Skip to main content

An Application of Power Indices for the Family of Weighted Majority Games in Partition Function Form

  • 163 Accesses

Abstract

Based on Holler (1982), Colomer and Martínez (1995), and Armijos-Toro et al. (2021), we propose two power indices to measure the influence of the players in these classes of weighted majority games in partition function form. We compare the new power indices with their original versions on the class of games in characteristic function form. Finally, we use both new power indices and the two power indices for games in partition function form studied in Alonso-Meijide et al. (2017) to study the distribution of power in the National Assembly of Ecuador that emerged after the elections of February 7, 2021.

Keywords

  • Weighted majority games
  • Partition function form games
  • Minimal winning embedded coalitions
  • Deegan–Packel power index
  • Colomer–Martínez power index
  • Public Good power index

Math. Subj. Class. (2020)

  • 91A12
  • 91A80

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    A proper subset, \((T;\textsf{Q})\sqsubset (S;\textsf{P})\), is a subset \((T;\textsf{Q})\sqsubseteq (S;\textsf{P})\) satisfying \((T;\textsf{Q})\ne (S;\textsf{P})\).

  2. 2.

    https://www.primicias.ec/noticias/politica/los-cambios-en-las-bancadas-de-la-asamblea/, last accessed 23/12/2021.

  3. 3.

    https://www.primicias.ec/noticias/politica/bancadas-pierden-miembros-votos-asamblea/, last accessed 23/12/2021.

  4. 4.

    https://www.primicias.ec/noticias/politica/union-unes-pachakutik-debilidad-legislativa-gobierno/, last accessed 23/12/2021.

  5. 5.

    https://www.primicias.ec/noticias/politica/posible-destitucion-lasso-apoyo-asamblea/, last accessed 23/12/2021.

  6. 6.

    https://www.primicias.ec/noticias/politica/ruptura-pachakutik-capitulo-bancadas-desgranads/, last accessed 23/12/2021.

References

  • Alonso-Meijide, J. M., Álvarez-Mozos, M., & Fiestras-Janeiro, M. G. (2017). Power indices and minimal winning coalitions for simple games in partition function form. Group Decision and Negotiation, 26, 1231–1245.

    CrossRef  Google Scholar 

  • Álvarez-Mozos, M., & Tejada, O. (2015). The Banzhaf value in the presence of externalities. Social Choice and Welfare, 44, 781–805.

    CrossRef  MathSciNet  MATH  Google Scholar 

  • Álvarez-Mozos, M., Ferreira, F., Alonso-Meijide, J., & Pinto, A. (2015). Characterizations of power indices based on null player free winning coalitions. Optimization, 64, 675–686.

    MathSciNet  MATH  Google Scholar 

  • Álvarez-Mozos, M., Alonso-Meijide, J. M., & Fiestras-Janeiro, M. G. (2017). On the externality-free Shapley-Shubik index. Games and Economic Behavior, 105, 148–154.

    CrossRef  MathSciNet  MATH  Google Scholar 

  • Arévalo-Iglesias, G., & Álvarez-Mozos, M. (2020). Power distribution in the Basque Parliament using games with externalities. Theory and Decision, 89, 157–178.

    CrossRef  MathSciNet  MATH  Google Scholar 

  • Armijos-Toro, L. M., Alonso-Meijide, J. M., & Mosquera, M. A. (2021). Mergeable weighted majority games and characterizations of power indices. University of Santiago de Compostela.

    Google Scholar 

  • Banzhaf, J. F. (1964). Weighted voting doesn’t work: A mathematical analysis. Rutgers Law Review, 19, 317–343.

    Google Scholar 

  • Barua, R., Chakravarty, S. R., & Roy, S. (2005). Weighted voting doesn’t work: A mathematical analysis. Homo Oeconomicus, 22, 459–486.

    Google Scholar 

  • Bolger, E. M. (1983). The Banzhaf index for multicandidate presidential elections. SIAM Journal of Algebraic Discrete Methods, 4, 422–458.

    CrossRef  MathSciNet  MATH  Google Scholar 

  • Bolger, E. M. (1990). A characterization of an extension of the Banzhaf value for multicandidate voting games. SIAM Journal of Discrete Mathematics, 3, 466–477.

    CrossRef  MathSciNet  MATH  Google Scholar 

  • Carreras, F., & Magaña, A. (2008). The Shapley-Shubik index for simple games with multiple alternatives. Annals of Operations Research, 158, 81–97.

    CrossRef  MathSciNet  MATH  Google Scholar 

  • Colomer, J. M., & Martínez, F. (1995). The paradox of coalition trading. Journal of Theoretical Politics, 7, 41–63.

    CrossRef  Google Scholar 

  • de Clippel, G., & Serrano, R. (2008). Marginal contributions and externalities in the value. Econometrica, 76, 1413–1436.

    CrossRef  MathSciNet  MATH  Google Scholar 

  • Deegan, J., & Packel, E. W. (1978). A new index of power for simple \(n\)-person games. International Journal of Game Theory, 7, 113–123.

    CrossRef  MathSciNet  MATH  Google Scholar 

  • Dutta, B., Ehlers, L., & Kar, A. (2010). Externalities, potential, value and consistency. Journal of Economic Theory, 145, 2380–2411.

    CrossRef  MathSciNet  MATH  Google Scholar 

  • Holler, M. J. (1982). Forming coalitions and measuring voting power. Political Studies, 30, 262–271.

    CrossRef  Google Scholar 

  • Holler, M. J., & Packel, E. W. (1983). Power, luck and the right index. Journal of Economics, 43, 21–29.

    Google Scholar 

  • Johnston, R. J. (1978). On the measurement of power: Some reactions to Laver. Environment and Planning A, 10, 907–914.

    CrossRef  Google Scholar 

  • Myerson, R. B. (1977). Values of games in partition function form. International Journal of Game Theory, 6, 23–31.

    CrossRef  MathSciNet  MATH  Google Scholar 

  • Shapley, L. S. (1953). A value for \(n\)-person games. In A. W. Tucker (Ed.), Contributions to the Theory of Games II (pp. 307–317). Princeton University Press.

    Google Scholar 

  • Shapley, L. S., & Shubik, M. (1954). A method for evaluating the distribution of power in a committee system. American Political Science Review, 48, 787–792.

    CrossRef  Google Scholar 

  • Thrall, R. M., & Lucas, W. F. (1963). \(n\)-Person games in partition function form. Naval Research Logistics Quarterly, 10, 281–298.

    CrossRef  MathSciNet  MATH  Google Scholar 

  • van den Brink, R., Dimitrov, D., & Rusinowska, A. (2021). Winning coalitions in plurality voting democracies. Social Choice and Welfare, 56, 509–330.

    CrossRef  MathSciNet  MATH  Google Scholar 

  • von Neumann, J., & Morgenstern, O. (1944). Theory of games and economic behavior. Princeton University Press.

    Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the valuable comments of an anonymous referee. This work is part of the R+D+I project grants MTM2017-87197-C3-2-P, MTM2017-87197-C3-3-P, PID2021-124030NB-C32 and PID2021-124030NB-C33, that were funded by MCIN/AEI/10.13039/501100011033/ and by “ERDF A way of making Europe”/EU. This research was also funded by Grupos de Referencia Competitiva ED431C-2020/03 and ED431C-2021/24 from the Consellería de Cultura, Educación e Universidades, Xunta de Galicia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Alonso-Meijide .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alonso-Meijide, J.M., Armijos-Toro, L.M., Casas-Méndez, B., Mosquera, M.A. (2023). An Application of Power Indices for the Family of Weighted Majority Games in Partition Function Form. In: Leroch, M.A., Rupp, F. (eds) Power and Responsibility. Springer, Cham. https://doi.org/10.1007/978-3-031-23015-8_8

Download citation