Abstract
Celiac disease is one of the most common food intolerances, with an incidence of 1 in every 100 people worldwide, a number that is expected to rise [1]. Meta-analysis of the incidence of celiac disease worldwide over the past number of decades has reported a 7.5% increase in the prevalence of gluten sensitivity among both men and women, with a higher detection rate identified in women [2]. Lifelong avoidance of gluten-containing cereals and related products is the only effective treatment for people who suffer from celiac disease. Foods that are not allowed in the gluten-free (GF) diet are all the gluten-containing products prepared from barley, Kamut, oat, wheat and their derivates, in which the gluten content exceeds 20 mg/kg on a total basis [3]. As consumer demand for GF products is rising, food technologists and manufacturers are called upon to satisfy the increasing demand [4]. In particular, people who suffer from celiac disease and those who are allergic to gluten ask for high-quality GF products, with the same textural, sensorial, and nutritional properties as their gluten-containing counterparts [5, 6]. Nonetheless, the replacement of gluten with gluten-free ingredients in conventional products, primarily bread and pasta, constitutes a major technological challenge for the food industry. Gluten represents the structure-forming protein in the flour, and it is responsible for the unique viscoelastic properties (extensibility, resistance to deformation, mixing tolerance, and gas-holding capacity) of the dough [7]. The proteins present in GF flours do not possess these fundamental structural features, and, upon mixing, a weak batter, resembling a cake dough, is obtained [8]. Because of the impaired rheological properties of the GF batters in comparison to conventional doughs, most of the GF products available on the market are characterized by overall low quality, lacking flavor and showing poor textural characteristics and mouthfeel [5, 9]. Furthermore, as GF products are mainly made from starch and are generally not fortified [10], their contribution in terms of different nutrients, such as folate, B vitamins, minerals including iron and dietary fiber, is poor [11, 12].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Catassi C, Fasano A (2008) Celiac disease. In: Arendt EK, Dal Bello F (eds) Gluten-free cereals products and beverages. Academic Press (Elsevier), London, pp 1–22
King JA, Jeong J, Underwood FE, Quan J, Panaccione N et al (2020) Incidence of celiac disease is increasing over time. Am J Gastroenterol 4:507–525
Deutsch H (2009) Gluten-free diet and food legislation. In: Arendt EK, Dal Bello F (eds) The science of gluten free foods and beverages. AACC International, St Paul
Bogue J, Sorenson D (2008) The marketing of gluten free products. In: Arendt EK, Dal Bello F (eds) Gluten free cereal products and beverages. Academic Press (Elsevier), London, pp 393–408
Gallagher E, Gormley TR, Arendt EK (2004) Recent advances in the formulation of gluten-free cereal-based products. Trends Food Sci Technol 15:143–152
Moroni AV, Dal Bello F, Arendt EK (2009) Sourdough in gluten-free bread-making: an ancient technology to solve a novel issue? Food Microbiol 26:676–684
Don C, Lichtendonk WJ, Plijter JJ, Hamer RJ (2003) Glutenin macropolymer: a gel formed by glutenin particles. J Cereal Sci 37:1–7
Arendt EK, Morrissey A, Moore MM, Dal Bello F (2008) Gluten-free breads. In: Arendt EK, Dal Bello F (eds) Gluten-free cereal products and beverages. Academic Press (Elsevier), London, pp 289–319
Gallagher E, Gormley TR, Arendt EK (2003) Crust and crumb characteristics of gluten free breads. J Food Eng 56:153–161
Ahlborn GJ, Pike OA, Hendrix SB, Hess WM, Huber CS (2005) Sensory, mechanical, and microscopic evaluation of staling in low-protein and gluten-free breads. Cereal Chem 82:328–335
Thompson T (2000) Folate, iron, and dietary fiber contents of the gluten-free diet. J Am Diet Assoc 100:1389–1396
Yazynina E, Johansson M, Jägerstad M, Jastrebova J (2008) Low folate content in gluten-free cereal products and their main ingredients. Food Chem 111:236–242
Alvarez-Jubete L, Holse M, Hansen A, Arendt EK, Gallagher E (2009) Impact of baking on vitamin E content of pseudocereals amaranth, quinoa, and buckwheat. Cereal Chem 86:511–515
Kiskini A, Argiri K, Kalogeropoulos M, Komaitis M, Kostaropoulos A, Mandala I, Kapsokefalou M (2007) Sensory characteristics and iron dialyzability of gluten-free bread fortified with iron. Food Chem 102:309–316
Moore MM, Schober TJ, Dockery P, Arendt EK (2004) Textural comparisons of gluten-free and wheat-based doughs, batters, and breads. Cereal Chem 81:567
Alvarez-Jubete L, Arendt EK, Gallagher E (2010) Nutritive value of pseudocereals and their increasing use as functional gluten-free ingredients. Trends Food Sci Technol 21:106–113
Schoenlechner R, Siebenhandl S, Berghofer E (2008) Pseudocereals. In: Arendt EK, Dal Bello F (eds) Gluten-free cereal products and beverages. Academic Press (Elsevier), London
Foschia M, Horstmann SW, Arendt EK, Zannini E (2017) Legumes as functional ingredients in gluten-free bakery and pasta products. Annu Rev Food Sci Technol:75–96
Alvarez-Jubete L, Auty M, Arendt E, Gallagher E (2010) Baking properties and microstructure of pseudocereal flours in gluten-free bread formulations. Eur Food Res Technol 230:437–445
Mariotti M, Lucisano M, Pagani A, Ng MPKW (2009) The role of corn starch, amaranth flour, pea isolate, and Psyllium flour on the rheological properties and the ultrastructure of gluten-free doughs. Food Res Int 42:963–975
Hassan NMM, Sayed HS, Sakr AM (2016) Effect of pseudo cereal flours on technological, chemical and sensory properties of pan bread. World J Dairy Food Sci 1:10–17
Foschia M, Horstmann S, Arendt EK, Zannini E (2016) Nutritional therapy—facing the gap between coeliac disease and gluten-free food. Int J Food Microbiol:113–124
Sciarini LS, Ribotta PD, León AE, Pérez GT (2010) Influence of gluten-free flours and their mixtures on batter properties and bread quality. Food Bioproc Tech 4:577–585
Korus J, Grzelak K, Achremowicz K, Sabat R (2006) Influence of prebiotic additions on the quality of gluten-free bread and on the content of inulin and fructooligosaccharides. Food Sci Technol Int 12:489–495
Capriles VD, Arêas JAG (2013) Effects of prebiotic inulin-type fructans on structure, quality, sensory acceptance and glycemic response of gluten-free breads. Food Funct 1:104–110
Hüttner EK, Dal Bello FD, Arendt EK (2010) Rheological properties and bread making performance of commercial wholegrain oat flours. J Cereal Sci 62:65–71
Horstmann SW, Lynch KM, Arendt EK (2017) Starch characteristics linked to gluten-free products. Foods 4:1–21
Horstmann SW, Belz MCE, Heitmann M, Zannini E, Arendt EK (2016) Fundamental study on the impact of gluten-free starches on the quality of gluten-free model breads. Foods 2:1–12
BeMiller JN (2008) Hydrocolloids. In: Arendt EK, Dal Bello F (eds) Gluten-free cereal products and beverages. Academic Press (Elsevier), London, pp 203–215
Lazaridou A, Duta D, Papageorgiou M, Belc N, Biliaderis CG (2007) Effects of hydrocolloids on dough rheology and bread quality parameters in gluten-free formulations. J Food Eng 79:1033–1047
Gujural HS, Rosell CM (2004) Improvement of the breadmaking quality of rice flour by glucose oxidase. Food Res Int 37:75–81
McCarthy DF, Gallagher E, Gormley TR, Schober TJ, Arendt EK (2005) Application of response surface methodology in the development of gluten-free bread. Cereal Chem 82:609–615
Naji-Tabasi S, Mohebbi M (2015) Evaluation of cress seed gum and xanthan gum effect on macrostructure properties of gluten-free bread by image processing. J Food Meas Charact 1:110–119
Demirkesen I, Kelkar S, Campanella OH, Sumnu G, Sahin S et al (2014) Characterization of structure of gluten-free breads by using X-ray microtomography. Food Hydrocoll:37–44
Horstmann SW, Axel C, Arendt EK (2018) Water absorption as a prediction tool for the application of hydrocolloids in potato starch-based bread. Food Hydrocoll:129–138
Schober TJ, Messerschmidt M, Bean SR, Park S-H, Arendt EK (2005) Gluten-free bread from sorghum: quality differences among hybrids. Cereal Chem 82:394–404
Gallagher E, Kunkel A, Gormley TR, Arendt EK (2003) The effect of dairy and rice powder addition on loaf and crumb characteristics, and on shelf life (intermediate and long-term) of gluten-free breads stored in a modified atmosphere. Eur Food Res Technol 218:44–48
Nunes M, Ryan L, Arendt E (2009) Effect of low lactose dairy powder addition on the properties of gluten-free batters and bread quality. Eur Food Res Technol 229:31–41
Krupa-Kozak U, Bączek N, Rosell C (2013) Application of dairy proteins as technological and nutritional improvers of calcium-supplemented gluten-free bread. Nutrients 11:4503–4520
Ogunsakin OA, Banwo K, Ogunremi OR, Sanni AI (2015) Microbiological and physicochemical properties of sourdough bread from sorghum flour. Int Food Res J 6:2610–2618
Ojetti V, Nucera G, Migneco A, Gabrielli M, Lauritano C, Danese S, Assunta Zocco MA, Nista EC, Cammarota G, de Lorenzo A, Gasbarrini G, Gasbarrini A (2005) High prevalence of celiac disease in patients with lactose intolerance. Digestion 71:106–110
Gujral HS, Guardiola I, Carbonell JV, Rosell CM (2003) Effect of cyclodextrinase on dough rheology and bread quality from rice flour. J Agric Food Chem 51:3814–3818
Renzetti S, Courtin CM, Delcour JA, Arendt EK (2010) Oxidative and proteolytic enzyme preparations as promising improvers for oat bread formulations: rheological, biochemical and microstructural background. Food Chem 119:1465–1473
Renzetti S, Arendt EK (2009) Effect of protease treatment on the baking quality of brown rice bread: from textural and rheological properties to biochemistry and microstructure. J Cereal Sci 48:33–45
Gujral HS, Rosell CM (2004) Improvement of the breadmaking quality of rice flour by glucose oxidase. Food Res Int 37:75–81
Renzetti S, Dal BF, Arendt EK (2008) Microstructure, fundamental rheology and baking characteristics of batters and breads from different gluten-free flours treated with a microbial transglutaminase. J Cereal Sci 48:33–45
De Vuyst L, Vancanneyt M (2007) Biodiversity and identification of sourdough lactic acid bacteria. Food Microbiol 24:120–127
Hammes WP, Brandt MJ, Francis KL, Rosenheim J, Seitter MFH, Vogelmann SA (2005) Microbial ecology of cereal fermentations. Trends Food Sci Technol 16:4–11
Gänzle MG, Vermeulen N, Vogel RF (2007) Carbohydrate, peptide and lipid metabolism of lactic acid bacteria in sourdough. Food Microbiol 24:128–138
Poutanen K, Flander L, Katina K (2009) Sourdough and cereal fermentation in a nutritional perspective. Food Microbiol 26:693–699
Ryan LAM, Dal BF, Arendt EK (2008) The use of sourdough fermented by antifungal LAB to reduce the amount of calcium propionate in bread. Int J Food Microbiol 125:274–278
Arendt EK, Ryan LAM, Dal Bello F (2007) Impact of sourdough on the texture of bread. Food Microbiol 24:165–174
Galle S, Schwab C, Arendt E, Gänzle M (2010) Exopolysaccharide-forming Weissella strains as starter cultures for sorghum and wheat sourdoughs. J Agric Food Chem 58:5834–5841
Houben A, Goetz H, Mitzscherling M, Becker T (2010) Modification of the rheological behaviour of Amaranth (Amaranthus hypochondriacus) dough. J Cereal Sci 51:350–356
Meroth CB, Hammes WP, Hertel C (2004) Characterisation of the microbiota of rice sourdoughs and description of Lactobacillus spicheri sp. nov. Syst Appl Microbiol 27:151–159
Moore M, Dal BF, Arendt E (2008) Sourdough fermented by Lactobacillus plantarum FST 1.7 improves the quality and shelf life of gluten-free bread. Eur Food Res Technol 226:1309–1316
Moore MM, Juga B, Schober TJ, Arendt EK (2007) Effect of lactic acid bacteria on properties of gluten-free sourdoughs, batters, and quality and ultrastructure of gluten-free bread. Cereal Chem 84:357–364
Moroni AV, Arendt EK, Dal Bello F (2010a) Biodiversity of lactic acid bacteria and yeasts in spontaneously fermented buckwheat and teff sourdoughs. Food Microbiol 28:497–502
Moroni AV, Arendt EK, Morrissey JP, Dal Bello F (2010b) Development of buckwheat and teff sourdoughs with the use of commercial starters. Int J Food Microbiol 142:142–148
Schober TJ, Bean SR, Boyle DL (2007) Gluten-free sorghum bread improved by sourdough fermentation: biochemical, rheological, and microstructural background. J Agric Food Chem 55:5137–5146
Sterr Y, Weiss A, Schmidt H (2009) Evaluation of lactic acid bacteria for sourdough fermentation of amaranth. Int J Food Microbiol 136:75–82
Vogelmann SA, Seitter M, Singer U, Brandt MJ, Hertel C (2009) Adaptability of lactic acid bacteria and yeasts to sourdoughs prepared from cereals, pseudocereals and cassava and use of competitive strains as starters. Int J Food Microbiol 130:205–212
Weiss A, Bertsch D, Struett S, Sterr Y, Schmidt H (2009) Isolierung und Charakterisierung potentieller Starterkulturen aus Amaranth-, Buchweizen-und Hirse-Sauerteigen. Getreidetechnologie 63:68–75
Schwab C, Mastrangelo M, Corsetti A, Gänzle M (2008) Formation of oligosaccharides and polysaccharides by Lactobacillus reuteri LTH5448 and Weissella cibaria 10M in sorghum sourdoughs. Cereal Chem 85:679–684
Coda R, Varis J, Verni M, Rizzello CG, Katina K (2017) Improvement of the protein quality of wheat bread through faba bean sourdough addition. LWT- Food Sci Technol:296–302
Bartkiene E, Juodeikiene G, Vidmantiene D, Viskelis P, Urbonaviciene D (2011) Nutritional and quality aspects of wheat sourdough bread using L. luteus and L. angustifolius flours fermented by Pedioccocus acidilactici. Int J Food Sci Technol 8:1724–1733
Gänzle MG, Schieber A, Svensson L, Teixeira J, McNeill V (2010) Formation and modification of bioactive compounds in gluten free sourdoughs. In: Second international symposium on gluten-free cereal products and beverages, Tampere, pp 89–90
Hamad SH, Böcker G, Vogel RD, Hammes WP (1992) Microbiological and chemical analysis of fermented sorghum dough for Kisra production. Appl Microbiol Biotechnol 37:728–731
Hamad SH, Dieng MC, Ehrmann MA, Vogel R (1997) Characterisation of the bacterial flora of Sudanese sorghum flour and sorghum sourdough. J Appl Microbiol 83:764–770
Mohammed SI, Steenson LR, Kirleis AW (1991) Isolation and characterization of microorganisms associated with the traditional sorghum fermentation for production of Sudanese kisra. Appl Environ Microbiol 57:2529–2533
Gassem MAA (1999) Study of the micro-organisms associated with the fermented bread (khamir) produced from sorghum in Gizan region, Saudi Arabia. J Appl Microbiol 86:221–225
Hayford AE, Petersen A, Vogensen FK, Jakobsen M (1999) Use of conserved randomly amplified polymorphic DNA (RAPD) fragments and RAPD pattern for characterization of Lactobacillus fermentum in Ghanaian fermented maize dough. Appl Environ Microbiol 65:3213–3221
Jespersen L, Halm M, Kpodo K, Jakobsen M (1994) Significance of yeasts and moulds occurring in maize dough fermentation for “kenkey” production. Int J Food Microbiol 24:239–248
Olsen A, Halm M, Jakobsen M (1995) The antimicrobial activity of lactic acid bacteria from fermented maize (kenkey) and their interactions during fermentation. J Appl Bacteriol 79:506–512
Ampe F, ben Omar N, Moizan C, Wacher C, Guyot JP (1999) Polyphasic study of the spatial distribution of microorganisms in Mexican pozol, a fermented maize dough, demonstrates the need for cultivation-independent methods to investigate traditional fermentations. Appl Environ Microbiol 65:5464–5473
Ben Omar N, Ampe F (2000) Microbial community dynamics during production of the Mexican fermented maize dough pozol. Appl Environ Microbiol 66:3664–3673
Escalante A, Wacher C, Farrés A (2001) Lactic acid bacterial diversity in the traditional Mexican fermented dough pozol as determined by 16S rDNA sequence analysis. Int J Food Microbiol 64:21–31
Edema MO, Sanni AI (2008) Functional properties of selected starter cultures for sour maize bread. Food Microbiol 25:616–625
Sanni AI, Onilude AA, Fatungase MO (1998) Production of sour-maize bread using starter-cultures. World J Microbiol Biotechnol 14:101–106
Ashenafi M (2006) A review on the microbiology of indigenous fermented food and beverages in Ethiopia. Ethiop J Microbiol Sci 5:189–245
De Vuyst L, Vrancken G, Ravyts F, Rimaux T, Weckx S (2009) Biodiversity, ecological determinants, and metabolic exploitation of sourdough microbiota. Food Microbiol 26:666–675
Gänzle M, Schwab C (2009) Exploitation of the metabolic potential of lactic acid bacteria for improved quality of gluten-free bread. In: Arendt EK, Dal Bello F (eds) The science of gluten-free food and beverages. AACC International, St Paul
Meroth CB, Walter J, Hertel C, Brandt MJ, Hammes WP (2003) Monitoring the bacterial population dynamics in sourdough fermentation processes by using PCR-denaturing gradient gel electrophoresis. Appl Environ Microbiol 69:475–482
Meroth CB, Hammes WP, Hertel C (2003) Identification and population dynamics of yeasts in sourdough fermentation processes by PCR-denaturing gradient gel electrophoresis. Appl Environ Microbiol 69:7453–7461
Rosenquist H, Hansen A (2000) The microbial stability of two bakery sourdoughs made from conventionally and organically grown rye. Food Microbiol 17:241–250
Siragusa S, Di Cagno R, Ercolini D, Minervini F, Gobbetti M, De Angelis M (2009) Taxonomic structure and monitoring of the dominant population of lactic acid bacteria during wheat flour sourdough type I propagation using Lactobacillus sanfranciscensis starters. Appl Environ Microbiol 75:1099–1109
Scheirlinck I, Van der Meulen R, Van Schoor A, Vancanneyt M, De Vuyst L, Vandamme P, Huys G (2008) Taxonomic structure and stability of the bacterial community in Belgian sourdough ecosystems as assessed by culture and population fingerprinting. Appl Environ Microbiol 74:2414–2423
Holzapfel WH (2002) Appropriate starter culture technologies for small-scale fermentation in developing countries. Int J Food Microbiol 75:197–212
Gänzle MG, Loponen J, Gobbetti M (2008) Proteolysis in sourdough fermentations: mechanisms and potential for improved bread quality. Trends Food Sci Technol 19:513–521
Di Cagno R, De Angelis M, Lavermicocca P, De Vincenzi M, Giovannini C, Faccia M, Gobbetti M (2002) Proteolysis by sourdough lactic acid bacteria: effects on wheat flour protein fractions and gliadin peptides involved in human cereal intolerance. Appl Environ Microbiol 68:623–633
Thiele C, Gaenzle MG, Vogel RF (2003) Fluorescence labeling of wheat proteins for determination of gluten hydrolysis and depolymerization during dough processing and sourdough fermentation. J Agric Food Chem 51:2745–2752
Gobbetti M, Simonetti MS, Rossi J, Cossignani L, Corsetti A, Damiani P (1994) Free D- and L-amino acid evolution during sourdough fermentation and baking. J Food Sci 59:881–884
Spicher G, Nierle W (1988) Proteolytic activity of sourdough bacteria. Appl Microbiol Biotechnol 28:487–492
Thiele C, Gänzle MG, Vogel RF (2002) Contribution of sourdough lactobacilli, yeast, and cereal enzymes to the generation of amino acids in dough relevant for bread flavor. Cereal Chem 79:45–51
Elkhalifa A, Bernhardt R, Bonomi F, Iametti S, Pagani M, Zardi M (2006) Fermentation modifies protein/protein and protein/starch interactions in sorghum dough. Eur Food Res Technol 222:559–564
Mugula JK, Nnko SAM, Narvhus JA, Sørhaug T (2003) Microbiological and fermentation characteristics of togwa, a Tanzanian fermented food. Int J Food Microbiol 80:187–199
Kendall M, Schneider R, Cox PS, Hawkins CF (1972) Gluten subfractions in coeliac disease. Lancet 18:1065–1067
Wieser H, Vermeulen N, Gaertner F, Vogel R (2008) Effects of different Lactobacillus and Enterococcus strains and chemical acidification regarding degradation of gluten proteins during sourdough fermentation. Eur Food Res Technol 226:1495–1502
Di Cagno R, De Angelis M, Auricchio S, Greco L, Clarke C, De Vincenzi M, Giovannini C, D’Archivio M, Landolfo F, Parrilli G, Minervini F, Arendt E, Gobbetti M (2004) Sourdough bread made from wheat and nontoxic flours and started with selected lactobacilli is tolerated in celiac sprue patients. Appl Environ Microbiol 70:1088–1096
De Angelis M, Coda R, Silano M, Minervini F, Rizzello CG, Di Cagno R, Vicentini O, De Vincenzi M, Gobbetti M (2006) Fermentation by selected sourdough lactic acid bacteria to decrease coeliac intolerance to rye flour. J Cereal Sci 43:301–314
Rizzello CG, De Angelis M, Di Cagno R, Camarca A, Silano M, Losito I, De Vincenzi M, De Bari MD, Palmisano F, Maurano F, Gianfrani C, Gobbetti M (2007) Highly efficient gluten degradation by lactobacilli and fungal proteases during food processing: new perspectives for celiac disease. Appl Environ Microbiol 73:4499–4507
Giuliani GM, Benedusi A, Di Cagno R, De Angelis M, Luisi A, Gobbetti M (2006) Miscela di batteri lattici per la preparazione di prodotti da forno senza glutine, RM2006A000369#
Schober TJ, Bean SR, Boyle DL (2007) Gluten-free sorghum bread improved by sourdough fermentation: biochemical, rheological, and microstructural background. J Agric Food Chem 13:5137–5146
Carbó R, Gordún E, Fernández A, Ginovart M (2020) Elaboration of a spontaneous gluten-free sourdough with a mixture of amaranth, buckwheat, and quinoa flours analyzing microbial load, acidity, and pH. Food Sci Technol Int 4:344–352
Barman A, Marak CM, Mitra Barman R, Sangma CS (2019) Nutraceutical properties of legume seeds and their impact on human health. In: Legume seed nutraceutical research. IntechOpen
Pellegrini N, Agostoni C (2015) Nutritional aspects of gluten-free products. J Sci Food Agric 12:2380–2385
Yousif M, Safaa M (2014) Supplementation of gluten-free bread with some germinated legumes flour. J Am Sci 3:84–93
Olojede AO, Sanni AI, Banwo K (2020) Effect of legume addition on the physiochemical and sensorial attributes of sorghum-based sourdough bread. LWT:108769
Hoehnel A, Bez J, Sahin AW, Coffey A, Arendt EK et al (2020) Leuconostoc citreum TR116 as a microbial cell factory to functionalise high-protein Faba Bean ingredients for bakery applications. Foods 11:1706
Miñarro B, Albanell E, Aguilar N, Guamis B, Capellas M (2012) Effect of legume flours on baking characteristics of gluten-free bread. J Cereal Sci 2:476–481
Coda R, Rizzello CG, Gobbetti M (2010) Use of sourdough fermentation and pseudo-cereals and leguminous flours for the making of a functional bread enriched of γ-aminobutyric acid (GABA). Int J Food Microbiol 2-3:236–245
Curiel JA, Coda R, Centomani I, Summo C, Gobbetti M et al (2015) Exploitation of the nutritional and functional characteristics of traditional Italian legumes: the potential of sourdough fermentation. Int J Food Microbiol:51–61
Gobbetti M, De Angelis M, Di Cagno R, Calasso M, Archetti G et al (2019) Novel insights on the functional/nutritional features of the sourdough fermentation. Int J Food Microbiol 2018:103–113
Canavan C, West J, Card T (2014) The epidemiology of irritable bowel syndrome. Clin Epidemiol 1:71–80
Staudacher HM, Whelan K (2017) The low FODMAP diet: recent advances in understanding its mechanisms and efficacy in IBS. Gut 8:1517–1527
Magge S, Lembo A (2012) Low-FODMAP diet for treatment of irritable bowel syndrome. Gastroenterol Hepatol 11:739–745
Ispiryan L, Zannini E, Arendt EK (2020) Characterization of the FODMAP-profile in cereal-product ingredients. J Cereal Sci:102916
Menezes LAA, Minervini F, Filannino P, Sardaro MLS, Gatti M et al (2018) Effects of sourdough on FODMAPs in bread and potential outcomes on irritable bowel syndrome patients and healthy subjects. Front Microbiol:1972
Loponen J, Gänzle MG (2018) Use of sourdough in low FODMAP baking. Foods 7
Struyf N, Laurent J, Verspreet J, Verstrepen KJ, Courtin CM (2017) Saccharomyces cerevisiae and kluyveromyces marxianus cocultures allow reduction of fermentable oligo-, Di-, and monosaccharides and polyols levels in whole wheat bread. J Agric Food Chem 39:8704–8713
Struyf N, Vandewiele H, Herrera-Malaver B, Verspreet J, Verstrepen KJ et al (2018) Kluyveromyces marxianus yeast enables the production of low FODMAP whole wheat breads. Food Microbiol:135–145
Li Q, Loponen J, Gänzle MG (2020) Characterization of the extracellular Fructanase FruA in Lactobacillus crispatus and its contribution to Fructan hydrolysis in breadmaking. J Agric Food Chem 68(32):8637–8647
Acín Albiac M, Di Cagno R, Filannino P, Cantatore V, Gobbetti M (2020) How fructophilic lactic acid bacteria may reduce the FODMAPs content in wheat-derived baked goods: a proof of concept. Microb Cell Fact 1:182
Muir JG, Varney JE, Ajamian M, Gibson PR (2019) Gluten-free and low-FODMAP sourdoughs for patients with coeliac disease and irritable bowel syndrome: a clinical perspective. Int J Food Microbiol 2018:237–246
De Vuyst L, Degeest B (1999) Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol Rev 23:153–177
Tieking M, Gänzle MG (2005) Exopolysaccharides from cereal-associated lactobacilli. Trends Food Sci Technol 16:79–84
Di Cagno R, De Angelis M, Limitone A, Minervini F, Carnevali P, Corsetti A, Gaenzle M, Ciati R, Gobbetti M (2006) Glucan and fructan production by sourdough Weissella cibaria and Lactobacillus plantarum. J Agric Food Chem 54:9873–9881
Lacaze G, Wick M, Cappelle S (2007) Emerging fermentation technologies: development of novel sourdoughs. Food Microbiol 24:155–160
Korakli M, Pavlovic M, Ganzle MG, Vogel RF (2003) Exopolysaccharide and kestose production by Lactobacillus sanfranciscensis LTH2590. Appl Environ Microbiol 69:2073–2079
Tieking M, Korakli M, Ehrmann MA, Ganzle MG, Vogel RF (2003) In situ production of exopolysaccharides during sourdough fermentation by cereal and intestinal isolates of lactic acid bacteria. Appl Environ Microbiol 69:945–952
Brandt MJ, Roth K, Hammes WP (2003) Effect of an exopolysaccharides produced by Lactobacillus sanfranciscensis LHT 1729 on dough and bread quality. In: De Vuyst L (ed) Sourdough from fundamentals to application. Vrije Universiseit Brussels (VUB), IMDO, Brussels, p 80
Monsan P, Bozonnet S, Albenne C, Joucla G, Willemot RM, Remaud-Siméon M (2001) Homopolysaccharides from lactic acid bacteria. Int Dairy J 11:675–685
Cummings JH, Macfarlane GT, Englyst HN (2001) Prebiotic digestion and fermentation. Am J Clin Nutr 73:415S–420S
Dal Bello F, Walter J, Hertel C, Hammes WP (2001) In vitro study of prebiotic properties of levan-type exopolysaccharides from lactobacilli and non-digestible carbohydrates using denaturing gradient gel electrophoresis. Syst Appl Microbiol 24:232–237
Kaditzky S, Vogel R (2008) Optimization of exopolysaccharide yields in sourdoughs fermented by lactobacilli. Eur Food Res Technol 228:291–299
Goesaert H, Slade L, Levine H, Delcour JA (2009) Amylases and bread firming—an integrated view. J Cereal Sci 50:345–352
Barber B, Ortola C, Barber S, Fernandez F (1992) Storage of packaged white bread. III: effects of sourdough and addition of acids on bread characteristics. Z Lebensm Unters Forsch 194:442–449
Sanni AI, Morlon-Guyot J, Guyot JP (2002) New efficient amylase-producing strains of Lactobacillus plantarum and L. fermentum isolated from different Nigerian traditional fermented foods. Int J Food Microbiol 72:53–62
Tou EH, Mouquet-Rivier C, Rochette I, Traoré AS, Trèche S, Guyot JP (2007) Effect of different process combinations on the fermentation kinetics, microflora and energy density of ben-saalga, a fermented gruel from Burkina Faso. Food Chem 100:935–943
Corsetti A, Gobbetti M, De Marco B, Balestrieri F, Paoletti F, Russi L, Rossi J (2000) Combined effect of sourdough lactic acid bacteria and additives on bread firmness and staling. J Agric Food Chem 48:3044–3051
Corsetti A, Gobbetti M, Rossi J, Damiani P (1998) Antimould activity of sourdough lactic acid bacteria: identification of a mixture of organic acids produced by Lactobacillus sanfrancisco CB1. Appl Microbiol Biotechnol 50:253–256
Hugo LF, Rooney LW, Taylor JRN (2003) Fermented sorghum as a functional ingredient in composite breads. Cereal Chem 80:495–499
Songré-Ouattara LT, Mouquet-Rivier C, Icard-Vernière C, Rochette I, Diawara B, Guyot JP (2009) Potential of amylolytic lactic acid bacteria to replace the use of malt for partial starch hydrolysis to produce African fermented pearl millet gruel fortified with groundnut. Int J Food Microbiol 130:258–264
Jagelaviciute J, Cizeikiene D (2021) The influence of non-traditional sourdough made with quinoa, hemp and chia flour on the characteristics of gluten-free maize/rice bread. LWT:110457
Marti A, Bottega G, Franzetti L, Morandin F, Quaglia L et al (2015) From wheat sourdough to gluten-free sourdough: a non-conventional process for producing gluten-free bread. Int J Food Sci Technol 5:1268–1274
Hoehnel A, Bez J, Petersen IL, Amarowicz R, Juśkiewicz J et al (2020) Enhancing the nutritional profile of regular wheat bread while maintaining technological quality and adequate sensory attributes. Food Funct 5:4732–4751
Legan JD (1993) Mould spoilage of bread. Int Biodeter Biodegr 32:33–53
Messens W, De Vuyst L (2002) Inhibitory substances produced by Lactobacilli isolated from sourdoughs—a review. Int J Food Microbiol 72:31–43
Schnürer J, Magnusson J (2005) Antifungal lactic acid bacteria as biopreservatives. Trends Food Sci Technol 16:70–78
Dal Bello F, Clarke CI, Ryan LAM, Ulmer H, Schober TJ, Ström K, Sjögren J, van Sinderen D, Schnürer J, Arendt EK (2007) Improvement of the quality and shelf life of wheat bread by fermentation with the antifungal strain Lactobacillus plantarum FST 1.7. J Cereal Sci 45:309–318
Lavermicocca P, Valerio F, Visconti A (2003) Antifungal activity of phenyllactic acid against molds isolated from bakery products. Appl Environ Microbiol 69:634–640
Ryan LAM, Dal Bello F, Czerny M, Koehler P, Arendt EK (2009) Quantification of phenyllactic acid in wheat sourdough using high resolution gas chromatography-mass spectrometry. J Agric Food Chem 57:1060–1064
Gänzle MG, Holtzel A, Walter J, Jung G, Hammes WP (2000) Characterization of reutericyclin produced by Lactobacillus reuteri LTH2584. Appl Environ Microbiol 66:4325–4333
Gänzle MG (2004) Reutericyclin: biological activity, mode of action, and potential applications. Appl Microbiol Biotechnol 64:326–332
Katina K, Sauri M, Alakomi HL, Mattila-Sandholm T (2002) Potential of lactic acid bacteria to inhibit rope spoilage in wheat sourdough bread. Lebensm Wiss Technol 35:38–45
Valerio F, De Bellis P, Lonigro SL, Visconti A, Lavermicocca P (2008) Use of Lactobacillus plantarum fermentation products in bread-making to prevent Bacillus subtilis ropy spoilage. Int J Food Microbiol 122:328–332
Axel C, Röcker B, Brosnan B, Zannini E, Furey A et al (2015) Application of Lactobacillus amylovorus DSM19280 in gluten-free sourdough bread to improve the microbial shelf life. Food Microbiol:36–44
Bohn L, Meyer A, Rasmussen S (2008) Phytate: impact on environment and human nutrition. A challenge for molecular breeding. J Zhejiang Univ Sci B 9:165–191
De Angelis M, Gallo G, Corbo MR, McSweeney PLH, Faccia M, Giovine M, Gobbetti M (2003) Phytase activity in sourdough lactic acid bacteria: purification and characterization of a phytase from Lactobacillus sanfranciscensis CB1. Int J Food Microbiol 87:259–270
Lopez HW, Krespine V, Guy C, Messager A, Demigne C, Remesy C (2001) Prolonged fermentation of whole wheat sourdough reduces phytate level and increases soluble magnesium. J Agric Food Chem 49:2657–2662
Reale A, Mannina L, Tremonte P, Sobolev AP, Succi M, Sorrentino E, Coppola R (2004) Phytate degradation by lactic acid bacteria and yeasts during the wholemeal dough fermentation: a 31P NMR study. J Agric Food Chem 52:6300–6305
Osman MA (2004) Changes in sorghum enzyme inhibitors, phytic acid, tannins and in vitro protein digestibility occurring during Khamir (local bread) fermentation. Food Chem 88:129–134
Songre-Outtara LT, Mouquet-Rivier C, Icard-Verniere C, Rochette I, Diawara B, Guyot JP (2009) Potential of amylolytic lactic acid bacteria to replace the use of malt for partial starch hydrolysis to produce African fermented pearl millet gruel fortified with groundnut. Int J Food Microbiol 130:217–229
Tanwir F, Fredholm M, Gregersen PL, Fomsgaard IS (2013) Comparison of the levels of bioactive benzoxazinoids in different wheat and rye fractions and the transformation of these compounds in homemade foods. Food Chem 1:444–450
Hassani A, Procopio S, Becker T (2016) Influence of malting and lactic acid fermentation on functional bioactive components in cereal-based raw materials: a review paper. Int J Food Sci Technol 1:14–22
Hefni M, Witthöft CM (2012) Effect of germination and subsequent oven-drying on folate content in different wheat and rye cultivars. J Cereal Sci 2:374–378
Ebara S (2017) Nutritional role of folate. Congenit Anom (Kyoto) 5:138–141
Cornejo F, Caceres PJ, Martínez-Villaluenga C, Rosell CM, Frias J (2015) Effects of germination on the nutritive value and bioactive compounds of brown rice breads. Food Chem:298–304
Singh A, Sharma S (2017) Bioactive components and functional properties of biologically activated cereal grains: a bibliographic review. Crit Rev Food Sci Nutr 14:3051–3071
Loponen J, Sontag-Strohm T, Venäläinen J, Salovaara H (2007) Prolamin hydrolysis in wheat sourdoughs with differing proteolytic activities. J Agric Food Chem 3:978–984
Loponen J, Kanerva P, Zhang C, Sontag-Strohm T, Salovaara H et al (2009) Prolamin hydrolysis and pentosan solubilization in germinated-rye sourdoughs determined by chromatographic and immunological methods. J Agric Food Chem 2:746–753
Mäkinen OE, Zannini E, Arendt EK (2013) Germination of oat and quinoa and evaluation of the malts as gluten free baking ingredients. Plant Foods Hum Nutr 1:90–95
Sekwati-Monang B, Gänzle MG (2011) Microbiological and chemical characterisation of ting, a sorghum-based sourdough product from Botswana. Int J Food Microbiol 2-3:115–121
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Arendt, E.K., Shwaiki, L.N., Zannini, E. (2023). Sourdough and Gluten-Free Products. In: Gobbetti, M., Gänzle, M. (eds) Handbook on Sourdough Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-031-23084-4_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-23084-4_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-23083-7
Online ISBN: 978-3-031-23084-4
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)