Skip to main content

Optimization of the Workflow in a BOINC-Based Desktop Grid for Virtual Drug Screening

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13708)

Abstract

This paper presents an analysis of a BOINC-based volunteer computing project SiDock@home. The project implements virtual drug screening. We analyse the employed workflow describing the processes of task generation, results creation, validation and assimilation. Basing on this analysis, we propose an optimized workflow aimed at minimization of computing intensity and scaling up the granularity of the results.

Keywords

  • Distributed computing
  • Volunteer computing
  • Desktop grid
  • Task scheduling
  • BOINC
  • Virtual screening
  • Molecular docking

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alnasir, J.J.: Distributed computing in a pandemic: a review of technologies available for tackling COVID-19. arXiv preprint arXiv:2010.04700 (2020)

  2. Amicable numbers. https://sech.me/boinc/Amicable/. Accessed 12 Apr 2022

  3. Anderson, D.P.: BOINC: a platform for volunteer computing. J. Grid Comput. 18(1), 99–122 (2019). https://doi.org/10.1007/s10723-019-09497-9

    CrossRef  Google Scholar 

  4. Bahun, M., et al.: Inhibition of the SARS-CoV-2 3CLpro main protease by plant polyphenols. Food Chem. 373, 131594 (2022). https://doi.org/10.1016/j.foodchem.2021.131594, https://www.sciencedirect.com/science/article/pii/S0308814621026005

  5. Deelman, E., et al.: The future of scientific workflows. Int. J. High Perform. Comput. Appl. 32(1), 159–175 (2018)

    CrossRef  Google Scholar 

  6. Distributed Computing - Computing Platforms. http://distributedcomputing.info/platforms.html. Accessed 12 Apr 2022

  7. Einstein@Home. https://einsteinathome.org. Accessed 12 Apr 2022

  8. Ekins, S., Perryman, A.L., Horta Andrade, C.: OpenZika: an IBM world community grid project to accelerate zika virus drug discovery. PLoS Negl. Trop. Dis. 10(10), 1–5 (2016). https://doi.org/10.1371/journal.pntd.0005023

    CrossRef  Google Scholar 

  9. Gerasim@home main page. https://gerasim.boinc.ru/. Accessed 12 Apr 2022

  10. Ghafarian, T., Javadi, B., Buyya, R.: Decentralised workflow scheduling in volunteer computing systems. Int. J. Parallel Emergent Distrib. Syst. 30(5), 343–365 (2015)

    CrossRef  Google Scholar 

  11. Ghorbani, M., Swift, S., Taylor, S.J., Payne, A.M.: Design of a flexible, user friendly feature matrix generation system and its application on biomedical datasets. J. Grid Comput. 18(3), 507–527 (2020). https://doi.org/10.1007/s10723-020-09518-y

    CrossRef  Google Scholar 

  12. Home - COVID.SI. https://covid.si/en. Accessed 12 Apr 2022

  13. Ivashko, E., Chernov, I., Nikitina, N.: A survey of desktop grid scheduling. IEEE Trans. Parallel Distrib. Syst. 29(12), 2882–2895 (2018)

    CrossRef  Google Scholar 

  14. Jukič, M., Škrlj, B., Tomšič, G., Pleško, S., Podlipnik, Č., Bren, U.: Prioritisation of compounds for 3CL pro inhibitor development on SARS-CoV-2 variants. Molecules 26(10), 3003 (2021). https://www.mdpi.com/1420-3049/26/10/3003

  15. Juve, G., Chervenak, A., Deelman, E., Bharathi, S., Mehta, G., Vahi, K.: Characterizing and profiling scientific workflows. Futur. Gener. Comput. Syst. 29(3), 682–692 (2013)

    CrossRef  Google Scholar 

  16. Leguy, J., Glavatskikh, M., Cauchy, T., Da Mota, B.: Scalable estimator of the diversity for de novo molecular generation resulting in a more robust QM dataset (OD9) and a more efficient molecular optimization. J. Cheminform. 13(1), 1–17 (2021). https://doi.org/10.1186/s13321-021-00554-8

    CrossRef  Google Scholar 

  17. LHC@home. https://lhcathome.web.cern.ch. Accessed 12 Apr 2022

  18. Liew, C.S., Atkinson, M.P., Galea, M., Ang, T.F., Martin, P., Hemert, J.I.V.: Scientific workflows: moving across paradigms. ACM Comput. Surv. (CSUR) 49(4), 1–39 (2016)

    CrossRef  Google Scholar 

  19. Lionta, E., Spyrou, G., Vassilatis, K.D., Cournia, Z.: Structure-based virtual screening for drug discovery: principles, applications and recent advances. Curr. Top. Med. Chem. 14(16), 1923–1938 (2014). https://doi.org/10.2174/1568026614666140929124445, http://www.eurekaselect.com/article/62572

  20. List of distributed computing projects. https://en.wikipedia.org/wiki/List_of_distributed_computing_projects. Accessed 12 Apr 2022

  21. Litzkow, M.J.: Remote Unix: turning idle workstations into cycle servers. In: Proceedings of the Summer USENIX Conference, pp. 381–384 (1987)

    Google Scholar 

  22. Mazalov, V.V., Nikitina, N.N., Ivashko, E.E.: Hierarchical two-level game model for tasks scheduling in a desktop grid. In: 2014 6th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), pp. 541–545 (2014). https://doi.org/10.1109/ICUMT.2014.7002159

  23. Morley, S.D., Afshar, M.: Validation of an empirical RNA-ligand scoring function for fast flexible docking using RiboDock®. J. Comput. Aided Mol. Des. 18(3), 189–208 (2004). https://doi.org/10.1023/B:JCAM.0000035199.48747.1e

    CrossRef  Google Scholar 

  24. Nikitina, N., Ivashko, E., Tchernykh, A.: Congestion game scheduling for virtual drug screening optimization. J. Comput. Aided Mol. Des. 32(2), 363–374 (2018). https://doi.org/10.1007/s10822-017-0093-7

    CrossRef  Google Scholar 

  25. Nikitina, N., Manzyuk, M., Jukić, M., Podlipnik, Č, Kurochkin, I., Albertian, A.: Toward crowdsourced drug discovery: start-up of the volunteer computing project SiDock@home. In: Voevodin, V., Sobolev, S. (eds.) RuSCDays 2021. CCIS, vol. 1510, pp. 513–524. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92864-3_39

    CrossRef  Google Scholar 

  26. Nikitina, N., Manzyuk, M., Podlipnik, Č, Jukić, M.: Performance estimation of a BOINC-based desktop grid for large-scale molecular docking. In: Malyshkin, V. (ed.) PaCT 2021. LNCS, vol. 12942, pp. 348–356. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86359-3_26

    CrossRef  Google Scholar 

  27. Nikitina, N., Manzyuk, M., Podlipnik, Č, Jukić, M.: Volunteer computing project SiDock@home for virtual drug screening against SARS-CoV-2. In: Byrski, A., Czachórski, T., Gelenbe, E., Grochla, K., Murayama, Y. (eds.) ANTICOVID 2021. IAICT, vol. 616, pp. 23–34. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86582-5_3

    CrossRef  Google Scholar 

  28. Pradeep, P., Struble, C., Neumann, T., Sem, D.S., Merrill, S.J.: A novel scoring based distributed protein docking application to improve enrichment. IEEE/ACM Trans. Comput. Biol. Bioinf. 12(6), 1464–1469 (2015)

    CrossRef  Google Scholar 

  29. Quang, B.T., et al.: A comparative analysis of scheduling mechanisms for virtual screening workflow in a shared resource environment. In: 2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pp. 853–862. IEEE (2015)

    Google Scholar 

  30. Rosetta@home. https://boinc.bakerlab.org. Accessed 12 Apr 2022

  31. Ruiz-Carmona, S., et al.: rDock: a fast, versatile and open source program for docking ligands to proteins and nucleic acids. PLoS Comput. Biol. 10(4), e1003571 (2014)

    CrossRef  Google Scholar 

  32. Schrödinger, LLC and Warren DeLano: PyMOL. http://www.pymol.org/pymol, version 2.4.0. Accessed 20 May 2020

  33. Tanrikulu, Y., Krüger, B., Proschak, E.: The holistic integration of virtual screening in drug discovery. Drug Discov. Today 18(7–8), 358–364 (2013)

    CrossRef  Google Scholar 

  34. Together We Are Powerful - Folding@home. https://foldingathome.org. Accessed 12 Apr 2022

  35. Universe@Home. https://universeathome.pl/universe. Accessed 12 Apr 2022

  36. Zimmerman, M.I., et al.: SARS-CoV-2 simulations go exascale to predict dramatic spike opening and cryptic pockets across the proteome. Nat. Chem. 13(7), 651–659 (2021)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Nikitina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nikitina, N., Ivashko, E. (2022). Optimization of the Workflow in a BOINC-Based Desktop Grid for Virtual Drug Screening. In: Voevodin, V., Sobolev, S., Yakobovskiy, M., Shagaliev, R. (eds) Supercomputing. RuSCDays 2022. Lecture Notes in Computer Science, vol 13708. Springer, Cham. https://doi.org/10.1007/978-3-031-22941-1_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22941-1_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22940-4

  • Online ISBN: 978-3-031-22941-1

  • eBook Packages: Computer ScienceComputer Science (R0)