Skip to main content

Cardiorenal Syndrome 1: What’s in a Name?

  • Chapter
  • First Online:
Annual Update in Intensive Care and Emergency Medicine 2023

Abstract

An acute cardiac event leading to acute kidney injury (AKI) is called cardiorenal syndrome type 1 (CRS-1). Depending on the underlying cardiac disorder, the pathophysiology and hence management of CRS-1 can be different. CRS-1 is frequent in patients with acute heart failure and in patients following cardiac surgery and has a negative impact on prognosis. Congestion and perfusion state is essential in the pathogenesis of CRS-1. Other contributing factors are activation of neurohormonal pathways and induction of inflammatory cascades.

Defining CRS-1 in this specific population is challenging due to several limitations. Differentiation between functional AKI, subclinical AKI, and true AKI, based on biomarker assessment, should be targeted in further research. Management of CRS-1 in acute heart failure and after cardiac surgery should primarily focus on hemodynamic optimization which should be tailored to the main mechanism of cardiac dysfunction. Effective and complete decongestion together with achieving normal perfusion will stabilize CRS-1 in most cases. Renal replacement therapy (RRT) is seldom needed and its initiation is based on classic indications of hyperkalemia, metabolic acidosis, and diuretic-resistant fluid overload. Interruptions in goal-directed medical heart failure treatment should be minimized. Other causes of AKI in this patient population should be excluded and treated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ronco C, Haapio M, House AA, Anavekar N, Bellomo R. Cardiorenal syndrome. J Am Coll Cardiol. 2008;52:1527–39.

    Article  PubMed  Google Scholar 

  2. Harjola VP, Mullens W, Banaszewski M, et al. Organ dysfunction, injury and failure in acute heart failure: from pathophysiology to diagnosis and management. A review on behalf of the Acute Heart Failure Committee of the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur J Heart Fail. 2017;19:821–36.

    Article  PubMed  Google Scholar 

  3. Vandenberghe W, Gevaert S, Kellum JA, et al. Acute kidney injury in cardiorenal syndrome type 1 patients: a systematic review and meta-analysis. Cardiorenal Med. 2016;6:116–28.

    Article  PubMed  Google Scholar 

  4. Marenzi G, Assanelli E, Campodonico J, et al. Acute kidney injury in ST-segment elevation acute myocardial infarction complicated by cardiogenic shock at admission. Crit Care Med. 2010;38:438–44.

    Article  PubMed  Google Scholar 

  5. Wang Y, Bellomo R. Cardiac surgery-associated acute kidney injury: risk factors, pathophysiology and treatment. Nat Rev Nephrol. 2017;13:697–711.

    Article  PubMed  Google Scholar 

  6. McDonagh TA, Metra M, Adamo M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42:3599–726.

    Article  CAS  PubMed  Google Scholar 

  7. Rangaswami J, Bhalla V, Blair JEA, et al. Cardiorenal syndrome: classification, pathophysiology, diagnosis, and treatment strategies: a Scientific Statement From the American Heart Association. Circulation. 2019;139:e840–78.

    Article  PubMed  Google Scholar 

  8. Damman K, Navis G, Smilde TD, et al. Decreased cardiac output, venous congestion and the association with renal impairment in patients with cardiac dysfunction. Eur J Heart Fail. 2007;9:872–8.

    Article  PubMed  Google Scholar 

  9. Mullens W, Abrahams Z, Francis GS, et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol. 2009;53:589–96.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Vandenberghe W, Bove T, De Somer F, et al. Impact of mean perfusion pressure and vasoactive drugs on occurrence and reversal of cardiac surgery-associate acute kidney injury: a cohort study. J Crit Care. 2022;71:154101.

    Article  CAS  PubMed  Google Scholar 

  11. Haase M, Muller C, Damman K, et al. Pathogenesis of cardiorenal syndrome type 1 in acute decompensated heart failure: workgroup statements from the eleventh consensus conference of the Acute Dialysis Quality Initiative (ADQI). Contrib Nephrol. 2013;182:99–116.

    Article  PubMed  Google Scholar 

  12. Crespo-Leiro MG, Anker SD, Maggioni AP, et al. European Society of Cardiology Heart Failure Long-Term Registry (ESC-HF-LT): 1-year follow-up outcomes and differences across regions. Eur J Heart Fail. 2016;18:613–25.

    Article  PubMed  Google Scholar 

  13. KDIGO working group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl. 2012;2:1–138.

    Google Scholar 

  14. Lameire NH, Levin A, Kellum JA, et al. Harmonizing acute and chronic kidney disease definition and classification: report of a Kidney Disease: Improving Global Outcomes (KDIGO) Consensus Conference. Kidney Int. 2021;100:516–26.

    Article  PubMed  Google Scholar 

  15. Kellum JA, Sileanu FE, Murugan R, Lucko N, Shaw AD, Clermont G. Classifying AKI by urine output versus serum creatinine level. J Am Soc Nephrol. 2015;26:2231–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Priyanka P, Zarbock A, Izawa J, Gleason TG, Renfurm RW, Kellum JA. The impact of acute kidney injury by serum creatinine or urine output criteria on major adverse kidney events in cardiac surgery patients. J Thorac Cardiovasc Surg. 2021;162:143–51.e7.

    Article  PubMed  Google Scholar 

  17. Schaubroeck H, Vandenberghe W, Boer W, et al. Acute kidney injury in critical COVID-19: a multicenter cohort analysis in seven large hospitals in Belgium. Crit Care. 2022;26:225.

    Article  PubMed  PubMed Central  Google Scholar 

  18. ter Maaten JM, Valente MA, Damman K, Hillege HL, Navis G, Voors AA. Diuretic response in acute heart failure-pathophysiology, evaluation, and therapy. Nat Rev Cardiol. 2015;12:184–92.

    Article  PubMed  Google Scholar 

  19. Koyner JL, Davison DL, Brasha-Mitchell E, et al. Furosemide stress test and biomarkers for the prediction of AKI severity. J Am Soc Nephrol. 2015;26:2023–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mullens W, Damman K, Testani JM, et al. Evaluation of kidney function throughout the heart failure trajectory—a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2020;22:584–603.

    Article  PubMed  Google Scholar 

  21. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P, Acute Dialysis Quality Initiative workgroup. Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004;8:R204–12.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hoste EA, Clermont G, Kersten A, et al. RIFLE criteria for acute kidney injury are associated with hospital mortality in critically ill patients: a cohort analysis. Crit Care. 2006;10:R73.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Breidthardt T, Weidmann ZM, Twerenbold R, et al. Impact of haemoconcentration during acute heart failure therapy on mortality and its relationship with worsening renal function. Eur J Heart Fail. 2017;19:226–36.

    Article  CAS  PubMed  Google Scholar 

  24. Stolfo D, Stenner E, Merlo M, et al. Prognostic impact of BNP variations in patients admitted for acute decompensated heart failure with in-hospital worsening renal function. Heart Lung Circ. 2017;26:226–34.

    Article  CAS  PubMed  Google Scholar 

  25. Metra M, Davison B, Bettari L, et al. Is worsening renal function an ominous prognostic sign in patients with acute heart failure? The role of congestion and its interaction with renal function. Circ Heart Fail. 2012;5:54–62.

    Article  PubMed  Google Scholar 

  26. Ahmad T, Jackson K, Rao VS, et al. Worsening renal function in patients with acute heart failure undergoing aggressive diuresis is not associated with tubular injury. Circulation. 2018;137:2016–28.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wanner C, Heerspink HJL, Zinman B, et al. Empagliflozin and kidney function decline in patients with type 2 diabetes: a slope analysis from the EMPA-REG OUTCOME Trial. J Am Soc Nephrol. 2018;29:2755–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fu EL, Trevisan M, Clase CM, et al. Association of acute increases in plasma creatinine after renin-angiotensin blockade with subsequent outcomes. Clin J Am Soc Nephrol. 2019;14:1336–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Damman K, Tang WH, Testani JM, McMurray JJ. Terminology and definition of changes renal function in heart failure. Eur Heart J. 2014;35:3413–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Damman K, Testani JM. The kidney in heart failure: an update. Eur Heart J. 2015;36:1437–44.

    Article  PubMed  PubMed Central  Google Scholar 

  31. De Loor J, Herck I, Francois K, et al. Diagnosis of cardiac surgery-associated acute kidney injury: differential roles of creatinine, chitinase 3-like protein 1 and neutrophil gelatinase-associated lipocalin: a prospective cohort study. Ann Intensive Care. 2017;7:24.

    Article  PubMed  PubMed Central  Google Scholar 

  32. de Geus HR, Ronco C, Haase M, Jacob L, Lewington A, Vincent JL. The cardiac surgery-associated neutrophil gelatinase-associated lipocalin (CSA-NGAL) score: a potential tool to monitor acute tubular damage. J Thorac Cardiovasc Surg. 2016;151:1476–81.

    Article  PubMed  Google Scholar 

  33. McCullough PA, Shaw AD, Haase M, et al. Diagnosis of acute kidney injury using functional and injury biomarkers: workgroup statements from the tenth Acute Dialysis Quality Initiative Consensus Conference. Contrib Nephrol. 2013;182:13–29.

    Article  PubMed  Google Scholar 

  34. Haase M, Devarajan P, Haase-Fielitz A, et al. The outcome of neutrophil gelatinase-associated lipocalin-positive subclinical acute kidney injury: a multicenter pooled analysis of prospective studies. J Am Coll Cardiol. 2011;57:1752–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Albert C, Albert A, Kube J, et al. Urinary biomarkers may provide prognostic information for subclinical acute kidney injury after cardiac surgery. J Thorac Cardiovasc Surg. 2018;155:2441–52.e13.

    Article  CAS  PubMed  Google Scholar 

  36. Ostermann M, Zarbock A, Goldstein S, et al. Recommendations on acute kidney injury biomarkers from the Acute Disease Quality Initiative Consensus Conference: a consensus statement. JAMA Netw Open. 2020;3:e2019209.

    Article  PubMed  Google Scholar 

  37. Mathew R, Di Santo P, Jung RG, et al. Milrinone as compared with dobutamine in the treatment of cardiogenic shock. N Engl J Med. 2021;385:516–25.

    Article  CAS  PubMed  Google Scholar 

  38. Zhou C, Gong J, Chen D, Wang W, Liu M, Liu B. Levosimendan for prevention of acute kidney injury after cardiac surgery: a meta-analysis of randomized controlled trials. Am J Kidney Dis. 2016;67:408–16.

    Article  CAS  PubMed  Google Scholar 

  39. Tholen M, Ricksten SE, Lannemyr L. Effects of levosimendan on renal blood flow and glomerular filtration in patients with acute kidney injury after cardiac surgery: a double blind, randomized placebo-controlled study. Crit Care. 2021;25:207.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mullens W, Dauw J, Martens P, et al. Acetazolamide in acute decompensated heart failure with volume overload. N Engl J Med. 2022;387:1185–95.

    Article  CAS  PubMed  Google Scholar 

  41. Mullens W, Damman K, Harjola VP, et al. The use of diuretics in heart failure with congestion—a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2019;21:137–55.

    Article  PubMed  Google Scholar 

  42. Luckraz H, Giri R, Wrigley B, et al. Reduction in acute kidney injury post cardiac surgery using balanced forced diuresis: a randomized, controlled trial. Eur J Cardiothorac Surg. 2021;59:562–9.

    Article  PubMed  Google Scholar 

  43. Verbrugge FH, Grieten L, Mullens W. New insights into combinational drug therapy to manage congestion in heart failure. Curr Heart Fail Rep. 2014;11:1–9.

    Article  CAS  PubMed  Google Scholar 

  44. Schulze PC, Bogoviku J, Westphal J, et al. Effects of early empagliflozin initiation on diuresis and kidney function in patients with acute decompensated heart failure (EMPAG-HF). Circulation. 2022;146:289–98.

    Article  CAS  PubMed  Google Scholar 

  45. Gaudry S, Hajage D, Martin-Lefevre L, et al. Comparison of two delayed strategies for renal replacement therapy initiation for severe acute kidney injury (AKIKI 2): a multicentre, open-label, randomised, controlled trial. Lancet. 2021;397:1293–300.

    Article  CAS  PubMed  Google Scholar 

  46. Bagshaw SM, Wald R, Adhikari NKJ, et al. Timing of initiation of renal-replacement therapy in acute kidney injury. N Engl J Med. 2020;383:240–51.

    Article  CAS  PubMed  Google Scholar 

  47. Wald R, Beaubien-Souligny W, Chanchlani R, et al. Delivering optimal renal replacement therapy to critically ill patients with acute kidney injury. Intensive Care Med. 2022;48:1368–81.

    Article  PubMed  Google Scholar 

  48. Costanzo MR, Ronco C, Abraham WT, et al. Extracorporeal ultrafiltration for fluid overload in heart failure: current status and prospects for further research. J Am Coll Cardiol. 2017;69:2428–45.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zarbock A, Kellum JA, Schmidt C, et al. Effect of early vs delayed initiation of renal replacement therapy on mortality in critically ill patients with acute kidney injury: the ELAIN Randomized Clinical Trial. JAMA. 2016;315:2190–9.

    Article  CAS  PubMed  Google Scholar 

  50. Schaubroeck HA, Gevaert S, Bagshaw SM, Kellum JA, Hoste EA. Acute cardiorenal syndrome in acute heart failure: focus on renal replacement therapy. Eur Heart J Acute Cardiovasc Care. 2020;9:802–11.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. A. I. Schaubroeck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schaubroeck, H.A.I., Vandenberghe, W., Hoste, E.A.J. (2023). Cardiorenal Syndrome 1: What’s in a Name?. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2023. Annual Update in Intensive Care and Emergency Medicine. Springer, Cham. https://doi.org/10.1007/978-3-031-23005-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23005-9_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23004-2

  • Online ISBN: 978-3-031-23005-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics