Skip to main content

Introduction to Transition Metals

  • Chapter
  • First Online:
Principles of Inorganic Chemistry
  • 128 Accesses

Abstract

For these metals, the number of valence electrons, the various oxidation states, and their colors in water are described. The typical ligands (Lewis bases) and their arrangement when coordinated to the metal (Lewis acid) are given. These species have a wide range of structures and isomers that are described in this chapter. The bonding is discussed in terms of crystal field, valence bond, and ligand field theories. The latter is used here as a basis for analyzing the colors and magnetic properties of these species. The coverage of these topics includes references published through to mid-2021.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Kaupp, M. J. Compt. Chem. 2006, 28, 320, and references therein.

  2. 2.

    Blake, A. B. J. Chem. Educ. 1981, 58, 393; Cann, P. J. Chem. Educ. 2000, 77, 1056; Lang, P. F.; Smith, B. C. J. Chem. Educ. 2003, 80, 938.

  3. 3.

    Matsumoto, P. S. J. Chem. Educ. 2005, 82, 1660.

  4. 4.

    Jensen, W. B. J. Chem. Educ. 2003, 80, 952; Ibid. 2008, 85, 1182.

  5. 5.

    Didziulis, S. V.; Cohen, S. L.; Butcher, K. D.; Solomon, E. I. Inorg. Chem. 1988, 27, 2238.

  6. 6.

    Wang, X.; Andrews, L.; Riedel, S.; Kaupp, M. Angew. Chem., Int. Ed. 2007, 46, 8371; Rooms, J. F.; Wilson, A. V.; Harvey, I.; Bridgeman, A. J.; Young, N. A. Phys. Chem. Chem. Phys. 2008, 10, 4594.

  7. 7.

    Hrobarik, P.; Kaupp, M.; Riedel, S. Angew. Chem., Int. Ed. 2008, 47, 8631.

  8. 8.

    Burmeister, J. L. Coord. Chem. Rev. 1990, 105, 77.

  9. 9.

    Bacchi, A.; Ferranti, F.; Pelizzi, G. Acta Crystallogr. C 1993, 49, 1163.

  10. 10.

    Coronado, E.; Drillon, M.; Fuertes, A.; Beltran, D.; Mosset, A.; Galy, J. J. Am. Chem. Soc. 1986, 108, 900.

  11. 11.

    Werner, A. Z. Anorg. Chem. 1893, 3, 267.

  12. 12.

    Jørgensen, S. M. Z. Anorg. Chem. 1894, 5, 147.

  13. 13.

    Kauffman, G. B. Coord. Chem. Rev. 1973, 9, 339; Ibid. 1973, 11, 161; Ibid. 1974, 12, 105; Ibid. 1975, 15, 1.

  14. 14.

    Ehnbom, A.; Ghosh, S. K.; Lewis, K. G.; Gladysz, J. A. Chem. Soc. Rev. 2016, 45, 6799.

  15. 15.

    Maigut, J.; Meier, R.; Zahl, A.; van Eldik, R. J. Am. Chem. Soc. 2008, 130, 14,556, and references therein.

  16. 16.

    Casanova, D.; Alemany, P.; Bofill, J. M.; Alvarez, S. Chem. Eur. J. 2003, 9, 1281.

  17. 17.

    Vogt, T.; Fitch, A. N.; Cockroft, J. K. Science 1994, 263, 1265.

  18. 18.

    Giese, S.; Seppelt, K. Angew. Chem., Int. Ed. 1994, 33, 461.

  19. 19.

    Dewan, J. C.; Mialki, W. S.; Walton, R. A.; Lippard, S. J. J. Am. Chem. Soc. 1982, 104, 133.

  20. 20.

    Casanova, D.; Llunell, M.; Alemany, P.; Alvarez, S. Chem. Eur. J. 2005, 11, 1479.

  21. 21.

    Meske, W.; Babel, D. Z. Anorg. Allg. Chem. 1999, 629, 51.

  22. 22.

    Przychodzen, P.; Korzeniak, T.; Podgajny, R.; Sieklucka, S. Coord. Chem. Rev. 2006, 250, 2234; Dunbar, K. R.; Heintz. R. A. Prog. Inorg. Chem. 1997, 45, 283.

  23. 23.

    Basson, S. S.; Leipoldt, J. G.; Bok, L. D. C.; van Vollenhoven, J. S.; Cilliers, P. J. Acta Crystallogr. B 1980, 36, 1765.

  24. 24.

    Bok, L. D. C.; Leipoldt, J. G.; Basson, S. S. Acta Crystallogr. B 1970, 26, 684.

  25. 25.

    Long, J. R.; Bennett, M. V. J. Am. Chem. Soc. 2003, 125, 2394.

  26. 26.

    Werner, A.; King, V. L. Ber. Dtsch. Chem. Ges. 1911, 44, 1887.

  27. 27.

    Werner, A. Ber. Dtsch. Chem. Ges. 1914, 47, 3087.

  28. 28.

    Bernal, I.; Cetrullo, J.; Berhane, S. J. Coord. Chem. 2000, 52, 185.

  29. 29.

    Thewalt, U. Chem. Ber. 1971, 104, 2657.

  30. 30.

    Nakatsu, K.; Shiro, M.; Saito, Y.; Kuroya, H. Bull. Chem. Soc. Jpn. 1957, 30, 158; Farrugia, L. J.; Peacock, R. D.; Stewart, B. Acta Crystallogr. C 2000, 56, 149.

  31. 31.

    Warren, R. M. L.; Haller, K. J.; Tatehata, A.; Lappin, A. G. Inorg. Chem. 1994, 33, 227.

  32. 32.

    Matsumoto, K.; Ooi, S.; Kuroya, H. Bull. Chem. Soc. Jpn. 1970, 43, 3801.

  33. 33.

    Kobayashi, M.; Marumo, F.; Saito, Y. Acta Crystallogr. B 1972, 28, 470; Konno, M.; Marumo, F.; Saito, Y. Acta Crystallogr. B 1973, 29, 739; Okiyama, K.; Sato, S.; Saito, Y. Acta Crystallogr. B 1979, 35, 2389.

  34. 34.

    Jackson, W. G.; McKeon, J. A.; Cortez, S. Inorg. Chem. 2004, 43, 6249, and references therein.

  35. 35.

    Fallab, S.; Zehnder, M.; Thewalt, U. Helv. Chim. Acta 1980, 63, 1491; Springborg, J.; Zehnder, M. Helv. Chim. Acta 1986, 69, 199.

  36. 36.

    Fernelius, W. C.; Bryant, B. E. J. Am. Chem. Soc. 1953, 78, 1735; Trimble, R. F., Jr. J. Chem. Educ. 1954, 31, 176.

  37. 37.

    Bailar, J. C., Jr. J. Chem. Educ. 1957, 34, 334; Kennedy, B. A.; MacQuarrie, D. A.; Brubaker, C. H., Jr. Inorg. Chem. 1964, 3, 326.

  38. 38.

    Bennett, W. E. Inorg. Chem. 1969, 8, 1325; Flisak, Z. J. Mol. Catal. A 2010, 316, 83.

  39. 39.

    Juraj, N. P.; Kirin, S. Coord. Chem. Rev. 2021, 445, #214051.

  40. 40.

    Whuler, P. A.; Brounty, C.; Spinat, P.; Herpin, P. Acta Crystallogr. B 1976, 32, 2542.

  41. 41.

    Maspoch, D.; Ruiz-Molina, D.; Veciana, J. Chem. Soc. Rev. 2007, 36, 770; Murugavel, R.; Choudhury, A.; Walawalkar, M. G.; Pothiraja, R.; Rao, C. N. R. Chem. Rev. 2008, 108, 3549.

  42. 42.

    Wang, Y.; Yu, J.; Guo, M.; Xu, R. Angew. Chem., Int. Ed. 2003, 42, 4089.

  43. 43.

    Zhong, Y.-J.; Chen, Y.-M.; Sun, Y-Q.; Yang, G.-Y. Cryst. Eng. Comm. 2005, 7, 237.

  44. 44.

    Keene, F. R.; Searle, G. H. Inorg. Chem. 1972, 11, 148.

  45. 45.

    Bethe, H. Ann. Phys. 1929, 3, 133.

  46. 46.

    Pauling, L. The Nature of the Chemical Bond; Cornell University Press: Ithaca, N. Y., 1st ed.; 1939; 2nd ed.; 1940; 3rd ed.; 1960.

  47. 47.

    Ballhausen, C. J. J. Chem. Educ. 1979, 56, 215, 294, 357.

  48. 48.

    Kleiner, W. H. J. Chem. Phys. 1952, 20, 1784.

  49. 49.

    Clugston, M. J.; Gordon, R. G. J. Chem. Phys. 1977, 67, 3965, and references therein.

  50. 50.

    Van Vleck, J. H. Phys. Rev. 1932, 41, 208; Schlapp, R.; Penney, W. G. Phys. Rev. 1932, 42, 666.

  51. 51.

    Deeth, R. J. Dalton Trans. 2020, 49, 9641.

  52. 52.

    Oppenheim, J. J.; McNicholas, B. J.; Miller, J.; Gray, H. B. Inorg. Chem. 2019, 58, 15,202.

  53. 53.

    Börgel, J.; Campbell, M. G.; Ritter, T. J. Chem. Educ. 2016, 93, 118.

  54. 54.

    Orgel, L. E. J. Chem. Phys. 1955, 23, 1004, 1819.

  55. 55.

    Pauling, L. The Nature of the Chemical Bond, 3rd ed.; Cornell University Press: Ithaca, N. Y., 1960; pp. 161–168.

  56. 56.

    Taube, H. Chem. Rev. 1952, 50, 59.

  57. 57.

    Dewar, M. J. S. Bull. Chem. Soc. Fr. 1951, 18, C71; Chatt, J.; Duncanson, L. A. J. Chem. Soc. 1953, 2939.

  58. 58.

    Russell, H. N.; Saunders, F. A. Astrophys. J. 1925, 61, 38.

  59. 59.

    Cotton, F. A. Chemical Applications of Group Theory, 2nd ed.; Wiley-Interscience: New York, 1971.

  60. 60.

    The conversion from wavelength to frequency is \(\upnu\) (cm–1) = 107/\(\uplambda\) (nm).

  61. 61.

    Racah, G. Phys. Rev. 1942, 62, 438.

  62. 62.

    Tanabe, Y.; Sugano, S. J. Phys. Soc. Jpn. 1954, 9, 766.

  63. 63.

    Experimental energies will be given to the five figures typical of the literature, but values taken from the diagram will be given to three figures.

  64. 64.

    Schäffer, C. E.; Jørgensen, K. J. Inorg. Nucl. Chem. 1958, 8, 143.

  65. 65.

    Landry-Hum, J.; Bussière, G.; Daniel, C.; Reber, C. Inorg. Chem. 2001, 40, 2595; Dobe, C.; González, E.; Tregenna-Piggott, P. L. W.; Reber, C. Dalton Trans. 2014, 43, 17,864.

  66. 66.

    Solomon, E. I.; Ballhausen, C. J. Mol. Phys. 1975, 29, 279.

  67. 67.

    Triest, M.; Bussière, G.; Bélisle, H.; Reber, C. J. Chem. Educ. 2000, 77, 670; González, E.; Rodrigue-Withchel, A.; Reber, C. Coord. Chem. Rev. 2007, 251, 351; Radon, M.; Drabik, G. J. Chem. Theory Comput. 2018, 14, 4010.

  68. 68.

    Neese, F.; Petrenko, T.; Ganyushin, D.; Olbrich, G. Coord. Chem. Rev. 2007, 251, 288.

  69. 69.

    Cotton, F. A.; Meyers, M. D. J. Am. Chem. Soc. 1960, 82, 5023.

  70. 70.

    Vlahovic, F.; Peric, M.; Gruden-Pavlovic, M.; Zlatar, M. J. Chem. Phys. 2015, 142, #21411; Radon, M.; Drabik, G.; J. Chem. Theory Compt. 2018, 14, 4010.

  71. 71.

    Allen, G. C.; El-Sharkawy, G. A. M.; Warren, K. D. Inorg. Chem. 1971, 10, 2538.

  72. 72.

    Siebert, H.; Breitenstein, B. Z. Anorg. Allg. Chem. 1970, 379, 44.

  73. 73.

    Hector, A. L.; Levanson, W.; Weller, M. T.; Hope, E. G. J. Fluorine Chem. 1997, 84, 161.

  74. 74.

    Vanquickenborne, L. G.; Pierloot, K.; Duyvejonck, E. Chem. Phys. Lett. 1994, 224, 207; Deeth, R. J.; Foulis, D. L.; Williams-Hubbard, B. J. Dalton Trans. 2003, 3949.

  75. 75.

    Wangila, G.; Jordan, R. B. Inorg. Chim. Acta 2003, 343, 347.

  76. 76.

    Johnson, D. A.; Nelson, P. G. Inorg. Chem. 1999, 38, 4949.

  77. 77.

    Vanquickenborne, L. G.; Hendrickx, M.; Hyla-Kryspin, I.; Haspeslagh, L. Inorg. Chem. 1986, 25, 885.

  78. 78.

    Van Vleck, J. H. J. Chem. Phys. 1939, 7, 61.

  79. 79.

    Information on symbols, units, conversion factors, and measurement methods is given by Hatscher, S.; Schilder, H.; Lueken, H.; Urland, W. Pure Appl. Chem. 2006, 77, 497.

  80. 80.

    Griffith, J. S.; Orgel, L. E. Trans. Faraday Soc. 1957, 53, 601.

  81. 81.

    Bühk, M.; Grigoleit, S.; Kabrede, H.; Mauschick, F. T. Chem. Eur. J. 2006, 12, 477.

  82. 82.

    Bramley, R.; Brorson, M.; Sargeson, A. M.; Schäffer, C. E. J. Am. Chem. Soc. 1985, 107, 2780; Juranic, N. Coord. Chem. Rev. 1989, 96, 253; Chan, J. C. C.; Au-Yeung, S. C. F. Annu. Rep. NMR Spectrosc. 2000, 41, 1.

  83. 83.

    Gerstein, B. C.; Gehring, F. D.; Willett, R. D. J. Appl. Phys. 1972, 43, 1932.

  84. 84.

    Willett, R. D.; Twamley, B.; Montfrooij, W.; Granroth, G. E.; Nagler, S. E.; Hall, D. W.; Park, J.-H.; Watson, B. C.; Meisel, M. W.; Talham, D. R. Inorg. Chem. 2006, 45, 7689.

  85. 85.

    Figgis, B. N.; Nyholm, R. S. J. Chem. Soc. 1958, 4190; Ibid. 1959, 331; Cotton, F. A.; Goodgame, D. M. L.; Goodgame, M.; Sacco, A. J. Am. Chem. Soc. 1961, 86, 137.

  86. 86.

    Rade, H.-St. J. Phys. Chem. 1976, 77, 424; Brown, D. B.; Crawford, V. H.; Hall, J. W.; Hatfield, W. E. J. Phys. Chem. 1977, 81, 1303; O’Connor, C. J.; Sinn, E.; Cukauskas, E. J.; Deaver, B. S. Inorg. Chim. Acta 1979, 32, 29.

  87. 87.

    Nelson, D.; ter Haar, L. W. Inorg. Chem. 1993, 32, 182.

  88. 88.

    Jeffery, J. W.; Rose, K. M. Acta Crystallogr. B 1968, 24, 653.

  89. 89.

    Fleisch, J.; Gütlich, P.; Hasselbach, K. M. Inorg. Chem. 1977, 16, 1979.

  90. 90.

    König, E.; Kremer, S. Theor. Chim. Acta 1971, 22, 45.

  91. 91.

    Halcrow, M. A. Chem. Soc. Rev. 2008, 37, 278; Gaspar, A. B.; Seredyuk, M.; Gütlich, P. J. Mol. Struct. 2009, 924–926, 9; Scott, H. S.; Staniland, R. W.; Kruger, P. E. Coord. Chem. Rev. 2018, 362, 24; Shakirova, O. G.; Lavrenova, L. G. Crystals 2020, 10, #843.

  92. 92.

    Money, V. A.; Carbonera, C.; Elhaïk, J.; Halcrow, M. A.; Howard, J. A. K.; Létard, J.-F. Chem. Eur. J. 2007, 13, 5503.

  93. 93.

    Halcrow, M. A.; Berdiell, I. C.; Pask, C. M.; Kulmaczewski, R. Inorg. Chem. 2019, 58, 9811.

  94. 94.

    Tang, J.; Costa, J. S.; Smulders, S.; Molnár, G.; Bousseksou, A.; Teat, S, J.; Li, Y.; van Albada, G. A.; Gamez, P.; Reedijk, J. Inorg. Chem. 2009, 48, 2128; Harding, D. J.; Harding, P.; Phonsri, W. Coord. Chem. Rev. 2016, 313, 38.

  95. 95.

    Drath, O.; Boskovic, C. Coord. Chem. Rev. 2018, 375, 256; Olguín, J. Coord. Chem. Rev. 2020, 407, #213148; Brewer, G. Magnetochemistry 2020, 6, #28.

  96. 96.

    Kumar, K. S.; Ruben, M. Coord. Chem. Rev. 2017, 346, 176; Kumar, K. S.; Bayeh, Y.; Gebretsadik, T.; Elemo, F.; Gebrezgiabher, M.; Thomas, M.; Ruben, M. Dalton Trans. 2019, 48, 15,321; Halcrow, M. Dalton Trans. 2020, 49, 15,560.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert B. Jordan .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jordan, R.B. (2024). Introduction to Transition Metals. In: Principles of Inorganic Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-031-22926-8_8

Download citation

Publish with us

Policies and ethics