Skip to main content

Privacy-Preserving Authenticated Key Exchange in the Standard Model

  • Conference paper
  • First Online:
Advances in Cryptology – ASIACRYPT 2022 (ASIACRYPT 2022)

Abstract

Privacy-Preserving Authenticated Key Exchange (PPAKE) provides protection both for the session keys and the identity information of the involved parties. In this paper, we introduce the concept of robustness into PPAKE. Robustness enables each user to confirm whether itself is the target recipient of the first round message in the protocol. With the help of robustness, a PPAKE protocol can successfully avoid the heavy redundant communications and computations caused by the ambiguity of communicants in the existing PPAKE, especially in broadcast channels.

We propose a generic construction of robust PPAKE from key encapsulation mechanism (\(\textsf{KEM}\)), digital signature (\(\textsf{SIG}\)), message authentication code (\(\textsf{MAC}\)), pseudo-random generator (\(\textsf{PRG}\)) and symmetric encryption (\(\textsf{SE}\)). By instantiating \(\textsf{KEM},\textsf{MAC},\textsf{PRG}\) from the DDH assumption and \(\textsf{SIG}\) from the CDH assumption, we obtain a specific robust PPAKE scheme in the standard model, which enjoys forward security for session keys, explicit authentication and forward privacy for user identities. Thanks to the robustness of our PPAKE, the number of broadcast messages per run and the computational complexity per user are constant, and in particular, independent of the number of users in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    No security proofs are provided for the three schemes in [19] and its full-version is still not available.

References

  1. Abdalla, M., Izabachène, M., Pointcheval, D.: Anonymous and transparent gateway-based password-authenticated key exchange. In: Franklin, M.K., Hui, L.C.K., Wong, D.S. (eds.) CANS 2008. LNCS, vol. 5339, pp. 133–148. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89641-8_10

    Chapter  Google Scholar 

  2. Alwen, J., Hirt, M., Maurer, U., Patra, A., Raykov, P.: Anonymous authentication with shared secrets. In: Aranha, D.F., Menezes, A. (eds.) LATINCRYPT 2014. LNCS, vol. 8895, pp. 219–236. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16295-9_12

    Chapter  Google Scholar 

  3. Arfaoui, G., Bultel, X., Fouque, P., Nedelcu, A., Onete, C.: The privacy of the TLS 1.3 protocol. Proc. Priv. Enhancing Technol. 2019(4), 190–210 (2019). https://doi.org/10.2478/popets-2019-0065

  4. Bader, C., Hofheinz, D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authenticated key exchange. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol. 9014, pp. 629–658. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-6_26

    Chapter  Google Scholar 

  5. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_33

    Chapter  MATH  Google Scholar 

  6. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_21

    Chapter  Google Scholar 

  7. Boneh, D., Shen, E., Waters, B.: Strongly unforgeable signatures based on computational Diffie-Hellman. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 229–240. Springer, Heidelberg (2006). https://doi.org/10.1007/11745853_15

    Chapter  Google Scholar 

  8. Dingledine, R., Mathewson, N., Syverson, P.F.: Tor: The second-generation onion router. In: Blaze, M. (ed.) Proceedings of the 13th USENIX Security Symposium, 9–13 August 2004, San Diego, CA, USA, pp. 303–320. USENIX (2004). http://www.usenix.org/publications/library/proceedings/sec04/tech/dingledine.html

  9. Dodis, Y., Kiltz, E., Pietrzak, K., Wichs, D.: Message authentication, revisited. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 355–374. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_22

    Chapter  Google Scholar 

  10. Farashahi, R.R., Schoenmakers, B., Sidorenko, A.: Efficient pseudorandom generators based on the DDH assumption. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 426–441. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71677-8_28

    Chapter  Google Scholar 

  11. Gjøsteen, K., Jager, T.: Practical and tightly-secure digital signatures and authenticated key exchange. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 95–125. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_4

    Chapter  Google Scholar 

  12. Heinrich, A., Hollick, M., Schneider, T., Stute, M., Weinert, C.: PrivateDrop: practical privacy-preserving authentication for apple airdrop. In: Bailey, M., Greenstadt, R. (eds.) 30th USENIX Security Symposium, USENIX Security 2021(August), pp. 11–13, pp. 3577–3594. USENIX Association (2021), https://www.usenix.org/conference/usenixsecurity21/presentation/heinrich

  13. Ishibashi, R., Yoneyama, K.: Post-quantum anonymous one-sided authenticated key exchange without random oracles. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.) PKC 2022, Part II. LNCS, vol. 13178, pp. 35–65. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-97131-1_2

    Chapter  Google Scholar 

  14. Krawczyk, H.: SKEME: a versatile secure key exchange mechanism for internet. In: Ellis, J.T., Neuman, B.C., Balenson, D.M. (eds.) 1996 Symposium on Network and Distributed System Security, (S)NDSS 1996, San Diego, CA, USA, 22–23 February 1996, pp. 114–127. IEEE Computer Society (1996). https://doi.org/10.1109/NDSS.1996.492418

  15. Lee, M.-F., Smart, N.P., Warinschi, B., Watson, G.J.: Anonymity guarantees of the UMTS/LTE authentication and connection protocol. Int. J. Inf. Secur. 13(6), 513–527 (2014). https://doi.org/10.1007/s10207-014-0231-3

    Article  Google Scholar 

  16. Li, Y., Schäge, S.: No-match attacks and robust partnering definitions: defining trivial attacks for security protocols is not trivial. In: Thuraisingham, B., Evans, D., Malkin, T., Xu, D. (eds.) Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, Dallas, TX, USA, 30 October–03 November 2017, pp. 1343–1360. ACM (2017). https://doi.org/10.1145/3133956.3134006

  17. Liu, X., Liu, S., Gu, D., Weng, J.: Two-pass authenticated key exchange with explicit authentication and tight security. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part II. LNCS, vol. 12492, pp. 785–814. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_27

    Chapter  Google Scholar 

  18. Lyu, Y., Liu, S., Han, S., Gu, D.: Privacy-preserving authenticated key exchange in the standard model. Cryptology ePrint Archive, Paper 2022/1217 (2022). https://eprint.iacr.org/2022/1217

  19. Ramacher, S., Slamanig, D., Weninger, A.: Privacy-preserving authenticated key exchange: stronger privacy and generic constructions. In: Bertino, E., Shulman, H., Waidner, M. (eds.) ESORICS 2021, Part II. LNCS, vol. 12973, pp. 676–696. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88428-4_33

    Chapter  Google Scholar 

  20. Schäge, S., Schwenk, J., Lauer, S.: Privacy-preserving authenticated key exchange and the case of IKEv2. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part II. LNCS, vol. 12111, pp. 567–596. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45388-6_20

    Chapter  MATH  Google Scholar 

  21. Yang, X., Jiang, H., Hou, M., Zheng, Z., Xu, Q., Choo, K.-K.R.: A provably-secure two-factor authenticated key exchange protocol with stronger anonymity. In: Au, M.H., et al. (eds.) NSS 2018. LNCS, vol. 11058, pp. 111–124. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02744-5_8

    Chapter  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers for their helpful comments. Shengli Liu and You Lyu were partially supported by National Natural Science Foundation of China (NSFC No. 61925207), Guangdong Major Project of Basic and Applied Basic Research (2019B030302008), and the National Key R &D Program of China under Grant 2022YFB2701500. Shuai Han was partially supported by National Natural Science Foundation of China (Grant No. 62002223), Shanghai Sailing Program (20YF1421100), and Young Elite Scientists Sponsorship Program by China Association for Science and Technology (YESS20200185).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengli Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lyu, Y., Liu, S., Han, S., Gu, D. (2022). Privacy-Preserving Authenticated Key Exchange in the Standard Model. In: Agrawal, S., Lin, D. (eds) Advances in Cryptology – ASIACRYPT 2022. ASIACRYPT 2022. Lecture Notes in Computer Science, vol 13793. Springer, Cham. https://doi.org/10.1007/978-3-031-22969-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22969-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22968-8

  • Online ISBN: 978-3-031-22969-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics