Skip to main content

Abstract

Due to the COVID-19 pandemic, the world has faced a noteworthy challenge in the rise of the rate of morbidity and mortality among people, especially the old, aged patients. The risk of picking up infections may increase at the time of visit that patients make to the hospitals. The application of technology such as the “Internet of Things (IoT)” based on Fog Computing and Cloud Computing turned out to be capable of intensifying the healthcare quality services for the patients. The chapter aims at acquiring a better comprehension and perception into the most effective and new IoT based applications such as Cloud Computing and Fog Computing and their executions in the healthcare field. There are a few research articles chosen after 2015 based on the incorporation and elimination criteria set for the study. The findings of the studies incorporated in this chapter designate that IoT-based Fog Computing and Cloud Computing expand the delivery of healthcare quality services to patients. The technology exhibited high capability in terms of convenience, reliability, safety, and cost-effectiveness. Future studies are needed to incorporate the models that postulated the best quality services using the Fog and Cloud Computation techniques for the different user requirements. Moreover, edge computing could be used to significantly boost the supplies of health services at home.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Khaloufi, H., Abouelmehdi, K., Beni-Hssane, A. (2020). Fog computing for smart healthcare data analytics: an urgent necessity. 1–5. https://doi.org/10.1145/3386723.3387861

  2. Mani, N., Singh, A., & Nimmagadda, S. L. (2020). An IoT guided healthcare monitoring system for managing real-time notifications by fog computing services. Procedia Computer Science, 167, 850–859.

    Article  Google Scholar 

  3. Devarajan, M., Subramaniyaswamy, V., Vijayakumar, V., & Ravi, L. (2019). Fog-assisted personalized healthcare-support system for remote patients with diabetes. Journal of Ambient Intelligence and Humanized Computing, 10, 1–14.

    Article  Google Scholar 

  4. Alshammari, H., ElGhany S. A., Shehab, A. (2021). Big IoT healthcare data analytics framework based on fog and cloud computing. https://doi.org/10.3745/JIPS.04.0193

  5. Fortino, G., Savaglio, C., Spezzano, G., & Zhou, M. (2021). Internet of things as system of systems: a review of methodologies, frameworks, platforms, and tools. IEEE Transactions on Systems, Man, and Cybernetics, 51, 223–236.

    Article  Google Scholar 

  6. Coronato, A., & Cuzzocrea, A. (2020). An innovative risk assessment methodology for medical information systems. IEEE Transactions on Knowledge and Data Engineering, 1, 1.

    Article  Google Scholar 

  7. Kaur, P., Harnal, S., Tiwari, R., Alharithi, F. S., Almulihi, A. H., Noya, I. D., & Goyal, N. (2021). A hybrid convolutional neural network model for diagnosis of COVID-19 using chest X-ray images. International Journal of Environmental Research and Public Health, 18(22), 12191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Verma, P., Tiwari, R., Hong, W. C., Upadhyay, S., & Yeh, Y. H. (2022). FETCH: a deep learning-based fog computing and IoT integrated environment for healthcare monitoring and diagnosis. IEEE Access, 10, 12548–12563.

    Article  Google Scholar 

  9. Ijaz, M., Li, G., Lin, L., Cheikhrouhou, O., Hamam, H., Noor, A. (2020). Integration and applications of fog computing and cloud computing based on the internet of things for provision of healthcare services at home.

    Google Scholar 

  10. Tuli, S., Basumatary, N., Gill, S. S., Kahani, M., Arya, R. C., Wander, G. S., & Buyya, R. (2020). HealthFog: An ensemble deep learning based Smart Healthcare System for Automatic Diagnosis of Heart Diseases in integrated IoT and fog computing environments. Future Generation Computer Systems, 104, 187-200.

    Google Scholar 

  11. Alhussain, T. (2018). Medical big data analysis using big data tools and methods. Journal of Medical Imaging and Health Informatics, 8(4), 793–795.

    Article  Google Scholar 

  12. Kumar, Y., & Mahajan, M. (2019). Intelligent behavior of fog computing with IOT for healthcare system. International Journal of Scientific & Technology Research, 8(7), 674.

    Google Scholar 

  13. Pazienza, A., Anglani, R., Mallardi, G., Fasciano, C., Noviello, P., Tatulli, C., Vitulano, F. (2020). Adaptive critical care intervention in the internet of medical things. In Proceedings of the 2020 IEEE conference on evolving and adaptive intelligent systems (EAIS), Bari, Italy, 27–29 May 2020 (pp. 1–8)

    Google Scholar 

  14. Priyadarshini, R., Barik, R., & Dubey, H. (2018). DeepFog: fog computing-based deep neural architecture for prediction of stress types, diabetes and hypertension attacks. Computation, 6, 62. https://doi.org/10.3390/computation6040062

    Article  Google Scholar 

  15. Garcia Lopez, P., Montresor, A., Epema, D., Datta, A., Higashino, T., Iamnitchi, A., Barcellos, M., Felber, P., & Riviere, E. (2015). Edge-centric computing: vision and challenges. ACM SIGCOMM Computer Communication Review, 45, 37–42.

    Article  Google Scholar 

  16. Barik, R. K., Dubey, H., Mankodiya, K., Sasane, S. A., Misra, C. (2018). GeoFog4Health: a fog-based SDI framework for geospatial health big data analysis. Journal of Ambient Intelligence and Humanized Computing, 1–17

    Google Scholar 

  17. Barik, R. K., Dubey, H., Mankodiya, K. Soa-fog: Secure service-oriented edge computing architecture for smart health big data analytics. In Proceedings of the 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Montreal, QC, Canada, 14–16 November 2017 (pp. 477–481)

    Google Scholar 

  18. Zao, J. K., Gan, T. T., You, C. K., Méndez, S. J. R., Chung, C. E., Te Wang, Y., Mullen, T., Jung, T. P. (2014). Augmented brain computer interaction based on fog computing and linked data. In Proceedings of the 2014 International Conference onIntelligent Environments (IE), Shanghai, China, 30 June–4 July 2014 (pp. 374–377)

    Google Scholar 

  19. Campolo, C., Molinaro, A., Scopigno, R., Ozturk, S., Mišić, J., Mišić, V. B. (2015). The MAC Layer of VANETs. In Vehicular ad hoc Networks; Springer (pp. 83–122)

    Google Scholar 

  20. Santos, J., Wauters, T., Volckaert, B., & De Turck, F. (2018). Fog computing: enabling the management and orchestration of smart city applications in 5G networks. Entropy, 20, 4.

    Article  Google Scholar 

  21. Perera, C., Zaslavsky, A., Christen, P., & Georgakopoulos, D. (2014). Sensing as a service model for smart cities supported by internet of things. Transactions on Emerging Telecommunications Technology, 25, 81–93.

    Article  Google Scholar 

  22. Bonomi, F., Milito, R., Zhu, J., Addepalli, S. (2012). Fog computing and its role in the internet of things. In Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, Helsinki, Finland (pp. 13–16)

    Google Scholar 

  23. Bonomi, F.; Milito, R.; Natarajan, P.; Zhu, J. (2014). Fog computing: A platform for internet of things and analytics. In Big Data and Internet of Things: A Roadmap for Smart Environments; Springer (pp. 169–186

    Google Scholar 

  24. Deng, L., & Liu, Y. (2018). Deep learning in natural language processing. Springer.

    Book  Google Scholar 

  25. Collobert, R., Weston, J. (2008). A unified architecture for natural language processing: deep neural networks with multitask learning. In Proceedings of the 25th International conference on machine learning, Helsinki, Finland (pp. 160–167)

    Google Scholar 

  26. Aloi, G., Fortino, G., Gravina, R., Pace, P., & Savaglio, C. (2021). Simulation-driven platform for edge-based AAL systems. IEEE Journal on Selected Areas in Communications, 39, 446–462.

    Article  Google Scholar 

  27. Gia, T.N.; Jiang, M.; Rahmani, A.M.; Westerlund, T.; Liljeberg, P.; Tenhunen, H. Fog computing in healthcare internet of things: A case study on ecg feature extraction. In Proceedings of the 2015 IEEE international conference on computer and information technology; ubiquitous computing and communications; dependable, autonomic and secure computing; pervasive intelligence and computing (CIT/IUCC/ DASC/PICOM), Liverpool, UK, 26–28 October 2015 (pp. 356–363)

    Google Scholar 

  28. Monteiro, A., Dubey, H., Mahler, L., Yang, Q., Mankodiya, K. FIT A fog computing device for speech teletreatments. arXiv, arXiv:1605.06236

    Google Scholar 

  29. Akrivopoulos, O., Amaxilatis, D., Antoniou, A., Chatzigiannakis, I. (2017) Design and evaluation of a person-centric heart monitoring system over fog computing infrastructure. In Ist ACM international workshop on human-centered sensing, networking, and systems. (pp. 25–30).

    Google Scholar 

  30. Rajasekaran, M., Abdulsalam, Y., Shamim Hossain, M., Alhamid, M. F., & Guizani, M. (2019). Autonomous monitoring in healthcare environment: reward-based energy charging mechanism for IoMT wireless sensing nodes. Future Generation Computer Systems, 98, 565–576.

    Article  Google Scholar 

  31. Choi, E., Bahadori, MT, Song, L, Stewart, WF, Sun, J. (2017) GRAM: Graph-based attention model for healthcare representation learning. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM (pp. 787–795)

    Google Scholar 

  32. Constant, N., Borthakur, D., Abtahi, M., Dubey, H., Mankodiya, K. (2017). Fog-assisted wiot: A smart fog gateway for end-to- end analytics in wearable internet of things. arXiv preprint arXiv:1701.08680.

    Google Scholar 

  33. Azimi, I., Takalo-Mattila, J., Anzanpour, A., Rahmani, A. M., Soininen, J. P., Liljeberg, P. (2018). Empowering health- care IoT systems with hierarchical edge-based deep learning. In 2018 IEEE/ACM international conference on connected health: applications, systems and engineering technologies (CHASE) IEEE (pp. 63–68)

    Google Scholar 

  34. Li, L., Ota, K., & Dong, M. (2018). Deep learning for smart industry: efficient manufacture inspection system with fog computing. IEEE Transactions on Industrial Informatics, 14(10), 4665–4673.

    Article  Google Scholar 

  35. Mahmud, R., Koch, F. L., Buyya, R. (2018). Cloud-fog interoperability in IoT-enabled healthcare solutions. In Proceedings of the 19th International Conference on Distributed Computing and Networking, ACM (p. 32)

    Google Scholar 

  36. Barik, R. K., Priyadarshini, R., Dubey, H., Kumar, V., & Mankodiya, K. (2018). FogLearn: leveraging fog-based machine learning for smart system big data analytics. International Journal of Fog Computing (IJFC), 1(1), 15–34.

    Article  Google Scholar 

  37. Rajkomar, A., Oren, E., Chen, K., Dai, A. M., Hajaj, N., Hardt, M., Liu, P. J., et al. (2018). Scalable and accurate deep learning with electronic health records. NPJ Digital Medicine, 1(1), 18.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Pham, M., Mengistu, Y., Do, H., & Sheng, W. (2018). Delivering home healthcare through a cloud-based smart home environment (CoSHE). Future Generation Computer Systems, 81, 129–140.

    Article  Google Scholar 

  39. Alam, M. G. R., Munir, M. S., Uddin, M. Z., Alam, M. S., Dang, T. N., & Hong, C. S. (2019). Edge-of-things computing framework for cost-effective provisioning of healthcare data. Journal of Parallel and Distributed Computing, 123, 54–60.

    Article  Google Scholar 

  40. Sahoo, P. K., Mohapatra, S. K., & Wu, S.-L. (2018). SLA based healthcare big data analysis and computing in cloud network. Journal of Parallel and Distributed Computing, 119, 121–135.

    Article  Google Scholar 

  41. Abdelmoneem, R.M., Benslimane, A., Shaaban, E., Abdelhamid, S., Ghoneim, S. (2019). A Cloud-Fog Based Architecture for IoT Applications Dedicated to Healthcare.” In ICC 2019–2019 IEEE International Conference on Communications (ICC). IEEE (pp. 1–6). 2019

    Google Scholar 

  42. Rahmani, A. M., Gia, T. N., Negash, B., Anzanpour, A., Azimi, I., Jiang, M., & Liljeberg, P. (2018). Exploiting smart e-Health gateways at the edge of healthcare Internet-of-Things: A fog computing approach. Future Generation Computer Systems, 78, 641–658.

    Article  Google Scholar 

  43. Ahmad, M., Amin, M. B., Hussain, S., Kang, B. H., Cheong, T., & Lee, S. (2016). Health fog: a novel framework for health and wellness applications. J Supercomputer, 72, 3677–3695.

    Article  Google Scholar 

  44. Mishu, M. M. (2019). A patient oriented framework using big data & c-means clustering for biomedical engineering applications, In Proceedings of 2019 International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), Dhaka, Bangladesh (pp. 113–115)

    Google Scholar 

  45. Kraemer, F. A., Braten, A. E., Tamkittikhun, N., & Palma, D. (2017). Fog computing in healthcare–a review and discussion. IEEE Access, 5, 9206–9222.

    Article  Google Scholar 

  46. Tiwari, R., Kumar, N. (2012). Dynamic web caching: for robustness, low latency & disconnection handling. In 2012 2nd IEEE International conference on parallel, distributed and grid computing. IEEE (pp. 909-914).

    Google Scholar 

  47. Rahmani, A. M., Gia, T. N., Negash, B., Anzanpour, A., Azimi, I., Jiang, M., & Liljeberg, P. (2018). Exploiting smart e-Health gateways at the edge of healthcare Internet-of-Things: A fog computing approach. Future Gener. Comput. Syst, 78, 641–658.

    Article  Google Scholar 

  48. Sattar, H., Bajwa, I. S., Amin, R. U., Shafi, U. (2019). Smart wound hydration monitoring using biosensors and fuzzy inference system, Wireless Communication and Mobile Computing, 2019, Article ID 8059629, 15.

    Google Scholar 

  49. Ruman, M. R., Amit, B., Rahman, W., Jahan, K. R., Roni, M. J., Rahman, M. F. (2020). IoT based emergency health monitoring system, In Proceedings of the 2020 International Conference on Industry 4.0 Technology (I4Tech), pp. 159–162, Pune, India, February 2020

    Google Scholar 

  50. Saleem, K., Sarwar Bajwa, I., Sarwar, N., Anwar, W., Ashraf, A. (2020). IoT healthcare: design of smart and cost-effective sleep quality monitoring system. Journal of Sensors. 2020. Article ID 8882378, 17.

    Google Scholar 

  51. He, S., Cheng, B., Wang, H., Huang, Y., & Chen, J. (2017). Proactive personalized services through fog-cloud computing in large-scale IoT-based healthcare application. China Communications, 14(11), 1–16.

    Article  Google Scholar 

  52. Ruiz-Fernández, D., Marcos-Jorquera, D., Gilart-Iglesias, V., Vives-Boix, V., & Ramírez-Navarro, J. (2017). Empowerment of patients with hypertension through BPM, iot and remote sensing. Sensors, 17, 2273.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hamer, M., Gale, C. R., Kivimäki, M., & Batty, G. D. (2020). Overweight, obesity, and risk of hospitalization for COVID-19: a community-based cohort study of adults in the United Kingdom. Proc Natl Acad Sci U S A, 117, 21011–21013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. El-Rashidy, N., El-Sappagh, S., Islam, S. M. R., El-Bakry, H. M., & Abdelrazek, S. (2020). End- To-End deep learning framework for coronavirus (COVID-19) detection and monitoring. Electronics, 9, 1439.

    Article  CAS  Google Scholar 

  55. Liu, Z. P., & Gao, R. (2018). Detecting pathway biomarkers of diabetic progression with differential entropy. J Biomed Inform, 82, 143–153.

    Article  PubMed  Google Scholar 

  56. Wu, H., Yang, S., Huang, Z., He, J., & Wang, X. (2018). Type 2 diabetes mellitus prediction model based on data mining. Informatics in Medicine Unlocked, 10, 100–107.

    Article  Google Scholar 

  57. Sani, M. M., Norhazman, H., Omar, H. A., Zaini, N., Ghani, S. A. (2014). Support vector machine for classification of stress subjects using EEG signals. In Proceedings of the 2014 IEEE Conference on Systems, Process and Control (ICSPC), Kuala Lumpur, Malaysia, 12–14 December 2014 (pp. 127–131)

    Google Scholar 

  58. Xu, Q., Nwe, T. L., & Guan, C. (2015). Cluster-based analysis for personalized stress evaluation using physiological signals. IEEE Journal of Biomedical and Health Informatics, 19, 275–281.

    Article  PubMed  Google Scholar 

  59. Song, S. H., & Kim, D. K. (2017). Development of a stress classification model using deep belief networks for stress monitoring. Healthcare Informatics Research, 23, 285–292.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kahramanli, H., & Allahverdi, N. (2008). Design of a hybrid system for the diabetes and heart diseases. Expert Systems with Applications, 35, 82–89.

    Article  Google Scholar 

  61. Ahmad, A., Mustapha, A., Zahadi, E.D., Masah, N., Yahaya, N. Y. (2011). Comparison between neural networks against decision tree in improving prediction accuracy for diabetes mellitus. In Digital information processing and communications; Springer (pp. 537–545)

    Google Scholar 

  62. Michie, D. J., Spiegelhalter, C. C. (1994). Taylor machine learning, neural and statistical classification; Ellis Horward series in intelligence: New York, NY, USA

    Google Scholar 

  63. Priyadarshini, R., Dash, N., Mishra, R. (2014). A Novel approach to predict diabetes mellitus using modified Extreme learning machine. In Proceedings of the 2014 International Conference on Electronics and Communication Systems (ICECS), Coimbatore, India, 13–14 February 2014 (pp. 1–5)

    Google Scholar 

  64. Kaur, A., & Bhardwaj, A. (2014). Artificial Intelligence in hypertension diagnosis: A review. International Journal of Computer Science and Information Technologies, 5, 2633–2635.

    Google Scholar 

  65. Zhou, R., Cao, Y., Zhao, R., Zhou, Q., Shen, J., Zhou, Q., Zhang, H. (2017). A novel cloud based auxiliary medical system for hypertension management. Applied Computing and Informatics

    Google Scholar 

  66. Sood, S. K., & Mahajan, I. (2018). IoT-fog based healthcare framework to identify and control hypertension attack. IEEE Internet of Things Journal.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jai Prakash Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thakkar, M., Shah, J., Verma, J.P., Tiwari, R. (2023). Smart Healthcare Systems: An IoT with Fog Computing based Solution for Healthcared. In: Tiwari, R., Koundal, D., Upadhyay, S. (eds) Image Based Computing for Food and Health Analytics: Requirements, Challenges, Solutions and Practices. Springer, Cham. https://doi.org/10.1007/978-3-031-22959-6_4

Download citation

Publish with us

Policies and ethics