approach to the development of the cerebellum provided by the quail-chick marker system. Development. 1990;108:19–31.

    Article  CAS  PubMed  Google Scholar 

  7. Marin F, Puelles L. Morphological fate of rnombomeres in quail/chick chimeras: a segmental analysis of hindbrain nuclei. Eur J Neurosci. 1995;7:1714–38.

    Article  CAS  PubMed  Google Scholar 

  8. Sgaier SK, Millet S, Villanueva MP, Berensteyn F, Song C, Joyner AL. Morphogenetic and cellular movements that shape the mouse cerebellum: insights from genetic fate mapping. Neuron. 2005;45:27–40.

    CAS  PubMed  Google Scholar 

  9. Nieuwenhuys R, Puelles L. Toward a new neuromorphology. New York: Springer; 2016.

    Book  Google Scholar 

  10. Altman J, Bayer SA. Embryonic development of the rat cerebellum. III. Regional differences in the time of origin, migration and settling of Purkinje cells. J Comp Neurol. 1985a;231:42–65.

    Article  CAS  PubMed  Google Scholar 

  11. Miale IL, Sidman RL. An autoradiographic analysis of histogenesis in the mouse cerebellum. Exp Neurol. 1961;4:77–295.

    Article  Google Scholar 

  12. Pierce ET. Histogenesis of the deep cerebellar nuclei in the mouse: an autoradiographic study. Brain Res. 1975;95:503–18.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang L, Goldman JE. Developmental fates and migratory pathways of dividing progenitors in the postnatal rat cerebellum. J Comp Neurol. 1996a;370:536–50.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang L, Goldman JE. Generation of cerebellar interneurons from dividing progenitors in white matter. Neuron. 1996b;16:47–54.

    Article  PubMed  Google Scholar 

  15. Sekerková G, Iljic E, Mugnaini E. Time of origin of unipolar brush cells in the rat cerebellum as observed by prenatal bromodeoxyuridine labeling. Neuroscience. 2004;127:845–58.

    Article  PubMed  Google Scholar 

  16. Altman J, Bayer SA. Embryonic development of the rat cerebellum. II. Transformation and regional distribution of the deep neurons. J Comp Neurol. 1985b;231:27–41.

    Article  CAS  PubMed  Google Scholar 

  17. Gould BB, Rakic P. The total number, time of origin and kinetics of proliferation of neurons comprising the deep cerebellar nuclei in the Rhesus monkey. Exp Brain Res. 1981;44:195–206.

    Article  CAS  PubMed  Google Scholar 

  18. Kanemitsu A, Kobayashi Y. Time of origin of Purkinje cells and neurons of the deep cerebellar nuclei of the chick embryo examined with 3H-thymidine autoradiography. Anat Anz. 1988;165:67–75.

    Google Scholar 

  19. Leto E, Arancillo M, Becker EBE, Busso A, Chiang C, Baodin J, Dubyns WB, Dusart I, Haldipur P, Hatten ME, Hoshino M, Joyner AL, Kano M, Kilpatrisck DL, Koibuchi N, Marino S, Martinez S, Muillen KJ, Millnner TO, Miyata T, Parmigiani E, Schilling S, Sekerková G, Sillitoe RV, Sotelo C, Uesaka N, Wefers A, Wingatae RJT, Hawkes R. Consensus paper: cerebellar development. Cerebellum. 2015;15:789.

    Article  PubMed Central  Google Scholar 

  20. Englund C, Kowallzyk T, Daza RAM, Dagan A, Lau C, Rose MF, Hetner RF. Unipolar brush cells of the cerebellum are produced in the rhombic lip and migrate through developing white matter. J Neurosci. 2006;26:9184–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yuasa S, Kawamura K, Ono K, Yamakuni T, Takahashi Y. Development and migration of Purkinje cells in the mouse cerebellar primordium. Anat and Embryol. 1991;184:195–212.

    Article  CAS  Google Scholar 

  22. Altman J. Morphological development of the rat cerebellum and some of its mechanisms. Exp Brain Res Suppl. 1982;6:8–49.

    Article  Google Scholar 

  23. Cajal RY. A propos de certains élements bipolaires du cervelet avec quelques détails nouveaux sur l’évolution ds fibres nerveuses. Int Monatschrifr f. Anat u Physiol. 1890a;7:47–468.

    Google Scholar 

  24. Cajal RY. Sur les fibres nerveuses de la couche granulaire du cervelet et sur l’évolution des élements cérébelleux. Int Monatschrift f. Anatomie u. Physiologie. 1890b;7:12–29.

    Google Scholar 

  25. Cajal SRY. Histologie du système nerveux de l’homme et des vertebrés. Maloine, Paris; 1909–1911.

    Google Scholar 

  26. Athias M. L’histogenése de l’ écorce du cervelet. J Anat Physiol Normale et Pathologique. 1897;33:372–404.

    Google Scholar 

  27. Lugaro. Ueber die Histogenese der Körner der Kleinhirnrinde. Anat Anz. 1894;10:710–3.

    Google Scholar 

  28. Popoff. Ueber die Histogenese der Kleinhirnrinde. Biologischs Centralblatt. 1897;17:485–512, 530–542, 605–620, 640–650, 664–687

    Google Scholar 

  29. Altman J. Postnatal development of the cerebellar cortex in the rat. II. Phasas in the maturation of Purkinje cells and of the molecular layer. J Comp Neurol. 1972;145:399–462.

    Article  CAS  PubMed  Google Scholar 

  30. Goodlett CR, Hamre KM, West JR. Regional differences in the timing of dendritic outgrowth of Purkinje cells in the vermal cerebellum demonstrated by MAP2 immunocytochemistry. Dev Brain Research. 1990;53:131–4.

    Article  CAS  PubMed  Google Scholar 

  31. Larramendi LMH. Analysis of synaptogenesis in the cerebellum of the mouse. In: Llinas R, editor. Neurobiology of cerebellar evolution and development. Chicago: AMA; 1969. p. 803–43.

    Google Scholar 

  32. Morara S, Van der Want JJL, De Weerd H, Provini L, Rosina A. Ultrastructural analysis of climbing fiber-Purkinje cell synaptogenesis in the rat cerebellum. Neuroscience. 2001;108:655–71.

    Article  CAS  PubMed  Google Scholar 

  33. Hashimoto K, Kano M. Postnatal development and synapse elimination of climbing fiber to Purkinje cell projection in the cerebellum. Neurosi Res. 2005;53:221–8.

    Article  Google Scholar 

  34. Hess N. De cerebelli gyrorum r textura disquisitiones microscopicae Dopat Schünmann; 1858.

    Google Scholar 

  35. Obersteiner H. Beiträge zur Kenntniss vom feineren Bau der Kleinhirnrinde mit besonderer Berücksichtigung der Entwicklung. Sitzungsberichte der kaiserlichen Akademie der Wissenschaften. Mathematisch-naturwisenschaftliche Klasse Abth. II. 1869; 60, 101–114.

    Google Scholar 

  36. Schaper A. Die morphologische und histologsche Entwicklung des Kleinhirns der Teleostier. Anat Anz. 1894;9:489–501.

    Google Scholar 

  37. Herrick CL. Contributions to the comparative morphology of the central nervous system. I. Illustrations of the architectonic of the cerebellum. J Comp Neurol. 1891;1:2–37.

    Article  Google Scholar 

  38. Corrales JD, Rocco GL, Blaess S, Guo O, Joyner AL. Spatial pattern of sonic hedgehog signaling through the Gli gens during cerebellar development. Development. 2004;131:5581–90.

    Article  CAS  PubMed  Google Scholar 

  39. Rakic P. Principles of neural cell migration. Experientia. 1990;46:882–91.

    Article  CAS  PubMed  Google Scholar 

  40. Bergmann KGLC. Motiz über einige Strukturverhältnisse des Cerebellum und Rückenmarks. Z Rationelle Medicin. 1857;8:360–3.

    Google Scholar 

  41. Nagata I, Katsuhiko O, Wawana A, Kimura-Kuroda J. Aligned neurite bundles of granule cells regulate orientation of Purkinje cell dendrites by perpendicular contact guidance in two-dimensional and three-dimensional mouse cerebellar cultures. J Comp Neurol. 2006;499:274–89.

    Article  PubMed  Google Scholar 

  42. Hillman DE, Chen S, Ackman J. Perinatal methylazoxymethanol acetate uncouples coincidence of orientation of cerebellar folia and parallel fibers. Neuroscience. 1988;24:99–110.

    Article  CAS  PubMed  Google Scholar 

  43. Bergqvist H, Källén B. Studies on the topography of the migration areas in the vertebrate brain. Acata Anat. 1953;17:353–69.

    Article  Google Scholar 

  44. Korneliusen HK, Jansen J. On the early development and homology of the central cerebellar nuclei in cetacea. J Hirnforschung. 1965;8:47–56.

    Google Scholar 

  45. Feirabend HKP. Anatomy and development of longitudinal patterns in the architecture of the cerebellum of the white leghorn (Gallus domesticus). Thesis, Leiden; 1983.

    Google Scholar 

  46. Altman J, Bayer SA. Embryonic development of the rat cerebellum. I Delineation of the cerebellar primordium and early cell movements. J Comp Neurol. 1985c;231:1–26.

    Article  CAS  PubMed  Google Scholar 

  47. Bourrat F, Sotelo C. Neuronal migration and dendritic maturation of medial cerebellar nucleus in rat embryos: an HRP in vitro study using cerebellar slabs. Brain Res. 1986;378:69–85.

    Article  CAS  PubMed  Google Scholar 

  48. Machold R, Fishell G. Math 1 is expressed in temporary discrete pools of cerebellar rhombic-lip neural progenitors. Neuron. 2005;48:17–24.

    Article  CAS  PubMed  Google Scholar 

  49. Wang VY, Szoghbi HY. Math 1 expression redefines the rhombic lip derivates and reveals novel lineages within the brainstem and cerebellum. Neuron. 2005:31–43.

    Google Scholar 

  50. Voogd J. The cerebellum of the cat. Thesis Leiden, Assen, van Gorcum; 1964.

    Google Scholar 

  51. Voogd J. The importance of fiber connections in the comparative anatomy of the mammalian cerebellum. In: Llinas R, editor. Neurobiology of cerebellar evolution and development. Chicago: AMA; 1969. p. 493–514.

    Google Scholar 

  52. Korneliusen HK. Cerebellar corticogenesis in cetacea, with special reference to regional variations. J Hirnforschung. 1967;9:151–85.

    Google Scholar 

  53. Korneliusen HK. On the ontogenetic development of the cerebellum (nuclei, fissures and cortex) of the rat, with special reference to regional variations in corticogenesis. J Hirnforschung. 1968:379–412.

    Google Scholar 

  54. Karam SD, Burrows RC, Logan C, Koblar S, Pasquale EB, Bothwell M. Eph receptors and ephrins in the developing chick cerebellum: relationship to sagittal patterning and granule cell migration. J Neurosci. 2000;20:6488–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lin JC, Cepko CL. Granule cell raphes and parasagittal domains of Purkinje cells: complementary patterns in developing chick cerebellum. J Neurosci. 1998;18:9342–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Redies C, Luckner R, Arndt K. Granule cell raphes in the cerebellar cortex of chicken and mouse. Brain Res Bull. 2002;57:341.

    Article  CAS  PubMed  Google Scholar 

  57. Karam SD, Kim YS, Rothwell M. Granule cells migrate within raphes in the developing cerebellum: an evolutionarily conserved event. J Comp Neurol. 2001;440:127–35.

    Article  CAS  PubMed  Google Scholar 

  58. Braun K, Schachner M, Schleich H, Heizmann CW. Cellular localization of the Ca2+-binding protein parvalbumin in the developing avian cerebellum. Cell Tissue Res. 1986;243:69–78.

    Article  CAS  Google Scholar 

  59. Langelaan JW. On the development of the external form of the human cerebellum. Brain. 1919;42:130–70.

    Article  Google Scholar 

  60. Hochstetter F. Beträg zur entwicklungsgeschichte des menschlichen Gehirns. Wien/Leipzig: Deuticke; 1929.

    Google Scholar 

  61. Kappel RM. The development of the cerebellum in Macaca mulatta. A study of regional differences during corticogenesis. Thesis Leiden; 1981.

    Google Scholar 

  62. Korneliussen HK. Comments on the cerebellum and its division. Brain Res. 1968;8:229–36.

    Article  CAS  PubMed  Google Scholar 

  63. Ekerot CF, Larson B. The dorsal spino-olivocerebellar system in the cat. II. Somatotopical organization. Exp Brain Res. 1979;36:219–32.

    Article  CAS  PubMed  Google Scholar 

  64. Redies C, Neudert F, Lin JC. Cadherins in cerebellar development: translation of embryonic patterning into mature functional compartmentalization. Cerebellum. 2011;10:393–408.

    Article  CAS  PubMed  Google Scholar 

  65. Arndt K, Redies C. Development of cadherin-defined parasagittal subdivisions in the embryonic chicken cerebellum. J Comp Neurol. 1998;401:367–81.

    Article  CAS  PubMed  Google Scholar 

  66. Neudert F, Nuernberger KK, Redies C. Comparative analysis of cadherein expression and connectivity patterns in the cerebellar system of ferret and mouse. J Comp Neurol. 2008;511:736–52.

    Article  CAS  PubMed  Google Scholar 

  67. Wassef M, Sotelo C. Asynchrony in the expression of guanosine 3′:5′-phosphate-dependent protein kinase by clusters of Purkinje cells during the perinatal development of rat cerebellum. Neuroscience. 1984;13:1217–41.

    Article  CAS  PubMed  Google Scholar 

  68. Wassef M, Zanetta JP, Breher A, Sotelo C. Transient biochemical compartmentalization of Purkinje cells during early cerebellar development. Dev Biol. 1985;111:129–37.

    Article  CAS  PubMed  Google Scholar 

  69. Hawkes R, Leclerc N. Antigenic map of the rat cerebellar cortex: the distribution of parasagittal bands as revealed by monoclonal anti-Purkinje cell antibody mapQ113. J Comp Neurol. 1987;256:29–41.

    Article  CAS  PubMed  Google Scholar 

  70. Brochu G, Maler L, Hawkes R. Zebrin II: a polypeptide antigen expressed selectively by Purkinje cells reveals compartments in rat and fish cerebellum. J Comp Neurol. 1990;291:538–52.

    Article  CAS  PubMed  Google Scholar 

  71. Ahn AH, Dziennis S, Hawkes R, Herrup K. The cloning of zebrin II reveals its identity with aldolase C. Development. 1994;120:2081–90.

    Article  CAS  PubMed  Google Scholar 

  72. Leclerc N, Gravel C, Hawkes R. Development of parasagittal zonation in the rat cerebellar cortex: MabQ113 antigenic bands are created postnatally by the suppression of antigen expression in a subset of Purkinje cells. J Comp Neurol. 1988;273:399–420.

    Article  CAS  PubMed  Google Scholar 

  73. Armstrong CL, Hawkes R. Pattern formation in the cerebellar cortex. Biochem Cell Biol. 2000;78:551–62.

    Article  CAS  PubMed  Google Scholar 

  74. Larouche M, Che PM, Hawkes R. Neurogranin expression identifies a novel array of Purkinje cell parasagittal stripes during mouse cerebellar development. J Comp Neurol. 2006;494:215–27.

    Article  CAS  PubMed  Google Scholar 

  75. Voogd J, Pardoe J, Ruigrok TJ, Apps R. The distribution of climbing and mossy fiber collateral branches from the copula pyramidis and the paramedian lobule: congruence of climbing fiber cortical zones and the pattern of zebrin banding within the rat cerebellum. J Neurosci. 2003;23:4645–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Voogd J, Ruigrok TJ. The organization of the corticonuclear and olivocerebellar climbing fiber projections to the rat cerebellar vermis: the congruence of projection zones and the zebrin pattern. J Neurocytol. 2004;33:5–21.

    Article  PubMed  Google Scholar 

  77. Sugihara I, Shinoda Y. Molecular, topographic, and functional organization of the cerebellar cortex: a study with combined aldolase C and olivocerebellar labeling. J Neurosci. 2004;24:8771–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Feirabend HKP, van Lusemburg EA, van Denderen-van Dorp H, Voogd J. A 3H thymidine autoradiographic study of the development of the cerebellum of the white leghorn (Gallus domesticus): evidence for longitudinal neuroblast generation patterns. Acta Morph Neerl Scand. 1985;23:115–26.

    CAS  Google Scholar 

  79. Hashimoto M, Mikishiba K. Mediolateral compartmentation of the cerebellum is determined on the “birth date” of Purkinje cells. J Neurosci. 2003;23:11342–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Namba K, Sugihara I, Hashimoto M. Close correlation between the birth date of Purkinje cells and the longitudinal compartmentalization of the mouse adult cerebellum. J Comp Neurol. 2011;519:2594–614.

    Article  PubMed  Google Scholar 

  81. Fujita H, Morita N, Furuichi T, Sugihara I. Clustered fine compartmentalization of the mouse cerebellar cortex and its rearrangement into the postnatal striped configuration. J Neurosci. 2012;32:15688–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Flechsig P. Die Leitungsbahnen im Gehirn und Rückenmark auf Grund Entwicklungsgeschictlicher Untersuchungen dargestellt. Leipzig; 1876.

    Google Scholar 

  83. Darkschewitsch L, Freud S. Ueber die Beziehung des Strickkörpers zum Hinterstrang und Hinterstrangskern nebst Bemerkungen ueber zwei Felden der Onblongata. Neurol Zentralbl. 1886;5:121–9.

    Google Scholar 

  84. De Sanctis S. Untersuchungen über den Bau der Markscheidenentwicklung des menschlichen Kleinhirns. Monatsch Psychiatr Neurol. 1898;4:237–46.

    Article  Google Scholar 

  85. Bechterew WV. Die Leitungsbahnen im Gehirn und Rückenmark. Leipzig: Arthur Georgi; 1899.

    Book  Google Scholar 

  86. Tello JF. Histogenése du cervelet et ses voies cehz la souris blanche. Trab del Inst Cajal de invest Biol. 1940;32:1–72.

    Google Scholar 

  87. Morris RJ, Beech JN, Heizmann CW. Two distinct phases and mechanisms of axonal growth shown in primary vestibular fibers in the brain demonstrated by parvalbumin immunohistochemistry. Neuroscience. 1988;27:571–96.

    Article  CAS  PubMed  Google Scholar 

  88. Maklad A, Fritsch B. Partial separation of posterior crista and saccular fibers to the nodulus and uvula of the cerebellum in mice, and its development. Dev Brain Res. 2003;140:223–36.

    Article  CAS  Google Scholar 

  89. Vielvoye GJ. Spinocerebellar tracts in the white leghorn (Gallus domesticus), Thesis Leiden; 1977.

    Google Scholar 

  90. Lakke EA, Guldemond JM, Voogd J. The ontogeny of the spinocerebellar projection in the chicken. A study using WGA HRP as a tracer. Acta Histochem Suppl. 1986;27:47–51.

    Google Scholar 

  91. Okado N, Yoshimoto M, Furber SE. Pathway formation and the terminal distribution pattern of the spinocerebellar projection in the chick embryo. Anat Embryol (Berl). 1987;176:165–74.

    Article  CAS  PubMed  Google Scholar 

  92. Grishkat HL, Eisenman LM. Development of the spinocerebellar projection in the prenatal mouse. J Comp Neurol. 1995;363:93–108.

    Article  CAS  PubMed  Google Scholar 

  93. Arsénio Nunes ML, Sotelo C. The development of the spinocerebellar system in the postnatal rat. J Comp Neurol. 1985;237:291–306.

    Article  PubMed  Google Scholar 

  94. Ji Z, Hawkes R. Topography of Purkinje cell compartments and mossy fiber terminal fields in lobules II and III of the rat cerebellar cortex: spinocerebellar and cuneocerebellar projections. Neuroscience. 1994;61:935–54.

    Article  CAS  PubMed  Google Scholar 

  95. Ji Z, Hawkes R. Partial ablation of the neonatal external granular layer disrupts mossy fiber topography in the adult rat cerebellum. J Comp Neurol. 1996;371:578–88.

    Article  CAS  PubMed  Google Scholar 

  96. Bechterew, W.v. Zur Anatomie der Schenkel des Kleinhirns insb. der Brückenarme. Neurol Centralbl. 1885;4:121–5.

    Google Scholar 

  97. Tolbert DL, Panneton WM. Transient cerebrocerebellar projections in kittens: postnatal development and topography. J Comp Neurol. 1983;221:216–28.

    Article  CAS  PubMed  Google Scholar 

  98. Pitman T, Tolbert DL. Organization of transient projections from the primary somatosensory cortex to the cerebellar nuclei in kittens. Anat Embryol (Berl). 1988;178:441–7.

    Article  Google Scholar 

  99. Tolbert DL. Somatotopically organized transient projections from the primary somatosensory cortex to the cerebellar cortex. Dev Brain Res. 1989;45:113–27.

    Article  CAS  Google Scholar 

  100. Distel H, Holländer H. Autoradiographic tracing of developing subcortical projections of the occipital region in fetal rabbits. J Comp Neurol. 1980;192:505–18.

    Article  CAS  PubMed  Google Scholar 

  101. Groenewegen HJ, Voogd J. The parasagittal zonation within the olivocerebellar projection. I. Climbing fiber distribution in the vermis of cat cerebellum. J Comp Neurol. 1977;174:417–88.

    Article  CAS  PubMed  Google Scholar 

  102. Chédotal A, Sotelo C. Early development of olivocerebellar projections in the fetal rat using CGRP immunohistochemistry. Eur J Neurosci. 1992;4:1159–79.

    Article  PubMed  Google Scholar 

  103. Wassef M, Chedotal A, Cholley B, Thomasset M, Heizmann CW, Sotelo C. Development of the olivocerebellar projection in the rat: I. Transient biochmical compartmentation of the inferior olive. J Comp Neurol. 1992a;323:519–36.

    Article  CAS  PubMed  Google Scholar 

  104. Wassef M, Cholley B, Heizmann CW, Sotelo C. Development of the olivocerebellar projection in the rat: II. Matching of the developmental compartments of the cerebellum and inferior olive through the projection map. J Comp Neurol. 1992b;323:537–50.

    Article  CAS  PubMed  Google Scholar 

  105. Paradies MA, Grishkat HL, Smeyne RJ, Oberdick J, Morgan JI, Eisenman LM. Correspondence between L7-LacZ-expressing Purkinje cells and labeled olivocerebellar fibers during late embryogenesis in the mouse. J Comp Neurol. 1996;374:451–66.

    Article  CAS  PubMed  Google Scholar 

  106. Chédotal A, Pourquié O, Ezan F, San Clemente H, Sotelo C. BEN as a presumptive target recognition molecule during the development of the olivocerebellar system. J Neurosci. 1996;16:3296–310.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Pourquié O, Hallonet MR, Le Douarin NM. Association of BEN glycoprotein expression with climbing fiber axogenesis in the avian cerebellum. J Neurosci. 1992;12:1548–57.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Chédotal A, Bloch-Gallego E, Sotelo C. The embryonic cerebellum contains topographic clues that guide developing inferior olivary axons. Development. 1997;124:861–70.

    Article  PubMed  Google Scholar 

  109. Nishida K, Flanagan JG, Nakamoto M. Domain-specific olivocerebellar projection regulated by the EphA-ephrin-A interaction. Development. 2002;129:5647–58.

    Article  CAS  PubMed  Google Scholar 

  110. Cholley B, Wassef M, Arsénio-Nunes L, Sotelo C. Proximal trajectory of the brachium conjunctivum in rat fetuses and its early association with the parabrachial nucleus. A study combining in vitro HRP anterograde tracing and immunochemistry. Brain Res Dev Brain Res. 1989;45:185–202.

    Article  CAS  PubMed  Google Scholar 

  111. Voogd J, van Baarsen K. Th horseshoe-shaped commissure of Wernekinck or the decussation of the brachium conjunctivum. Methodological changes in the 1840s. Cerebellum. 2014;13:113–20.

    Article  PubMed  Google Scholar 

  112. Kuithan W. Die Entwicklung des Kleinhirns bei Säugetieren, Münchener medizinische Abhandlungen; 1895.

    Google Scholar 

  113. Smith GE. The primary subdivision of the mammalian cerebellum. J Anat Physiol. 1902;36:381–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Stroud BB. The mammalian cerebellum. J Comp Neurol. 1895;5:71–118.

    Article  Google Scholar 

  115. Bolk L. Das Cerebellum der Säugetiere. Haarlem: Fischer; 1906.

    Google Scholar 

  116. Bolk L. Over de ontwikkeling van het cerebellum bij den mensch (About the development of the human cerebelklum). Verslagen Kon Acad Amsterdam. 1905; 635–41.

    Google Scholar 

  117. Bradley OC. On the development and homology of the mammalian cerebellar fissures. J Anat Physiol. 1903;37(112–130):221–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Bradley OC. The mammalian cerebellum: its lobes and fissures. J Anat Physiol. 1904;38:448–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Larsell O. Cerebellum and corpus pontobulbare of the bat (Myotis). J Comp Neurol. 1936;64:299–345.

    Article  Google Scholar 

  120. Larsell O. The development and subdivisions of the cerebellum of birds. J Comp Neurol. 1948;98:123–82.

    Article  Google Scholar 

  121. Larsell O. The morphogenesis and adult pattern of the lobules and tissues of the cerebellum of the white rat. J Comp Neurol. 1952;97:281–356.

    Article  CAS  PubMed  Google Scholar 

  122. Saetersdal TAS. On the ontogenesis of the avian cerebellum. Part III. Formation of fissures with a discussion of fissure homologies between the avian and mammalian cerebellum. Universitetet i Bergen Arbok. Naturvitenskapelig rekke. 1959;3:5–44.

    Google Scholar 

  123. Nieuwenhuys R, Voogd J, van Huijzen C. The human central nervous system. 4th ed. Heidelberg/New York: Springer; 2008.

    Book  Google Scholar 

  124. Golgowitz D, Hamre K. The cells and molecules that make a cerebellum. TINS. 1998;21:375–82.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Voogd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Voogd, J. (2023). The Development of the Cerebellum: From the Beginnings. In: Marzban, H. (eds) Development of the Cerebellum from Molecular Aspects to Diseases. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-031-23104-9_1

Download citation

Publish with us

Policies and ethics