Skip to main content

Fast Enumeration of Superspecial Hyperelliptic Curves of Genus 4 with Automorphism Group \(V_4\)

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13638)

Abstract

In arithmetic and algebraic geometry, superspecial curves have been studied as one of the most important objects, with practical applications to cryptography and coding theory. The enumeration of those curves is a central problem, but if \(g \ge 4\) it is not even known whether a superspecial curve of genus g exists in general characteristic \(p>0\). In this paper, we propose an algorithm with complexity \(O(p^3)\) to enumerate superspecial hyperelliptic curves of genus 4 with automorphism group \(V_4\), where \(V_4\) is the non-cyclic group of order 4. By executing the algorithm over Magma, we enumerate those curves over \(\overline{\mathbb {F}_p}\) for p up to 200. We also succeeded in finding a superspecial hyperelliptic curve of genus 4 in every characteristic p with \(19 \le p \le 6691\).

Keywords

  • Hyperelliptic curves
  • Superspecial curves
  • Genus-4 curves

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Auer, R., Top, J.: Legendre elliptic curves over finite fields. J. Number Theory 95(2), 303–312 (2002)

    CrossRef  MathSciNet  MATH  Google Scholar 

  2. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24, 235–265 (1997)

    Google Scholar 

  3. Brock, B.W.: Superspecial curves of genera two and three. Thesis (Ph.D.)-Princeton University, 69 pp (1993)

    Google Scholar 

  4. Castryck, W., Decru, T., Benjamin, S.: Hash functions from superspecial genus-2 curves using Richelot isogenies. J. Math. Cryptol. 14, 268–292 (2020)

    CrossRef  MathSciNet  MATH  Google Scholar 

  5. Deuring, M.: Die Typen der Multiplikatorenringe elliptischer Funktionenkörper. Abh. Math. Sem. Univ. Hamburg 14(1), 197–272 (1941)

    CrossRef  MATH  Google Scholar 

  6. Ekedahl, T.: On supersingular curves and abelian varieties. Math. Scand. 60, 151–178 (1987)

    CrossRef  MathSciNet  MATH  Google Scholar 

  7. Fuhrmann, R., Garcia, A., Torres, F.: On maximal curves. J. Number Theory 67, 29–51 (1997)

    CrossRef  MathSciNet  MATH  Google Scholar 

  8. Gutierrez, J., Shaska, T.: Hyperelliptic curves with extra involutions. LMS J. Comput. Math. 8, 102–115 (2005)

    CrossRef  MathSciNet  MATH  Google Scholar 

  9. Hartshorne, R.: Algebraic Geometry. GTM, vol. 52. Springer, New York (1977). https://doi.org/10.1007/978-1-4757-3849-0

    CrossRef  MATH  Google Scholar 

  10. Hashimoto, H.: Class numbers of positive definite ternary quaternion Hermitian forms. Proc. Japan Acad. Ser. A Math. Sci. 59(10), 490–493 (1983)

    CrossRef  MathSciNet  MATH  Google Scholar 

  11. Hashimoto, K., Ibukiyama, T.: On class numbers of positive definite binary quaternion Hermitian forms II. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28(3), 695–699 (1982)

    Google Scholar 

  12. Howe, E.W.: Quickly constructing curves of genus 4 with many points. In: Kohel, D., Shparlinski, I. (eds.) Frobenius Distributions: Sato-Tate and Lang-Trotter conjectures Contemporary Mathematics, vol. 663, pp. 149–173. American Mathematical Society, Providence (2016)

    CrossRef  Google Scholar 

  13. Howe, E.W., Leprévost, F., Poonen, B.: Large torsion subgroups of split Jacobians of curves of genus two or three. Forum Math. 12(3), 315–364 (2000)

    CrossRef  MathSciNet  MATH  Google Scholar 

  14. Hurt, N.E.: Many Rational Points: Coding Theory and Algebraic Geometry. Kluwer Academic Publishers, Dordrecht (2003)

    CrossRef  MATH  Google Scholar 

  15. Ibukiyama, T., Katsura, T., Oort, F.: Supersingular curves of genus two and class numbers. Compositio Math. 57(2), 127–152 (1986)

    MathSciNet  MATH  Google Scholar 

  16. Igusa, J.-I.: Arithmetic variety of moduli for genus two. Ann. Math. 72, 612–649 (1960)

    CrossRef  MathSciNet  MATH  Google Scholar 

  17. Jordan, B.W., Zaytman, Y.: Isogeny graphs of superspecial abelian varieties and generalized Brandt matrices arXiv: 2005.09031v4

  18. Kani, E., Rosen, M.: Idempotent relations and factors of Jacobians. Math. Ann. 284, 307–327 (1989)

    CrossRef  MathSciNet  MATH  Google Scholar 

  19. Katsura, T., Takashima, K.: Decomposed Richelot isogenies of Jacobian varieties of hyperelliptic curves and generalized Howe curves arXiv: 2108.06936

  20. Kudo, M., Harashita, S.: Superspecial curves of genus \(4\) in small characteristic. Finite Fields Appl. 45, 131–169 (2017)

    CrossRef  MathSciNet  MATH  Google Scholar 

  21. Kudo, M., Harashita, S.: Superspecial hyperelliptic curves of genus 4 over small finite fields. In: Budaghyan, L., Rodríguez-Henríquez, F. (eds.) WAIFI 2018. LNCS, vol. 11321, pp. 58–73. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05153-2_3

    CrossRef  MATH  Google Scholar 

  22. Kudo, M., Harashita, S.: Computational approach to enumerate non-hyperelliptic superspecial curves of genus \({\rm 4}\). Tokyo J. Math. 43(1), 259–278 (2020). https://doi.org/10.3836/tjm/1502179310

    CrossRef  MathSciNet  MATH  Google Scholar 

  23. Kudo, M., Harashita, S., Howe, E.W.: Algorithms to enumerate superspecial Howe curves of genus \(4\). In: Proceedings of Fourteenth Algorithmic Number Theory Symposium (ANTS-XIV). Open Book Series, vol. 4 no. 1, pp. 301–316 (2020)

    Google Scholar 

  24. Kudo, M., Harashita, S., Senda, H.: The existence of supersingular curves of genus 4 in arbitrary characteristic. Res. Number Theory 6 (2020). Article Number 44

    Google Scholar 

  25. Li, K.-Z., Oort, F.: Moduli of Supersingular Abelian Varieties. Lecture Notes in Mathematics, vol. 1680. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0095931

    CrossRef  MATH  Google Scholar 

  26. Paulhus, J.: Decomposing Jacobians of curves with extra automorphisms. Acta Arith 132, 231–244 (2008)

    CrossRef  MathSciNet  MATH  Google Scholar 

  27. Stichtenoth, H.: Über die Automorphismengruppe eines algebraischen Funktionenkörpers von Primzahlcharakteristik. I. Eine Abschätzung der Ordnung der Automorphismengruppe. Arch. Math. 24, 527–544 (1973)

    Google Scholar 

  28. https://sites.google.com/view/m-kudo-official-website/english/code/genus4hypv4

Download references

Acknowledgements

The authors thank the referees for valuable comments and suggestions. This work was supported by JSPS Grant-in-Aid for Young Scientists 20K14301, and JSPS Grant-in-Aid for Scientific Research (C) 21K03159.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryo Ohashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ohashi, R., Kudo, M., Harashita, S. (2023). Fast Enumeration of Superspecial Hyperelliptic Curves of Genus 4 with Automorphism Group \(V_4\). In: Mesnager, S., Zhou, Z. (eds) Arithmetic of Finite Fields. WAIFI 2022. Lecture Notes in Computer Science, vol 13638. Springer, Cham. https://doi.org/10.1007/978-3-031-22944-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22944-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22943-5

  • Online ISBN: 978-3-031-22944-2

  • eBook Packages: Computer ScienceComputer Science (R0)