Skip to main content

Sourdough and Gluten-Free Products

Abstract

Celiac disease is one of the most common food intolerances, with an incidence of 1 in every 100 people worldwide, a number that is expected to rise [1]. Meta-analysis of the incidence of celiac disease worldwide over the past number of decades has reported a 7.5% increase in the prevalence of gluten sensitivity among both men and women, with a higher detection rate identified in women [2]. Lifelong avoidance of gluten-containing cereals and related products is the only effective treatment for people who suffer from celiac disease. Foods that are not allowed in the gluten-free (GF) diet are all the gluten-containing products prepared from barley, Kamut, oat, wheat and their derivates, in which the gluten content exceeds 20 mg/kg on a total basis [3]. As consumer demand for GF products is rising, food technologists and manufacturers are called upon to satisfy the increasing demand [4]. In particular, people who suffer from celiac disease and those who are allergic to gluten ask for high-quality GF products, with the same textural, sensorial, and nutritional properties as their gluten-containing counterparts [5, 6]. Nonetheless, the replacement of gluten with gluten-free ingredients in conventional products, primarily bread and pasta, constitutes a major technological challenge for the food industry. Gluten represents the structure-forming protein in the flour, and it is responsible for the unique viscoelastic properties (extensibility, resistance to deformation, mixing tolerance, and gas-holding capacity) of the dough [7]. The proteins present in GF flours do not possess these fundamental structural features, and, upon mixing, a weak batter, resembling a cake dough, is obtained [8]. Because of the impaired rheological properties of the GF batters in comparison to conventional doughs, most of the GF products available on the market are characterized by overall low quality, lacking flavor and showing poor textural characteristics and mouthfeel [5, 9]. Furthermore, as GF products are mainly made from starch and are generally not fortified [10], their contribution in terms of different nutrients, such as folate, B vitamins, minerals including iron and dietary fiber, is poor [11, 12].

Keywords

  • Lactic acid bacterium
  • Celiac disease
  • Phytic acid
  • Celiac patient
  • Lactic acid bacterium species

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Catassi C, Fasano A (2008) Celiac disease. In: Arendt EK, Dal Bello F (eds) Gluten-free cereals products and beverages. Academic Press (Elsevier), London, pp 1–22

    Google Scholar 

  2. King JA, Jeong J, Underwood FE, Quan J, Panaccione N et al (2020) Incidence of celiac disease is increasing over time. Am J Gastroenterol 4:507–525

    CrossRef  Google Scholar 

  3. Deutsch H (2009) Gluten-free diet and food legislation. In: Arendt EK, Dal Bello F (eds) The science of gluten free foods and beverages. AACC International, St Paul

    Google Scholar 

  4. Bogue J, Sorenson D (2008) The marketing of gluten free products. In: Arendt EK, Dal Bello F (eds) Gluten free cereal products and beverages. Academic Press (Elsevier), London, pp 393–408

    CrossRef  Google Scholar 

  5. Gallagher E, Gormley TR, Arendt EK (2004) Recent advances in the formulation of gluten-free cereal-based products. Trends Food Sci Technol 15:143–152

    CrossRef  CAS  Google Scholar 

  6. Moroni AV, Dal Bello F, Arendt EK (2009) Sourdough in gluten-free bread-making: an ancient technology to solve a novel issue? Food Microbiol 26:676–684

    CrossRef  CAS  PubMed  Google Scholar 

  7. Don C, Lichtendonk WJ, Plijter JJ, Hamer RJ (2003) Glutenin macropolymer: a gel formed by glutenin particles. J Cereal Sci 37:1–7

    CrossRef  CAS  Google Scholar 

  8. Arendt EK, Morrissey A, Moore MM, Dal Bello F (2008) Gluten-free breads. In: Arendt EK, Dal Bello F (eds) Gluten-free cereal products and beverages. Academic Press (Elsevier), London, pp 289–319

    CrossRef  Google Scholar 

  9. Gallagher E, Gormley TR, Arendt EK (2003) Crust and crumb characteristics of gluten free breads. J Food Eng 56:153–161

    CrossRef  Google Scholar 

  10. Ahlborn GJ, Pike OA, Hendrix SB, Hess WM, Huber CS (2005) Sensory, mechanical, and microscopic evaluation of staling in low-protein and gluten-free breads. Cereal Chem 82:328–335

    CrossRef  CAS  Google Scholar 

  11. Thompson T (2000) Folate, iron, and dietary fiber contents of the gluten-free diet. J Am Diet Assoc 100:1389–1396

    CrossRef  CAS  PubMed  Google Scholar 

  12. Yazynina E, Johansson M, Jägerstad M, Jastrebova J (2008) Low folate content in gluten-free cereal products and their main ingredients. Food Chem 111:236–242

    CrossRef  CAS  Google Scholar 

  13. Alvarez-Jubete L, Holse M, Hansen A, Arendt EK, Gallagher E (2009) Impact of baking on vitamin E content of pseudocereals amaranth, quinoa, and buckwheat. Cereal Chem 86:511–515

    CrossRef  CAS  Google Scholar 

  14. Kiskini A, Argiri K, Kalogeropoulos M, Komaitis M, Kostaropoulos A, Mandala I, Kapsokefalou M (2007) Sensory characteristics and iron dialyzability of gluten-free bread fortified with iron. Food Chem 102:309–316

    CrossRef  CAS  Google Scholar 

  15. Moore MM, Schober TJ, Dockery P, Arendt EK (2004) Textural comparisons of gluten-free and wheat-based doughs, batters, and breads. Cereal Chem 81:567

    CrossRef  CAS  Google Scholar 

  16. Alvarez-Jubete L, Arendt EK, Gallagher E (2010) Nutritive value of pseudocereals and their increasing use as functional gluten-free ingredients. Trends Food Sci Technol 21:106–113

    CrossRef  CAS  Google Scholar 

  17. Schoenlechner R, Siebenhandl S, Berghofer E (2008) Pseudocereals. In: Arendt EK, Dal Bello F (eds) Gluten-free cereal products and beverages. Academic Press (Elsevier), London

    Google Scholar 

  18. Foschia M, Horstmann SW, Arendt EK, Zannini E (2017) Legumes as functional ingredients in gluten-free bakery and pasta products. Annu Rev Food Sci Technol:75–96

    Google Scholar 

  19. Alvarez-Jubete L, Auty M, Arendt E, Gallagher E (2010) Baking properties and microstructure of pseudocereal flours in gluten-free bread formulations. Eur Food Res Technol 230:437–445

    CrossRef  CAS  Google Scholar 

  20. Mariotti M, Lucisano M, Pagani A, Ng MPKW (2009) The role of corn starch, amaranth flour, pea isolate, and Psyllium flour on the rheological properties and the ultrastructure of gluten-free doughs. Food Res Int 42:963–975

    CrossRef  CAS  Google Scholar 

  21. Hassan NMM, Sayed HS, Sakr AM (2016) Effect of pseudo cereal flours on technological, chemical and sensory properties of pan bread. World J Dairy Food Sci 1:10–17

    Google Scholar 

  22. Foschia M, Horstmann S, Arendt EK, Zannini E (2016) Nutritional therapy—facing the gap between coeliac disease and gluten-free food. Int J Food Microbiol:113–124

    Google Scholar 

  23. Sciarini LS, Ribotta PD, León AE, Pérez GT (2010) Influence of gluten-free flours and their mixtures on batter properties and bread quality. Food Bioproc Tech 4:577–585

    CrossRef  Google Scholar 

  24. Korus J, Grzelak K, Achremowicz K, Sabat R (2006) Influence of prebiotic additions on the quality of gluten-free bread and on the content of inulin and fructooligosaccharides. Food Sci Technol Int 12:489–495

    CrossRef  CAS  Google Scholar 

  25. Capriles VD, Arêas JAG (2013) Effects of prebiotic inulin-type fructans on structure, quality, sensory acceptance and glycemic response of gluten-free breads. Food Funct 1:104–110

    CrossRef  Google Scholar 

  26. Hüttner EK, Dal Bello FD, Arendt EK (2010) Rheological properties and bread making performance of commercial wholegrain oat flours. J Cereal Sci 62:65–71

    CrossRef  Google Scholar 

  27. Horstmann SW, Lynch KM, Arendt EK (2017) Starch characteristics linked to gluten-free products. Foods 4:1–21

    Google Scholar 

  28. Horstmann SW, Belz MCE, Heitmann M, Zannini E, Arendt EK (2016) Fundamental study on the impact of gluten-free starches on the quality of gluten-free model breads. Foods 2:1–12

    Google Scholar 

  29. BeMiller JN (2008) Hydrocolloids. In: Arendt EK, Dal Bello F (eds) Gluten-free cereal products and beverages. Academic Press (Elsevier), London, pp 203–215

    CrossRef  Google Scholar 

  30. Lazaridou A, Duta D, Papageorgiou M, Belc N, Biliaderis CG (2007) Effects of hydrocolloids on dough rheology and bread quality parameters in gluten-free formulations. J Food Eng 79:1033–1047

    CrossRef  CAS  Google Scholar 

  31. Gujural HS, Rosell CM (2004) Improvement of the breadmaking quality of rice flour by glucose oxidase. Food Res Int 37:75–81

    CrossRef  Google Scholar 

  32. McCarthy DF, Gallagher E, Gormley TR, Schober TJ, Arendt EK (2005) Application of response surface methodology in the development of gluten-free bread. Cereal Chem 82:609–615

    CrossRef  CAS  Google Scholar 

  33. Naji-Tabasi S, Mohebbi M (2015) Evaluation of cress seed gum and xanthan gum effect on macrostructure properties of gluten-free bread by image processing. J Food Meas Charact 1:110–119

    CrossRef  Google Scholar 

  34. Demirkesen I, Kelkar S, Campanella OH, Sumnu G, Sahin S et al (2014) Characterization of structure of gluten-free breads by using X-ray microtomography. Food Hydrocoll:37–44

    Google Scholar 

  35. Horstmann SW, Axel C, Arendt EK (2018) Water absorption as a prediction tool for the application of hydrocolloids in potato starch-based bread. Food Hydrocoll:129–138

    Google Scholar 

  36. Schober TJ, Messerschmidt M, Bean SR, Park S-H, Arendt EK (2005) Gluten-free bread from sorghum: quality differences among hybrids. Cereal Chem 82:394–404

    CrossRef  CAS  Google Scholar 

  37. Gallagher E, Kunkel A, Gormley TR, Arendt EK (2003) The effect of dairy and rice powder addition on loaf and crumb characteristics, and on shelf life (intermediate and long-term) of gluten-free breads stored in a modified atmosphere. Eur Food Res Technol 218:44–48

    CrossRef  CAS  Google Scholar 

  38. Nunes M, Ryan L, Arendt E (2009) Effect of low lactose dairy powder addition on the properties of gluten-free batters and bread quality. Eur Food Res Technol 229:31–41

    CrossRef  CAS  Google Scholar 

  39. Krupa-Kozak U, Bączek N, Rosell C (2013) Application of dairy proteins as technological and nutritional improvers of calcium-supplemented gluten-free bread. Nutrients 11:4503–4520

    CrossRef  Google Scholar 

  40. Ogunsakin OA, Banwo K, Ogunremi OR, Sanni AI (2015) Microbiological and physicochemical properties of sourdough bread from sorghum flour. Int Food Res J 6:2610–2618

    Google Scholar 

  41. Ojetti V, Nucera G, Migneco A, Gabrielli M, Lauritano C, Danese S, Assunta Zocco MA, Nista EC, Cammarota G, de Lorenzo A, Gasbarrini G, Gasbarrini A (2005) High prevalence of celiac disease in patients with lactose intolerance. Digestion 71:106–110

    CrossRef  PubMed  Google Scholar 

  42. Gujral HS, Guardiola I, Carbonell JV, Rosell CM (2003) Effect of cyclodextrinase on dough rheology and bread quality from rice flour. J Agric Food Chem 51:3814–3818

    CrossRef  CAS  PubMed  Google Scholar 

  43. Renzetti S, Courtin CM, Delcour JA, Arendt EK (2010) Oxidative and proteolytic enzyme preparations as promising improvers for oat bread formulations: rheological, biochemical and microstructural background. Food Chem 119:1465–1473

    CrossRef  CAS  Google Scholar 

  44. Renzetti S, Arendt EK (2009) Effect of protease treatment on the baking quality of brown rice bread: from textural and rheological properties to biochemistry and microstructure. J Cereal Sci 48:33–45

    CrossRef  Google Scholar 

  45. Gujral HS, Rosell CM (2004) Improvement of the breadmaking quality of rice flour by glucose oxidase. Food Res Int 37:75–81

    CrossRef  CAS  Google Scholar 

  46. Renzetti S, Dal BF, Arendt EK (2008) Microstructure, fundamental rheology and baking characteristics of batters and breads from different gluten-free flours treated with a microbial transglutaminase. J Cereal Sci 48:33–45

    CrossRef  CAS  Google Scholar 

  47. De Vuyst L, Vancanneyt M (2007) Biodiversity and identification of sourdough lactic acid bacteria. Food Microbiol 24:120–127

    CrossRef  PubMed  Google Scholar 

  48. Hammes WP, Brandt MJ, Francis KL, Rosenheim J, Seitter MFH, Vogelmann SA (2005) Microbial ecology of cereal fermentations. Trends Food Sci Technol 16:4–11

    CrossRef  CAS  Google Scholar 

  49. Gänzle MG, Vermeulen N, Vogel RF (2007) Carbohydrate, peptide and lipid metabolism of lactic acid bacteria in sourdough. Food Microbiol 24:128–138

    CrossRef  PubMed  Google Scholar 

  50. Poutanen K, Flander L, Katina K (2009) Sourdough and cereal fermentation in a nutritional perspective. Food Microbiol 26:693–699

    CrossRef  CAS  PubMed  Google Scholar 

  51. Ryan LAM, Dal BF, Arendt EK (2008) The use of sourdough fermented by antifungal LAB to reduce the amount of calcium propionate in bread. Int J Food Microbiol 125:274–278

    CrossRef  CAS  PubMed  Google Scholar 

  52. Arendt EK, Ryan LAM, Dal Bello F (2007) Impact of sourdough on the texture of bread. Food Microbiol 24:165–174

    CrossRef  CAS  PubMed  Google Scholar 

  53. Galle S, Schwab C, Arendt E, Gänzle M (2010) Exopolysaccharide-forming Weissella strains as starter cultures for sorghum and wheat sourdoughs. J Agric Food Chem 58:5834–5841

    CrossRef  CAS  PubMed  Google Scholar 

  54. Houben A, Goetz H, Mitzscherling M, Becker T (2010) Modification of the rheological behaviour of Amaranth (Amaranthus hypochondriacus) dough. J Cereal Sci 51:350–356

    CrossRef  Google Scholar 

  55. Meroth CB, Hammes WP, Hertel C (2004) Characterisation of the microbiota of rice sourdoughs and description of Lactobacillus spicheri sp. nov. Syst Appl Microbiol 27:151–159

    CrossRef  CAS  PubMed  Google Scholar 

  56. Moore M, Dal BF, Arendt E (2008) Sourdough fermented by Lactobacillus plantarum FST 1.7 improves the quality and shelf life of gluten-free bread. Eur Food Res Technol 226:1309–1316

    CrossRef  CAS  Google Scholar 

  57. Moore MM, Juga B, Schober TJ, Arendt EK (2007) Effect of lactic acid bacteria on properties of gluten-free sourdoughs, batters, and quality and ultrastructure of gluten-free bread. Cereal Chem 84:357–364

    CrossRef  CAS  Google Scholar 

  58. Moroni AV, Arendt EK, Dal Bello F (2010a) Biodiversity of lactic acid bacteria and yeasts in spontaneously fermented buckwheat and teff sourdoughs. Food Microbiol 28:497–502

    CrossRef  PubMed  Google Scholar 

  59. Moroni AV, Arendt EK, Morrissey JP, Dal Bello F (2010b) Development of buckwheat and teff sourdoughs with the use of commercial starters. Int J Food Microbiol 142:142–148

    CrossRef  CAS  PubMed  Google Scholar 

  60. Schober TJ, Bean SR, Boyle DL (2007) Gluten-free sorghum bread improved by sourdough fermentation: biochemical, rheological, and microstructural background. J Agric Food Chem 55:5137–5146

    CrossRef  CAS  PubMed  Google Scholar 

  61. Sterr Y, Weiss A, Schmidt H (2009) Evaluation of lactic acid bacteria for sourdough fermentation of amaranth. Int J Food Microbiol 136:75–82

    CrossRef  CAS  PubMed  Google Scholar 

  62. Vogelmann SA, Seitter M, Singer U, Brandt MJ, Hertel C (2009) Adaptability of lactic acid bacteria and yeasts to sourdoughs prepared from cereals, pseudocereals and cassava and use of competitive strains as starters. Int J Food Microbiol 130:205–212

    CrossRef  CAS  PubMed  Google Scholar 

  63. Weiss A, Bertsch D, Struett S, Sterr Y, Schmidt H (2009) Isolierung und Charakterisierung potentieller Starterkulturen aus Amaranth-, Buchweizen-und Hirse-Sauerteigen. Getreidetechnologie 63:68–75

    CAS  Google Scholar 

  64. Schwab C, Mastrangelo M, Corsetti A, Gänzle M (2008) Formation of oligosaccharides and polysaccharides by Lactobacillus reuteri LTH5448 and Weissella cibaria 10M in sorghum sourdoughs. Cereal Chem 85:679–684

    CrossRef  CAS  Google Scholar 

  65. Coda R, Varis J, Verni M, Rizzello CG, Katina K (2017) Improvement of the protein quality of wheat bread through faba bean sourdough addition. LWT- Food Sci Technol:296–302

    Google Scholar 

  66. Bartkiene E, Juodeikiene G, Vidmantiene D, Viskelis P, Urbonaviciene D (2011) Nutritional and quality aspects of wheat sourdough bread using L. luteus and L. angustifolius flours fermented by Pedioccocus acidilactici. Int J Food Sci Technol 8:1724–1733

    CrossRef  Google Scholar 

  67. Gänzle MG, Schieber A, Svensson L, Teixeira J, McNeill V (2010) Formation and modification of bioactive compounds in gluten free sourdoughs. In: Second international symposium on gluten-free cereal products and beverages, Tampere, pp 89–90

    Google Scholar 

  68. Hamad SH, Böcker G, Vogel RD, Hammes WP (1992) Microbiological and chemical analysis of fermented sorghum dough for Kisra production. Appl Microbiol Biotechnol 37:728–731

    CrossRef  CAS  Google Scholar 

  69. Hamad SH, Dieng MC, Ehrmann MA, Vogel R (1997) Characterisation of the bacterial flora of Sudanese sorghum flour and sorghum sourdough. J Appl Microbiol 83:764–770

    CrossRef  CAS  PubMed  Google Scholar 

  70. Mohammed SI, Steenson LR, Kirleis AW (1991) Isolation and characterization of microorganisms associated with the traditional sorghum fermentation for production of Sudanese kisra. Appl Environ Microbiol 57:2529–2533

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gassem MAA (1999) Study of the micro-organisms associated with the fermented bread (khamir) produced from sorghum in Gizan region, Saudi Arabia. J Appl Microbiol 86:221–225

    CrossRef  CAS  PubMed  Google Scholar 

  72. Hayford AE, Petersen A, Vogensen FK, Jakobsen M (1999) Use of conserved randomly amplified polymorphic DNA (RAPD) fragments and RAPD pattern for characterization of Lactobacillus fermentum in Ghanaian fermented maize dough. Appl Environ Microbiol 65:3213–3221

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jespersen L, Halm M, Kpodo K, Jakobsen M (1994) Significance of yeasts and moulds occurring in maize dough fermentation for “kenkey” production. Int J Food Microbiol 24:239–248

    CrossRef  CAS  PubMed  Google Scholar 

  74. Olsen A, Halm M, Jakobsen M (1995) The antimicrobial activity of lactic acid bacteria from fermented maize (kenkey) and their interactions during fermentation. J Appl Bacteriol 79:506–512

    CrossRef  CAS  PubMed  Google Scholar 

  75. Ampe F, ben Omar N, Moizan C, Wacher C, Guyot JP (1999) Polyphasic study of the spatial distribution of microorganisms in Mexican pozol, a fermented maize dough, demonstrates the need for cultivation-independent methods to investigate traditional fermentations. Appl Environ Microbiol 65:5464–5473

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ben Omar N, Ampe F (2000) Microbial community dynamics during production of the Mexican fermented maize dough pozol. Appl Environ Microbiol 66:3664–3673

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  77. Escalante A, Wacher C, Farrés A (2001) Lactic acid bacterial diversity in the traditional Mexican fermented dough pozol as determined by 16S rDNA sequence analysis. Int J Food Microbiol 64:21–31

    CrossRef  CAS  PubMed  Google Scholar 

  78. Edema MO, Sanni AI (2008) Functional properties of selected starter cultures for sour maize bread. Food Microbiol 25:616–625

    CrossRef  CAS  PubMed  Google Scholar 

  79. Sanni AI, Onilude AA, Fatungase MO (1998) Production of sour-maize bread using starter-cultures. World J Microbiol Biotechnol 14:101–106

    CrossRef  Google Scholar 

  80. Ashenafi M (2006) A review on the microbiology of indigenous fermented food and beverages in Ethiopia. Ethiop J Microbiol Sci 5:189–245

    Google Scholar 

  81. De Vuyst L, Vrancken G, Ravyts F, Rimaux T, Weckx S (2009) Biodiversity, ecological determinants, and metabolic exploitation of sourdough microbiota. Food Microbiol 26:666–675

    CrossRef  PubMed  Google Scholar 

  82. Gänzle M, Schwab C (2009) Exploitation of the metabolic potential of lactic acid bacteria for improved quality of gluten-free bread. In: Arendt EK, Dal Bello F (eds) The science of gluten-free food and beverages. AACC International, St Paul

    Google Scholar 

  83. Meroth CB, Walter J, Hertel C, Brandt MJ, Hammes WP (2003) Monitoring the bacterial population dynamics in sourdough fermentation processes by using PCR-denaturing gradient gel electrophoresis. Appl Environ Microbiol 69:475–482

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  84. Meroth CB, Hammes WP, Hertel C (2003) Identification and population dynamics of yeasts in sourdough fermentation processes by PCR-denaturing gradient gel electrophoresis. Appl Environ Microbiol 69:7453–7461

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rosenquist H, Hansen A (2000) The microbial stability of two bakery sourdoughs made from conventionally and organically grown rye. Food Microbiol 17:241–250

    CrossRef  CAS  Google Scholar 

  86. Siragusa S, Di Cagno R, Ercolini D, Minervini F, Gobbetti M, De Angelis M (2009) Taxonomic structure and monitoring of the dominant population of lactic acid bacteria during wheat flour sourdough type I propagation using Lactobacillus sanfranciscensis starters. Appl Environ Microbiol 75:1099–1109

    CrossRef  CAS  PubMed  Google Scholar 

  87. Scheirlinck I, Van der Meulen R, Van Schoor A, Vancanneyt M, De Vuyst L, Vandamme P, Huys G (2008) Taxonomic structure and stability of the bacterial community in Belgian sourdough ecosystems as assessed by culture and population fingerprinting. Appl Environ Microbiol 74:2414–2423

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  88. Holzapfel WH (2002) Appropriate starter culture technologies for small-scale fermentation in developing countries. Int J Food Microbiol 75:197–212

    CrossRef  CAS  PubMed  Google Scholar 

  89. Gänzle MG, Loponen J, Gobbetti M (2008) Proteolysis in sourdough fermentations: mechanisms and potential for improved bread quality. Trends Food Sci Technol 19:513–521

    CrossRef  Google Scholar 

  90. Di Cagno R, De Angelis M, Lavermicocca P, De Vincenzi M, Giovannini C, Faccia M, Gobbetti M (2002) Proteolysis by sourdough lactic acid bacteria: effects on wheat flour protein fractions and gliadin peptides involved in human cereal intolerance. Appl Environ Microbiol 68:623–633

    CrossRef  PubMed  PubMed Central  Google Scholar 

  91. Thiele C, Gaenzle MG, Vogel RF (2003) Fluorescence labeling of wheat proteins for determination of gluten hydrolysis and depolymerization during dough processing and sourdough fermentation. J Agric Food Chem 51:2745–2752

    CrossRef  CAS  PubMed  Google Scholar 

  92. Gobbetti M, Simonetti MS, Rossi J, Cossignani L, Corsetti A, Damiani P (1994) Free D- and L-amino acid evolution during sourdough fermentation and baking. J Food Sci 59:881–884

    CrossRef  CAS  Google Scholar 

  93. Spicher G, Nierle W (1988) Proteolytic activity of sourdough bacteria. Appl Microbiol Biotechnol 28:487–492

    CrossRef  Google Scholar 

  94. Thiele C, Gänzle MG, Vogel RF (2002) Contribution of sourdough lactobacilli, yeast, and cereal enzymes to the generation of amino acids in dough relevant for bread flavor. Cereal Chem 79:45–51

    CrossRef  CAS  Google Scholar 

  95. Elkhalifa A, Bernhardt R, Bonomi F, Iametti S, Pagani M, Zardi M (2006) Fermentation modifies protein/protein and protein/starch interactions in sorghum dough. Eur Food Res Technol 222:559–564

    CrossRef  CAS  Google Scholar 

  96. Mugula JK, Nnko SAM, Narvhus JA, Sørhaug T (2003) Microbiological and fermentation characteristics of togwa, a Tanzanian fermented food. Int J Food Microbiol 80:187–199

    CrossRef  CAS  PubMed  Google Scholar 

  97. Kendall M, Schneider R, Cox PS, Hawkins CF (1972) Gluten subfractions in coeliac disease. Lancet 18:1065–1067

    CrossRef  Google Scholar 

  98. Wieser H, Vermeulen N, Gaertner F, Vogel R (2008) Effects of different Lactobacillus and Enterococcus strains and chemical acidification regarding degradation of gluten proteins during sourdough fermentation. Eur Food Res Technol 226:1495–1502

    CrossRef  CAS  Google Scholar 

  99. Di Cagno R, De Angelis M, Auricchio S, Greco L, Clarke C, De Vincenzi M, Giovannini C, D’Archivio M, Landolfo F, Parrilli G, Minervini F, Arendt E, Gobbetti M (2004) Sourdough bread made from wheat and nontoxic flours and started with selected lactobacilli is tolerated in celiac sprue patients. Appl Environ Microbiol 70:1088–1096

    CrossRef  PubMed  PubMed Central  Google Scholar 

  100. De Angelis M, Coda R, Silano M, Minervini F, Rizzello CG, Di Cagno R, Vicentini O, De Vincenzi M, Gobbetti M (2006) Fermentation by selected sourdough lactic acid bacteria to decrease coeliac intolerance to rye flour. J Cereal Sci 43:301–314

    CrossRef  Google Scholar 

  101. Rizzello CG, De Angelis M, Di Cagno R, Camarca A, Silano M, Losito I, De Vincenzi M, De Bari MD, Palmisano F, Maurano F, Gianfrani C, Gobbetti M (2007) Highly efficient gluten degradation by lactobacilli and fungal proteases during food processing: new perspectives for celiac disease. Appl Environ Microbiol 73:4499–4507

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  102. Giuliani GM, Benedusi A, Di Cagno R, De Angelis M, Luisi A, Gobbetti M (2006) Miscela di batteri lattici per la preparazione di prodotti da forno senza glutine, RM2006A000369#

    Google Scholar 

  103. Schober TJ, Bean SR, Boyle DL (2007) Gluten-free sorghum bread improved by sourdough fermentation: biochemical, rheological, and microstructural background. J Agric Food Chem 13:5137–5146

    CrossRef  Google Scholar 

  104. Carbó R, Gordún E, Fernández A, Ginovart M (2020) Elaboration of a spontaneous gluten-free sourdough with a mixture of amaranth, buckwheat, and quinoa flours analyzing microbial load, acidity, and pH. Food Sci Technol Int 4:344–352

    CrossRef  Google Scholar 

  105. Barman A, Marak CM, Mitra Barman R, Sangma CS (2019) Nutraceutical properties of legume seeds and their impact on human health. In: Legume seed nutraceutical research. IntechOpen

    Google Scholar 

  106. Pellegrini N, Agostoni C (2015) Nutritional aspects of gluten-free products. J Sci Food Agric 12:2380–2385

    CrossRef  Google Scholar 

  107. Yousif M, Safaa M (2014) Supplementation of gluten-free bread with some germinated legumes flour. J Am Sci 3:84–93

    Google Scholar 

  108. Olojede AO, Sanni AI, Banwo K (2020) Effect of legume addition on the physiochemical and sensorial attributes of sorghum-based sourdough bread. LWT:108769

    Google Scholar 

  109. Hoehnel A, Bez J, Sahin AW, Coffey A, Arendt EK et al (2020) Leuconostoc citreum TR116 as a microbial cell factory to functionalise high-protein Faba Bean ingredients for bakery applications. Foods 11:1706

    CrossRef  Google Scholar 

  110. Miñarro B, Albanell E, Aguilar N, Guamis B, Capellas M (2012) Effect of legume flours on baking characteristics of gluten-free bread. J Cereal Sci 2:476–481

    CrossRef  Google Scholar 

  111. Coda R, Rizzello CG, Gobbetti M (2010) Use of sourdough fermentation and pseudo-cereals and leguminous flours for the making of a functional bread enriched of γ-aminobutyric acid (GABA). Int J Food Microbiol 2-3:236–245

    CrossRef  Google Scholar 

  112. Curiel JA, Coda R, Centomani I, Summo C, Gobbetti M et al (2015) Exploitation of the nutritional and functional characteristics of traditional Italian legumes: the potential of sourdough fermentation. Int J Food Microbiol:51–61

    Google Scholar 

  113. Gobbetti M, De Angelis M, Di Cagno R, Calasso M, Archetti G et al (2019) Novel insights on the functional/nutritional features of the sourdough fermentation. Int J Food Microbiol 2018:103–113

    CrossRef  Google Scholar 

  114. Canavan C, West J, Card T (2014) The epidemiology of irritable bowel syndrome. Clin Epidemiol 1:71–80

    Google Scholar 

  115. Staudacher HM, Whelan K (2017) The low FODMAP diet: recent advances in understanding its mechanisms and efficacy in IBS. Gut 8:1517–1527

    CrossRef  Google Scholar 

  116. Magge S, Lembo A (2012) Low-FODMAP diet for treatment of irritable bowel syndrome. Gastroenterol Hepatol 11:739–745

    Google Scholar 

  117. Ispiryan L, Zannini E, Arendt EK (2020) Characterization of the FODMAP-profile in cereal-product ingredients. J Cereal Sci:102916

    Google Scholar 

  118. Menezes LAA, Minervini F, Filannino P, Sardaro MLS, Gatti M et al (2018) Effects of sourdough on FODMAPs in bread and potential outcomes on irritable bowel syndrome patients and healthy subjects. Front Microbiol:1972

    Google Scholar 

  119. Loponen J, Gänzle MG (2018) Use of sourdough in low FODMAP baking. Foods 7

    Google Scholar 

  120. Struyf N, Laurent J, Verspreet J, Verstrepen KJ, Courtin CM (2017) Saccharomyces cerevisiae and kluyveromyces marxianus cocultures allow reduction of fermentable oligo-, Di-, and monosaccharides and polyols levels in whole wheat bread. J Agric Food Chem 39:8704–8713

    CrossRef  Google Scholar 

  121. Struyf N, Vandewiele H, Herrera-Malaver B, Verspreet J, Verstrepen KJ et al (2018) Kluyveromyces marxianus yeast enables the production of low FODMAP whole wheat breads. Food Microbiol:135–145

    Google Scholar 

  122. Li Q, Loponen J, Gänzle MG (2020) Characterization of the extracellular Fructanase FruA in Lactobacillus crispatus and its contribution to Fructan hydrolysis in breadmaking. J Agric Food Chem 68(32):8637–8647

    CrossRef  CAS  PubMed  Google Scholar 

  123. Acín Albiac M, Di Cagno R, Filannino P, Cantatore V, Gobbetti M (2020) How fructophilic lactic acid bacteria may reduce the FODMAPs content in wheat-derived baked goods: a proof of concept. Microb Cell Fact 1:182

    CrossRef  Google Scholar 

  124. Muir JG, Varney JE, Ajamian M, Gibson PR (2019) Gluten-free and low-FODMAP sourdoughs for patients with coeliac disease and irritable bowel syndrome: a clinical perspective. Int J Food Microbiol 2018:237–246

    CrossRef  Google Scholar 

  125. De Vuyst L, Degeest B (1999) Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol Rev 23:153–177

    CrossRef  PubMed  Google Scholar 

  126. Tieking M, Gänzle MG (2005) Exopolysaccharides from cereal-associated lactobacilli. Trends Food Sci Technol 16:79–84

    CrossRef  CAS  Google Scholar 

  127. Di Cagno R, De Angelis M, Limitone A, Minervini F, Carnevali P, Corsetti A, Gaenzle M, Ciati R, Gobbetti M (2006) Glucan and fructan production by sourdough Weissella cibaria and Lactobacillus plantarum. J Agric Food Chem 54:9873–9881

    CrossRef  PubMed  Google Scholar 

  128. Lacaze G, Wick M, Cappelle S (2007) Emerging fermentation technologies: development of novel sourdoughs. Food Microbiol 24:155–160

    CrossRef  CAS  PubMed  Google Scholar 

  129. Korakli M, Pavlovic M, Ganzle MG, Vogel RF (2003) Exopolysaccharide and kestose production by Lactobacillus sanfranciscensis LTH2590. Appl Environ Microbiol 69:2073–2079

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  130. Tieking M, Korakli M, Ehrmann MA, Ganzle MG, Vogel RF (2003) In situ production of exopolysaccharides during sourdough fermentation by cereal and intestinal isolates of lactic acid bacteria. Appl Environ Microbiol 69:945–952

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  131. Brandt MJ, Roth K, Hammes WP (2003) Effect of an exopolysaccharides produced by Lactobacillus sanfranciscensis LHT 1729 on dough and bread quality. In: De Vuyst L (ed) Sourdough from fundamentals to application. Vrije Universiseit Brussels (VUB), IMDO, Brussels, p 80

    Google Scholar 

  132. Monsan P, Bozonnet S, Albenne C, Joucla G, Willemot RM, Remaud-Siméon M (2001) Homopolysaccharides from lactic acid bacteria. Int Dairy J 11:675–685

    CrossRef  CAS  Google Scholar 

  133. Cummings JH, Macfarlane GT, Englyst HN (2001) Prebiotic digestion and fermentation. Am J Clin Nutr 73:415S–420S

    CrossRef  CAS  PubMed  Google Scholar 

  134. Dal Bello F, Walter J, Hertel C, Hammes WP (2001) In vitro study of prebiotic properties of levan-type exopolysaccharides from lactobacilli and non-digestible carbohydrates using denaturing gradient gel electrophoresis. Syst Appl Microbiol 24:232–237

    CrossRef  CAS  Google Scholar 

  135. Kaditzky S, Vogel R (2008) Optimization of exopolysaccharide yields in sourdoughs fermented by lactobacilli. Eur Food Res Technol 228:291–299

    CrossRef  CAS  Google Scholar 

  136. Goesaert H, Slade L, Levine H, Delcour JA (2009) Amylases and bread firming—an integrated view. J Cereal Sci 50:345–352

    CrossRef  CAS  Google Scholar 

  137. Barber B, Ortola C, Barber S, Fernandez F (1992) Storage of packaged white bread. III: effects of sourdough and addition of acids on bread characteristics. Z Lebensm Unters Forsch 194:442–449

    CrossRef  CAS  Google Scholar 

  138. Sanni AI, Morlon-Guyot J, Guyot JP (2002) New efficient amylase-producing strains of Lactobacillus plantarum and L. fermentum isolated from different Nigerian traditional fermented foods. Int J Food Microbiol 72:53–62

    CrossRef  CAS  PubMed  Google Scholar 

  139. Tou EH, Mouquet-Rivier C, Rochette I, Traoré AS, Trèche S, Guyot JP (2007) Effect of different process combinations on the fermentation kinetics, microflora and energy density of ben-saalga, a fermented gruel from Burkina Faso. Food Chem 100:935–943

    CrossRef  CAS  Google Scholar 

  140. Corsetti A, Gobbetti M, De Marco B, Balestrieri F, Paoletti F, Russi L, Rossi J (2000) Combined effect of sourdough lactic acid bacteria and additives on bread firmness and staling. J Agric Food Chem 48:3044–3051

    CrossRef  CAS  PubMed  Google Scholar 

  141. Corsetti A, Gobbetti M, Rossi J, Damiani P (1998) Antimould activity of sourdough lactic acid bacteria: identification of a mixture of organic acids produced by Lactobacillus sanfrancisco CB1. Appl Microbiol Biotechnol 50:253–256

    CrossRef  CAS  PubMed  Google Scholar 

  142. Hugo LF, Rooney LW, Taylor JRN (2003) Fermented sorghum as a functional ingredient in composite breads. Cereal Chem 80:495–499

    CrossRef  CAS  Google Scholar 

  143. Songré-Ouattara LT, Mouquet-Rivier C, Icard-Vernière C, Rochette I, Diawara B, Guyot JP (2009) Potential of amylolytic lactic acid bacteria to replace the use of malt for partial starch hydrolysis to produce African fermented pearl millet gruel fortified with groundnut. Int J Food Microbiol 130:258–264

    CrossRef  PubMed  Google Scholar 

  144. Jagelaviciute J, Cizeikiene D (2021) The influence of non-traditional sourdough made with quinoa, hemp and chia flour on the characteristics of gluten-free maize/rice bread. LWT:110457

    Google Scholar 

  145. Marti A, Bottega G, Franzetti L, Morandin F, Quaglia L et al (2015) From wheat sourdough to gluten-free sourdough: a non-conventional process for producing gluten-free bread. Int J Food Sci Technol 5:1268–1274

    CrossRef  Google Scholar 

  146. Hoehnel A, Bez J, Petersen IL, Amarowicz R, Juśkiewicz J et al (2020) Enhancing the nutritional profile of regular wheat bread while maintaining technological quality and adequate sensory attributes. Food Funct 5:4732–4751

    CrossRef  Google Scholar 

  147. Legan JD (1993) Mould spoilage of bread. Int Biodeter Biodegr 32:33–53

    CrossRef  Google Scholar 

  148. Messens W, De Vuyst L (2002) Inhibitory substances produced by Lactobacilli isolated from sourdoughs—a review. Int J Food Microbiol 72:31–43

    CrossRef  CAS  PubMed  Google Scholar 

  149. Schnürer J, Magnusson J (2005) Antifungal lactic acid bacteria as biopreservatives. Trends Food Sci Technol 16:70–78

    CrossRef  Google Scholar 

  150. Dal Bello F, Clarke CI, Ryan LAM, Ulmer H, Schober TJ, Ström K, Sjögren J, van Sinderen D, Schnürer J, Arendt EK (2007) Improvement of the quality and shelf life of wheat bread by fermentation with the antifungal strain Lactobacillus plantarum FST 1.7. J Cereal Sci 45:309–318

    CrossRef  CAS  Google Scholar 

  151. Lavermicocca P, Valerio F, Visconti A (2003) Antifungal activity of phenyllactic acid against molds isolated from bakery products. Appl Environ Microbiol 69:634–640

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ryan LAM, Dal Bello F, Czerny M, Koehler P, Arendt EK (2009) Quantification of phenyllactic acid in wheat sourdough using high resolution gas chromatography-mass spectrometry. J Agric Food Chem 57:1060–1064

    CrossRef  CAS  PubMed  Google Scholar 

  153. Gänzle MG, Holtzel A, Walter J, Jung G, Hammes WP (2000) Characterization of reutericyclin produced by Lactobacillus reuteri LTH2584. Appl Environ Microbiol 66:4325–4333

    CrossRef  PubMed  PubMed Central  Google Scholar 

  154. Gänzle MG (2004) Reutericyclin: biological activity, mode of action, and potential applications. Appl Microbiol Biotechnol 64:326–332

    CrossRef  PubMed  Google Scholar 

  155. Katina K, Sauri M, Alakomi HL, Mattila-Sandholm T (2002) Potential of lactic acid bacteria to inhibit rope spoilage in wheat sourdough bread. Lebensm Wiss Technol 35:38–45

    CrossRef  CAS  Google Scholar 

  156. Valerio F, De Bellis P, Lonigro SL, Visconti A, Lavermicocca P (2008) Use of Lactobacillus plantarum fermentation products in bread-making to prevent Bacillus subtilis ropy spoilage. Int J Food Microbiol 122:328–332

    CrossRef  CAS  PubMed  Google Scholar 

  157. Axel C, Röcker B, Brosnan B, Zannini E, Furey A et al (2015) Application of Lactobacillus amylovorus DSM19280 in gluten-free sourdough bread to improve the microbial shelf life. Food Microbiol:36–44

    Google Scholar 

  158. Bohn L, Meyer A, Rasmussen S (2008) Phytate: impact on environment and human nutrition. A challenge for molecular breeding. J Zhejiang Univ Sci B 9:165–191

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  159. De Angelis M, Gallo G, Corbo MR, McSweeney PLH, Faccia M, Giovine M, Gobbetti M (2003) Phytase activity in sourdough lactic acid bacteria: purification and characterization of a phytase from Lactobacillus sanfranciscensis CB1. Int J Food Microbiol 87:259–270

    CrossRef  PubMed  Google Scholar 

  160. Lopez HW, Krespine V, Guy C, Messager A, Demigne C, Remesy C (2001) Prolonged fermentation of whole wheat sourdough reduces phytate level and increases soluble magnesium. J Agric Food Chem 49:2657–2662

    CrossRef  CAS  PubMed  Google Scholar 

  161. Reale A, Mannina L, Tremonte P, Sobolev AP, Succi M, Sorrentino E, Coppola R (2004) Phytate degradation by lactic acid bacteria and yeasts during the wholemeal dough fermentation: a 31P NMR study. J Agric Food Chem 52:6300–6305

    CrossRef  CAS  PubMed  Google Scholar 

  162. Osman MA (2004) Changes in sorghum enzyme inhibitors, phytic acid, tannins and in vitro protein digestibility occurring during Khamir (local bread) fermentation. Food Chem 88:129–134

    CrossRef  CAS  Google Scholar 

  163. Songre-Outtara LT, Mouquet-Rivier C, Icard-Verniere C, Rochette I, Diawara B, Guyot JP (2009) Potential of amylolytic lactic acid bacteria to replace the use of malt for partial starch hydrolysis to produce African fermented pearl millet gruel fortified with groundnut. Int J Food Microbiol 130:217–229

    Google Scholar 

  164. Tanwir F, Fredholm M, Gregersen PL, Fomsgaard IS (2013) Comparison of the levels of bioactive benzoxazinoids in different wheat and rye fractions and the transformation of these compounds in homemade foods. Food Chem 1:444–450

    CrossRef  Google Scholar 

  165. Hassani A, Procopio S, Becker T (2016) Influence of malting and lactic acid fermentation on functional bioactive components in cereal-based raw materials: a review paper. Int J Food Sci Technol 1:14–22

    CrossRef  Google Scholar 

  166. Hefni M, Witthöft CM (2012) Effect of germination and subsequent oven-drying on folate content in different wheat and rye cultivars. J Cereal Sci 2:374–378

    CrossRef  Google Scholar 

  167. Ebara S (2017) Nutritional role of folate. Congenit Anom (Kyoto) 5:138–141

    CrossRef  Google Scholar 

  168. Cornejo F, Caceres PJ, Martínez-Villaluenga C, Rosell CM, Frias J (2015) Effects of germination on the nutritive value and bioactive compounds of brown rice breads. Food Chem:298–304

    Google Scholar 

  169. Singh A, Sharma S (2017) Bioactive components and functional properties of biologically activated cereal grains: a bibliographic review. Crit Rev Food Sci Nutr 14:3051–3071

    CrossRef  Google Scholar 

  170. Loponen J, Sontag-Strohm T, Venäläinen J, Salovaara H (2007) Prolamin hydrolysis in wheat sourdoughs with differing proteolytic activities. J Agric Food Chem 3:978–984

    CrossRef  Google Scholar 

  171. Loponen J, Kanerva P, Zhang C, Sontag-Strohm T, Salovaara H et al (2009) Prolamin hydrolysis and pentosan solubilization in germinated-rye sourdoughs determined by chromatographic and immunological methods. J Agric Food Chem 2:746–753

    CrossRef  Google Scholar 

  172. Mäkinen OE, Zannini E, Arendt EK (2013) Germination of oat and quinoa and evaluation of the malts as gluten free baking ingredients. Plant Foods Hum Nutr 1:90–95

    CrossRef  Google Scholar 

  173. Sekwati-Monang B, Gänzle MG (2011) Microbiological and chemical characterisation of ting, a sorghum-based sourdough product from Botswana. Int J Food Microbiol 2-3:115–121

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuele Zannini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arendt, E.K., Shwaiki, L.N., Zannini, E. (2023). Sourdough and Gluten-Free Products. In: Gobbetti, M., Gänzle, M. (eds) Handbook on Sourdough Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-031-23084-4_11

Download citation