Skip to main content

Zero-Knowledge Protocols for the Subset Sum Problem from MPC-in-the-Head with Rejection

  • 205 Accesses

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13792)

Abstract

We propose (honest verifier) zero-knowledge arguments for the modular subset sum problem. Previous combinatorial approaches, notably one due to Shamir, yield arguments with cubic communication complexity (in the security parameter). More recent methods, based on the MPC-in-the-head technique, also produce arguments with cubic communication complexity.

We improve this approach by using a secret-sharing over small integers (rather than modulo q) to reduce the size of the arguments and remove the prime modulus restriction. Since this sharing may reveal information on the secret subset, we introduce the idea of rejection to the MPC-in-the-head paradigm. Special care has to be taken to balance completeness and soundness and preserve zero-knowledge of our arguments. We combine this idea with two techniques to prove that the secret vector (which selects the subset) is well made of binary coordinates.

Our new protocols achieve an asymptotic improvement by producing arguments of quadratic size. This improvement is also practical: for a 256-bit modulus q, the best variant of our protocols yields 13 KB arguments while previous proposals gave 1180 KB arguments, for the best general protocol, and 122 KB, for the best protocol restricted to prime modulus. Our techniques can also be applied to vectorial variants of the subset sum problem and in particular the inhomogeneous short integer solution (ISIS) problem for which they provide an efficient alternative to state-of-the-art protocols when the underlying ring is not small and NTT-friendly. We also show the application of our protocol to build efficient zero-knowledge arguments of plaintext and/or key knowledge in the context of fully-homomorphic encryption. When applied to the TFHE scheme, the obtained arguments are more than 20 times smaller than those obtained with previous protocols. Eventually, we use our technique to construct an efficient digital signature scheme based on a pseudo-random function due to Boneh, Halevi, and Howgrave-Graham.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-031-22966-4_13
  • Chapter length: 32 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-031-22966-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 1.

Notes

  1. 1.

    This is due to sub-exponential attacks on the discrete logarithm in the target group which also impacts the size of elements of the second group of the bilinear structure.

  2. 2.

    The \(\lambda ^2\) factor is obtained by \(\lambda \) for the hash digest size times \(\lambda \) for the number of evaluation points in the FRI protocol (which scales with the soundness error). The \(\log ^2\kappa \) factor comes from the size \(\kappa \) of the program verifying the SSP instance.

  3. 3.

    We assume hereafter that \(\delta m \in \mathbb {Z}\). Otherwise, one should take the nearest integer \(\lfloor \delta m \rceil \) instead.

References

  1. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: Lightweight sublinear arguments without a trusted setup. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 2087–2104. ACM Press (2017)

    Google Scholar 

  2. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: BulletProofs: short proofs for confidential transactions and more. In: 2018 IEEE Symposium on Security and Privacy, pp. 315–334. IEEE Computer Society Press (2018)

    Google Scholar 

  3. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and post-quantum secure computational integrity. Cryptology ePrint Archive, Report 2018/046 (2018)

    Google Scholar 

  4. Bonnetain, X., Bricout, R., Schrottenloher, A., Shen, Y.: Improved classical and quantum algorithms for subset-sum. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part II. LNCS, vol. 12492, pp. 633–666. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_22

    CrossRef  Google Scholar 

  5. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.: Aurora: transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 103–128. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_4

    CrossRef  Google Scholar 

  6. Bendlin, R., Damgård, I.: Threshold decryption and zero-knowledge proofs for lattice-based cryptosystems. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 201–218. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_13

    CrossRef  Google Scholar 

  7. Beullens, W., Delpech de Saint Guilhem, C.: LegRoast: efficient post-quantum signatures from the Legendre PRF. In: Ding, J., Tillich, J.-P. (eds.) PQCrypto 2020. LNCS, vol. 12100, pp. 130–150. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44223-1_8

    CrossRef  MATH  Google Scholar 

  8. Baum, C., Damgård, I., Larsen, K.G., Nielsen, M.: How to prove knowledge of small secrets. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part III. LNCS, vol. 9816, pp. 478–498. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3_17

    CrossRef  Google Scholar 

  9. Beullens, W.: Sigma protocols for MQ, PKP and SIS, and fishy signature schemes. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part III. LNCS, vol. 12107, pp. 183–211. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_7

    CrossRef  Google Scholar 

  10. Ben-Or, M., Goldwasser, S., Kilian, J., Wigderson, A.: Efficient identification schemes using two prover interactive proofs. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 498–506. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_44

    CrossRef  Google Scholar 

  11. Boneh, D., Halevi, S., Howgrave-Graham, N.: The modular inversion hidden number problem. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 36–51. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_3

    CrossRef  Google Scholar 

  12. Bootle, J., Lyubashevsky, V., Seiler, G.: Algebraic techniques for short(er) exact lattice-based zero-knowledge proofs. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part I. LNCS, vol. 11692, pp. 176–202. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_7

    CrossRef  Google Scholar 

  13. Baum, C., Nof, A.: Concretely-efficient zero-knowledge arguments for arithmetic circuits and their application to lattice-based cryptography. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part I. LNCS, vol. 12110, pp. 495–526. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45374-9_17

    CrossRef  MATH  Google Scholar 

  14. Bauer, A., Vergnaud, D., Zapalowicz, J.-C.: Inferring sequences produced by nonlinear pseudorandom number generators using coppersmith’s methods. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 609–626. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8_36

    CrossRef  Google Scholar 

  15. Chase, M., et al.: Post-quantum zero-knowledge and signatures from symmetric-key primitives. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 1825–1842. ACM Press (2017)

    Google Scholar 

  16. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homomorphic encryption over the torus. J. Cryptol. 33(1), 34–91 (2020)

    CrossRef  MATH  Google Scholar 

  17. Catalano, D., Gennaro, R., Halevi, S.: Computing inverses over a shared secret modulus. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 190–206. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_14

    CrossRef  Google Scholar 

  18. Coster, M.J., Joux, A., LaMacchia, B.A., Odlyzko, A.M., Schnorr, C., Stern, J.: Improved low-density subset sum algorithms. Comput. Complex. 2, 111–128 (1992)

    CrossRef  MATH  Google Scholar 

  19. Dobraunig, C., Kales, D., Rechberger, C., Schofnegger, M., Zaverucha, G.: Shorter signatures based on tailor-made minimalist symmetric-key crypto. Cryptology ePrint Archive, Report 2021/692 (2021)

    Google Scholar 

  20. Esgin, M.F., Nguyen, N.K., Seiler, G.: Practical exact proofs from lattices: new techniques to exploit fully-splitting rings. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 259–288. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_9

    CrossRef  Google Scholar 

  21. Feneuil, T., Joux, A., Rivain, M.: Syndrome decoding in the head: Shorter signatures from zero-knowledge proofs. Cryptology ePrint Archive, Report 2022/188 (2022)

    Google Scholar 

  22. Feneuil, T., Maire, J., Rivain, M., Vergnaud, D.: Zero-knowledge protocols for the subset sum problem from MPC-in-the-head with rejection. Cryptology ePrint Archive, Report 2022/223 (2022)

    Google Scholar 

  23. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12

    CrossRef  Google Scholar 

  24. Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: faster zero-knowledge for Boolean circuits. In: Holz, T., Savage, S. (eds.) 25th USENIX Security Symposium, USENIX Security 2016, Austin, TX, USA, 10–12 August 2016, pp. 1069–1083. USENIX Association (2016)

    Google Scholar 

  25. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

    CrossRef  MATH  Google Scholar 

  26. Ganesh, C., Orlandi, C., Pancholi, M., Takahashi, A., Tschudi, D.: Fiat-Shamir bulletproofs are non-malleable (in the algebraic group model). Cryptology ePrint Archive, Report 2021/1393 (2021)

    Google Scholar 

  27. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 305–326. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_11

    CrossRef  Google Scholar 

  28. Howgrave-Graham, N., Joux, A.: New generic algorithms for hard knapsacks. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 235–256. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_12

    CrossRef  Google Scholar 

  29. Horowitz, E., Sahni, S.: Computing partitions with applications to the knapsack problem. J. ACM 21(2), 277–292 (1974)

    CrossRef  MATH  Google Scholar 

  30. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge proofs from secure multiparty computation. SIAM J. Comput. 39(3), 1121–1152 (2009)

    CrossRef  MATH  Google Scholar 

  31. Impagliazzo, R., Naor, M.: Efficient cryptographic schemes provably as secure as subset sum. J. Cryptol. 9(4), 199–216 (1996). https://doi.org/10.1007/BF00189260

    CrossRef  MATH  Google Scholar 

  32. Joye, M.: Guide to fully homomorphic encryption over the [discretized] torus. Cryptology ePrint Archive, Report 2021/1402 (2021)

    Google Scholar 

  33. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Proceedings of a symposium on the Complexity of Computer Computations, Held 20–22 March 1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights, New York, USA, The IBM Research Symposia Series, pp. 85–103. Plenum Press, New York (1972)

    Google Scholar 

  34. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with applications to post-quantum signatures. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 525–537. ACM Press (2018)

    Google Scholar 

  35. Kales, D., Zaverucha, G.: Efficient lifting for shorter zero-knowledge proofs and post-quantum signatures. Cryptology ePrint Archive, Paper 2022/588 (2022)

    Google Scholar 

  36. Lindell, Y., Nof, A.: A framework for constructing fast MPC over arithmetic circuits with malicious adversaries and an honest-majority. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 259–276. ACM Press (2017)

    Google Scholar 

  37. Lyubashevsky, V., Nguyen, N.K., Seiler, G.: Shorter lattice-based zero-knowledge proofs via one-time commitments. In: Garay, J.A. (ed.) PKC 2021, Part I. LNCS, vol. 12710, pp. 215–241. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75245-3_9

    CrossRef  Google Scholar 

  38. Ling, S., Nguyen, K., Stehlé, D., Wang, H.: Improved zero-knowledge proofs of knowledge for the ISIS problem, and applications. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 107–124. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7_8

    CrossRef  Google Scholar 

  39. Lyubashevsky, V., Palacio, A., Segev, G.: Public-key cryptographic primitives provably as secure as subset sum. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 382–400. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_23

    CrossRef  Google Scholar 

  40. Ling, S., Shparlinski, I.E., Steinfeld, R., Wang, H.: On the modular inversion hidden number problem. J. Symb. Comput. 47(4), 358–367 (2012)

    CrossRef  MATH  Google Scholar 

  41. Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_35

    CrossRef  Google Scholar 

  42. Merkle, R.C., Hellman, M.E.: Hiding information and signatures in trapdoor knapsacks. IEEE Trans. Inf. Theory 24(5), 525–530 (1978)

    CrossRef  MATH  Google Scholar 

  43. Odlyzko, A.M.: The rise and fall of knapsack cryptosystems. Cryptol. Comput. Number Theory. 42, 75–88 (1990). Lecture Notes AMS Short Course, Boulder/CO (USA) 1989, Proceedings of Symposium on Applied Mathematics

    Google Scholar 

  44. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press (2005)

    Google Scholar 

  45. Shamir, A.: A zero-knowledge proof for knapsacks. Presented at a Workshop on Probabilistic Algorithms, Marseille (1986)

    Google Scholar 

  46. Schroeppel, R., Shamir, A.: A T=O(\(2^{n/2}\)), S=O(\(2^{n/4}\)) algorithm for certain NP-complete problems. SIAM J. Comput. 10(3), 456–464 (1981)

    CrossRef  MATH  Google Scholar 

  47. Stern, J.: A new identification scheme based on syndrome decoding. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_2

    CrossRef  Google Scholar 

  48. Xu, J., Sarkar, S., Hu, L., Wang, H., Pan, Y.: New results on modular inversion hidden number problem and inversive congruential generator. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part I. LNCS, vol. 11692, pp. 297–321. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_11

    CrossRef  Google Scholar 

Download references

Acknowledgements

The authors are supported in part by the French ANR SANGRIA project (ANR-21-CE39-0006). The authors would like to thank Charles Bouillaguet for suggesting investigation of zero-knowledge proofs for the subset sum problem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thibauld Feneuil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 International Association for Cryptologic Research

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Feneuil, T., Maire, J., Rivain, M., Vergnaud, D. (2022). Zero-Knowledge Protocols for the Subset Sum Problem from MPC-in-the-Head with Rejection. In: Agrawal, S., Lin, D. (eds) Advances in Cryptology – ASIACRYPT 2022. ASIACRYPT 2022. Lecture Notes in Computer Science, vol 13792. Springer, Cham. https://doi.org/10.1007/978-3-031-22966-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22966-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22965-7

  • Online ISBN: 978-3-031-22966-4

  • eBook Packages: Computer ScienceComputer Science (R0)