Abstract
We propose three interactive zero-knowledge arguments for arithmetic circuit of size N in the common random string model, which can be converted to be non-interactive by Fiat-Shamir heuristics in the random oracle model. First argument features \(O(\sqrt{\log N})\) communication and round complexities and O(N) computational complexity for the verifier. Second argument features \(O(\log N)\) communication and \(O(\sqrt{N})\) computational complexity for the verifier. Third argument features \(O(\log N)\) communication and \(O(\sqrt{N}\log N)\) computational complexity for the verifier. Contrary to first and second arguments, the third argument is free of reliance on pairing-friendly elliptic curves. The soundness of three arguments is proven under the standard discrete logarithm and/or the double pairing assumption, which is at least as reliable as the decisional Diffie-Hellman assumption.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsNotes
- 1.
We often use a terminology ‘transparent’ in the meaning of ‘without trusted setup’.
- 2.
Note that we use the indices \((1,-1)\) instead of (1, 2) since it harmonizes well with the usage of the challenges in Bulletproofs and our generalization of Bulletproofs. e.g., let \({\boldsymbol{a}}={\boldsymbol{a}}_1\Vert {\boldsymbol{a}}_{-1}\) be a witness and x be a challenge, and then \({\boldsymbol{a}}\) is updated to \(\sum _{i=\pm 1}{\boldsymbol{a}}_i x^i\), a witness for the next recursive round.
- 3.
The BP-IP is about two witness vectors \({\boldsymbol{a}}\) and \({\boldsymbol{b}}\) and it can be easily modified with one witness vector \({\boldsymbol{a}}\) and a public \({\boldsymbol{b}}\). e.g., [46]. Our multi-exponentiation argument corresponds to this variant.
- 4.
Note that when the communication complexity is evaluated, we set \(n=2^{\sqrt{\log N}}\) that is much smaller than \(\sqrt{N}=2^{\frac{1}{2}\log N}\), and thus our estimation for computational cost makes sense.
- 5.
Note that this operation is also called “projecting bilinear map" in the context of converting composite-order bilinear groups to prime-order bilinear groups [26].
- 6.
Note that the DL assumption on \({\mathbb {G}}_1\) implies the DL assumption on \({\mathbb {G}}_t\) by the MOV attack [39].
- 7.
If needed, we can appropriately pad zeros in the vectors since zeros do not affect the result of inner-product.
- 8.
More precisely, we use a slightly modified Pedersen commitment scheme in the sense that (1) opening is not an integer but a vector and (2) the random element is always set to be zero since the hiding property is not required.
- 9.
Notice that we use a subscript k in reverse order from \(k=\ell \) to \(k=1\). That is, \(\mathsf {Protocol4.Row}\) reduces an instance from \(P_{k+1}\) to \(P_{k}\).
References
Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-preserving signatures and commitments to group elements. J. Cryptol. 29(2), 363–421 (2016)
Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sublinear arguments without a trusted setup. In ACM CCS 2017, pp. 2087–2104. ACM (2017)
Bayer, S., Groth, J.: Zero-knowledge argument for polynomial evaluation with application to blacklists. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 646–663. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_38
Bellare M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: ACM CCS 1993, pp. 62–73. ACM (1993)
Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and post-quantum secure computational integrity. Cryptology ePrint Archive, Report 2018/046 (2018). https://eprint.iacr.org/2018/046
Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C: verifying program executions succinctly and in zero knowledge. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 90–108. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_6
Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.: Aurora: transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 103–128. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_4
Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 31–60. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5_2
Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero knowledge for a von Neumann architecture. In: USENIX Security, vol. 2014, pp. 781–796 (2014)
Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resistance to succinct non-interactive arguments of knowledge, and back again. In: ITCS 2012, pp. 326–349. Springer (2012)
Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and bootstrapping for snarks and proof-carrying data. In: Symposium on Theory of Computing Conference, STOC 2013, pp. 111–120. ACM(2013)
Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. J. Cryptol. 17(4), 297–319 (2004)
Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 327–357. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_12
Bootle, J., Cerulli, A., Ghadafi, E., Groth, J., Hajiabadi, M., Jakobsen, S.K.: Linear-time zero-knowledge proofs for arithmetic circuit satisfiability. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp. 336–365. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6_12
Bootle, J., Chiesa, A., Liu, S.: Zero-knowledge IOPs with linear-time prover and polylogarithmic-time verifier. In: EUROCRYPT 2022, vol. 13276. LNCS, pp. 275–304. Springer, Cham (2022) https://doi.org/10.1007/978-3-031-07085-3_10
Bosma, W., Lenstra, H.W.: Complete systems of two addition laws for elliptic curves. J. Number Theory 53, 229–240 (1995)
Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: Short proofs for confidential transactions and more. In: IEEE Symposium on Security and Privacy 2018, pp 315–334. IEEE Computer Society (2018)
Bünz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK compilers. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 677–706. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_24
Bünz, B., Maller, M., Mishra, P., Tyagi, N., Vesely, P.: Proofs for inner pairing products and applications. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13092, pp. 65–97. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92078-4_3
Cheon, J.H.: Discrete logarithm problems with auxiliary inputs. J. Cryptol. 23(3), 457–476 (2010)
Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: preprocessing zkSNARKs with universal and updatable SRS. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 738–768. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_26
Chiesa, A., Ojha, D., Spooner, N.: Fractal: post-quantum and transparent recursive proofs from holography. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 769–793. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_27
dalek cryptography:Bulletproofs (2018). https://github.com/dalek-cryptography/bulletproofs
Daza, V., Ràfols, C., Zacharakis, A.: Updateable inner product argument with logarithmic verifier and applications. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12110, pp. 527–557. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45374-9_18
Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12
Freeman, D.M.: Converting pairing-based cryptosystems from composite-order groups to prime-order groups. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 44–61. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_3
Gabizon, A., Williamson, Z.J., Ciobotaru, O.: Plonk: Permutations over lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint Archive, Report 2019/953 (2019). https://eprint.iacr.org/2019/953.pdf
Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_37
Groth, J.: Linear algebra with sub-linear zero-knowledge arguments. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 192–208. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_12
Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_19
Groth, J.: Efficient zero-knowledge arguments from two-tiered homomorphic commitments. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 431–448. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_23
Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_11
Groth, J., Kohlweiss, M.: One-out-of-many proofs: or how to leak a secret and spend a coin. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 253–280. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_9
Hoffmann, M., Klooß, M., Rupp, A.: Efficient zero-knowledge arguments in the discrete log setting, revisited. In: ACM CCS, vol. 2019, pp. 2093–2110 (2019)
Kim, S., Lee, H., Seo, J.H.: Efficient zero-knowledge argument in discrete logarithm setting: Sublogarithmic proof or sublinear verifier. Cryptology ePrint Archive, Paper 2021/1450 (2021). https://eprint.iacr.org/2021/1450
libsnark (2017). https://github.com/scipr-lab/libsnark
Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–189. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_10
Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: Zero-knowledge snarks from linear-size universal and updatable structured reference strings. In ACM CCS 2019, pp. 2111–2128. Association for Computing Machinery (2019)
Menezes, A., Okamoto, T., Vanstone, S.A.: Reducing elliptic curve logarithms to logarithms in a finite field. IEEE Trans. Inf. Theory 39(5), 1639–1646 (1993)
Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: Nearly practical verifiable computation. In: IEEE Symposium on Security and Privacy 2013, pp. 238–252. IEEE (2013)
Renes, J., Costello, C., Batina, L.: Complete addition formulas for prime order elliptic curves. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 403–428. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_16
Savaş, E., Schmidt, T.A., Koç, Ç.K.: Generating elliptic curves of prime order. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 142–158. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44709-1_13
Scott, M.: On the deployment of curve based cryptography for the internet of things. Cryptology ePrint Archive, Report 2020/514 (2020). https://eprint.iacr.org/2020/514
Seo, J.H.: Round-efficient sub-linear zero-knowledge arguments for linear algebra. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 387–402. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19379-8_24
Setty, S.: Spartan: efficient and general-purpose zkSNARKs without trusted setup. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 704–737. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_25
Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient zkSNARKs without trusted setup. In: IEEE Symposium on Security and Privacy 2018, pp. 926–943. IEEE (2018)
Xie, T., Zhang, J., Zhang, Y., Papamanthou, C., Song, D.: Libra: succinct zero-knowledge proofs with optimal prover computation. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 733–764. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_24
Zhang, J., Xie, T., Zhang, Y., Song., D.: Transparent polynomial delegation and its applications to zero knowledge proof. In: IEEE Symposium on Security and Privacy 2020, pp. 859–876. IEEE (2019)
Acknowledgement
We thank Taechan Kim for discussion on complete addition formulas for elliptic curves. This work was supported in part by the Institute of Information and Communications Technology Planning and Evaluation (IITP) grant funded by the Korea Government (MSIT) (A Study on Cryptographic Primitives for SNARK, 50%) under Grant 20210007270012002, and in part by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT), 50%, under Grant 2020R1C1C1A0100696812.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 International Association for Cryptologic Research
About this paper
Cite this paper
Kim, S., Lee, H., Seo, J.H. (2022). Efficient Zero-Knowledge Arguments in Discrete Logarithm Setting: Sublogarithmic Proof or Sublinear Verifier. In: Agrawal, S., Lin, D. (eds) Advances in Cryptology – ASIACRYPT 2022. ASIACRYPT 2022. Lecture Notes in Computer Science, vol 13792. Springer, Cham. https://doi.org/10.1007/978-3-031-22966-4_14
Download citation
DOI: https://doi.org/10.1007/978-3-031-22966-4_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-22965-7
Online ISBN: 978-3-031-22966-4
eBook Packages: Computer ScienceComputer Science (R0)