Skip to main content

On the Determination of Diffuse Reflectance of PTFE

  • Chapter
  • First Online:
Advanced Hydrodynamics Problems in Earth Sciences

Part of the book series: Earth and Environmental Sciences Library ((EESL))

  • 210 Accesses

Abstract

PTFE has a high diffuse reflectance, especially in the ultraviolet region. The papers [1, 2] describe aspects of its use as an internal material of the cavity of UV air purifiers to improve irradiation and increase the productivity of such devices. This paper provides a brief overview of the main properties of the material. In particular, data on the diffuse reflectance in the spectral range 125–2500 nm from various sources are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kotov MA, Shemyakin AN, Solovyov NG, Yakimov MY (2022) Symmetrization and amplification of germicidal radiation flux produced by a mercury amalgam UV lamp in cylindrical cavity with diffusely reflective walls. Symmetry 14(1):125

    Article  Google Scholar 

  2. Kotov MA, Shemyakin AN, Solovyov NG, Yakimov MY (2022) Increase in illumination of 253.7 nm in a cylindrical PTFE cavity. In: Chaplina T (eds) Processes in GeoMedia—Volume V. Springer Geology

    Google Scholar 

  3. Plunkett RJ (1986) The history of polytetrafluoroethylene: discovery and development. In: Seymour RB, Kirshenbaum GS (eds) High performance polymers: their origin and development. Springer, Dordrecht

    Google Scholar 

  4. www.3dchem.com/Teflon.asp (reference date 06/02/2022)

  5. Silva CFP (2010) Reflection distribution of the fluoropolymers for the xenon scintillation ligh. A thesis submitted for the degree of Doutor, p 244

    Google Scholar 

  6. Reflectance materials and coatings. Technical guide. Labsphere, Inc., p 21

    Google Scholar 

  7. Bryn Waldwick, Christina Chase, Bob Y. Chang, “Increased efficiency and performance in laser pump chambers through use of diffuse highly reflective materials,” Proc. SPIE 6663, Laser Beam Shaping VIII, 66630N (12 September 2007)

    Google Scholar 

  8. Michael LJSI, Cohen R (2022) Diffuse reflectance measurements of standard diffusers. http://www.4physics.com/tn3/lambertian.htm (reference date 06/02/2022)

  9. Silva C, Pinto da Cunha J, Pereira A, Chepel V, Lopes MI, Solovov V, Neves F (2010) Reflectance of polytetrafluoroethylene for xenon scintillation light. J Appl Phys 107:064902

    Article  Google Scholar 

  10. Silva CFP (2011) PTFE reflectance measurements, modeling and simulation for xenon detectors. The Technology and Instrumentation in Particle Physics (TIPP)

    Google Scholar 

  11. Springsteen A (1999) Standards for the measurement of diffuse reflectance—an overview of available materials and measurement laboratories. Anal Chim Acta 380(2–3):379–390

    Article  Google Scholar 

  12. Qunzhi Z et al (2009) Radiative properties of materials with surface scattering or volume scattering: a review. Front Energy Power Eng Chin 3:60–97

    Article  Google Scholar 

  13. Tseng S-H, Grant A, Durkin AJ (2008) In vivo determination of skin near-infrared optical properties using diffuse optical spectroscopy. J Biomed Opt 13(1):014016

    Article  Google Scholar 

  14. Xiang D, Gu C (2006) A study on the friction and wear behavior of PTFE filled with ultra-fine kaolin particulates. Mater Lett 60(5):689–692

    Google Scholar 

  15. Drummond CJ, Chan DYC (1996) Theoretical analysis of the soiling of nonstick organic materials. Langmuir 12(13):3356–3359

    Google Scholar 

  16. Miller JD, Veeramasuneni S, Drelich J, Yalamanchili MR, Yamauchi G (1996) Effect of roughness as determined by atomic force microscopy on the wetting properties of PTFE thin films. Polym Eng Sci 36:1849–1855

    Article  Google Scholar 

  17. Okuda Y, Hayashi F, Sakurai H, Shiotani M (2004) A spectroscopic study on defluorination of polytetrafluoroethylene by alkyllithium/electron-donating solvents. Spectrochim Acta Part A Mol Biomol Spectrosc 60(13):3071–3077

    Article  Google Scholar 

  18. Gibbs DR, Duncan FJ, Lambe RP, Goodman TM (1995) Ageing of materials under intense ultraviolet radiation. Metrologia 32(6):601

    Article  Google Scholar 

  19. Peng G, Yang D, Liu J, He S (2003) Effects of vacuum ultraviolet on the structure and optical properties of polytetrafluoroethylene films. J Appl Polym Sci 90(1):115–121

    Article  Google Scholar 

  20. https://www.labsphere.com/site/assets/files/3104/an-13013-000rev00.pdf (reference date 06/02/2022)

  21. http://www.dstech.com.my/wp-content/uploads/2017/09/PTFE-Integrating-Spheres.pdf (reference date 06/02/2022)

  22. Weidner VR, Hsia JJ (1981) Reflection properties of pressed polytetrafluoroethylene powder. J Opt Soc Am 71(7)

    Google Scholar 

  23. https://www.labsphere.com/site/assets/files/2959/pb-13078rev03.pdf (reference date 06/02/2022)

  24. Janecek M (2012) Reflectivity spectra for commonly used reflectors. IEEE Trans Nucl Sci 59(3):490–497

    Article  Google Scholar 

  25. Quill T, Weiss S, Hirschler C, Pankadzh V, DiBattista G, Arthur M, Chen J (2016) Ultraviolet reflectance of microporous PTFE. UV+EB 2016 technology conference [Equipment session]. RadTech North America, Chicago, IL, USA

    Google Scholar 

  26. Goldstein DH, Chenault DB, Pezzaniti JL (1999) Polarimetric characterization of spectralon. In: Proceedings of SPIE 3754, polarization: measurement, analysis, and remote sensing II

    Google Scholar 

  27. Yang MK, French RH, Tokarsky EW (2008) Optical properties of Teflon® AF amorphous fluoropolymers. J Micro/Nanolith MEMS MOEMS 7(3):033010

    Google Scholar 

  28. Niino H, Yabe A (2001) Laser ablation of transparent materials by UV fs-laser irradiation. J Photopolym Sci Technol 14(2):197–202

    Article  Google Scholar 

  29. Galante AMS, Galante OL, Campos LL (2010) Study on application of PTFE, FEP and PFA fluoropolymers on radiation dosimetry, nuclear instruments and methods in physics research section A: accelerators, spectrometers, detectors and associated equipment, vol 619, no 1–3, pp 177–180

    Google Scholar 

  30. Ebnesajjad S (2017) Expanded PTFE applications handbook: technology, manufacturing and applications.—William Andrew

    Google Scholar 

  31. Clark RW (2012) Methods and apparatus for diffuse reflective UV cavity air treatment, patent US 2012/0315184 A1

    Google Scholar 

  32. https://www.porex.com/material-science/ptfe/what-is-the-difference-between-eptfe-and-sintered-ptfe/ (reference date 06/02/2022)

Download references

Acknowledgements

The support received by the Government program (#AAAA-A20-120011690135-5) is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail A. Kotov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kotov, M.A. (2023). On the Determination of Diffuse Reflectance of PTFE. In: Chaplina, T. (eds) Advanced Hydrodynamics Problems in Earth Sciences. Earth and Environmental Sciences Library. Springer, Cham. https://doi.org/10.1007/978-3-031-23050-9_11

Download citation

Publish with us

Policies and ethics