Skip to main content

Energy

  • Chapter
  • First Online:
Principles of Inorganic Chemistry
  • 120 Accesses

Abstract

The basic relationships among internal energy, enthalpy, free energy, entropy, and equilibrium constant are given. Bond dissociation enthalpies, their values, and their applications are introduced. Process chemical cycles and isothermal chemical cycles are described. The Born–Haber cycle is used to determine lattice energies, and the relationship of the latter to ionic radius and molecular volume is discussed. The coverage of these topics includes references published through to mid-2021.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    “Standard Thermodynamic Properties of Chemical Substances,” CRC Handbook of Chemistry and Physics, 95th Ed. (Internet Version 2015), W. M. Haynes, ed., CRC Press/Taylor and Francis, Boca Raton, FL; Chase, M. W., Jr.; Davies, C. A.; Downey, J. R., Jr.; Frurip, D. J.; McDonald, R. A.; Syverud, A. N. NIST JANAF Thermochemical Tables, 1985, http://kinetics.nist.gov/janaf/.

  2. 2.

    “Bond Dissociation Energies,” CRC Handbook of Chemistry and Physics, 95th Ed. (Internet Version 2015), W. M. Haynes, ed., CRC Press/Taylor and Francis, Boca Raton, FL; Huheey, J. E.; Keiter, E. A.; Keiter, R. L. Inorganic Chemistry, 4th Ed.; Harper Collins: New York, 1993.

  3. 3.

    Johnson, D. A. Some Thermodynamic Aspects of Inorganic Chemistry, 2nd Ed.; Cambridge University Press: London, 1982; Jolly, W. L. Modern Inorganic Chemistry, 2nd Ed.; McGraw-Hill Inc.: New York, 1991.

  4. 4.

    Pauling, L. Nature of the Chemical Bond, 3rd Ed.; Cornell University Press: Ithaca, 1960.

  5. 5.

    Allred, A. L. J. Inorg. Nucl. Chem. 1961, 17, 215.

  6. 6.

    Korang, J.; Grither, W. R.; McCulla, R. D. J. Phys. Chem. A 2011, 115, 2859; Zheng, W. R.; Guo, Z. L.; Chen, Z. C.; Yang, Q.; Huang, T. Res. Chem. Intermed. 2012, 38, 1791.

  7. 7.

    Grant, D. J.; Matus, M. H.; Switzer, J. R.; Dixon, D. A.; Francisco, J. S.; Christe, K. O. J. Phys. Chem. A 2008, 112, 3145.

  8. 8.

    Typke, V.; Dakkouri, M. J. Mol. Struct. 2001, 599, 177; Ibberson, R. M. Acta Crystallogr. C 2005, 61, o571.

  9. 9.

    Mootz, D.; Merschenz-Quack, A. Acta Crystallogr. C 1988, 44, 926.

  10. 10.

    Hargittai, I.; Mulhoff, F. C. J. Mol. Struct. 1973, 16, 69.

  11. 11.

    Clark, T.; Murray, J. S.; Lane, P.; Politzer, P. J. Mol. Model. 2008, 14, 689.

  12. 12.

    Dobado, J. A.; MartĂ­nez-GarcĂ­a, H.; Molina, J. M.; Sundberg, M. R. J. Am. Chem. Soc. 1999, 121, 3156.

  13. 13.

    Lindquist, B. A.; Dunning, T. H., Jr. Theor. Chem. Acc. 2014, 133, 1443.

  14. 14.

    Schmøkel, M. S.; Cenedse, S.; Overgaard, J.; Jørgensen, M. R. V.; Chen, Y.-S.; Gatti, C.; Stalke, D.; Iversen, B. B. Inorg. Chem. 2012, 51, 8607; Grabowsky, S.; Luger, P.; Buschmann, J.; Schneider, T.; Schirmeister, T.; Sobolev, A. N.; Jayatilaka, D. Angew. Chem., Int. Ed. 2012, 51, 6776; Fugel, M.; Malaspina, L. A.; Pal, R.; Thomas, S. P.; Shi, M. W.; Spackman, M. A.; Sugimoto, K.; Grabowsky, S. Chem. Eur. J. 2019, 25, 6523.

  15. 15.

    Abanades, S.; Charvin, P.; Flamant, G.; Neveu, P. Energy 2006, 31, 2805.

  16. 16.

    Carrillo, R. J.; Scheffe, J. R. Sol. Energy 2017, 156, 3; Bulfin, B.; Vieten, J.; Agrafiotis, C.; Roeb, M.; Sattler, C. J. Mater. Chem. A 2017, 5, 18951; Bayon, A.; de la Calle, A.; Ghose, K. K.; Page, A.; McNaughton, R. Int. J. Hydrogen Energy 2020, 45, 12653.

  17. 17.

    Charvin, P.; Abanades, S.; Lemort, F.; Flamant, G. Energy Convers. Manag. 2008, 49, 1547.

  18. 18.

    Schunk, L. O.; Lipinski, W.; Steinfeld, A. Chem. Eng. J. 2009, 150, 502; Villasmil, W.; Brkic, M.; Wuillemin, D.; Meier, A.; Steinfeld, A. J. Sol. Energy Eng. 2014, 136, #011016.

  19. 19.

    Loutzenhiser, P. G.; Steinfeld, A. Int. J. Hydrogen Energy 2011, 36, 12141; Stamatiou, A.; Steinfeld, A.; Jovanovic, Z. R. Ind. Eng. Chem. Res. 2013, 52, 1859.

  20. 20.

    Muhich, C. L.; Evanko, B. W.; Weston, K. C.; Lichty, P.; Liang, X.; Martinek, J.; Musgrave, C. B.; Weimer, A. W. Science 2013, 341, 540.

  21. 21.

    Ermanoski, I.; Miller, J. E.; Allendorf, M. D. Phys. Chem. Chem. Phys. 2014, 16, 8418.

  22. 22.

    Wang, Z.; Roberts, R. R.; Naterer, G. F.; Gabriel, K. S. Int. J. Hydrogen Energy 2012, 37, 16287; Thengane, S. K.; Hoadley, A.; Bhattacharya, S.; Mitra, S.; Bandyopadhyay, S. Ibid. 2014, 39, 15293; Maggio, G.; Nicita, A.; Squadrito, G. Ibid. 2019, 44, 11371.

  23. 23.

    Treptow, R. S. J. Chem. Educ. 1997, 74, 919.

  24. 24.

    Jenkins, H. D. B. J. Chem. Educ. 2005, 82, 950.

  25. 25.

    Kapustinskii, A. F. Quart. Rev. Chem. Soc. 1956, 10, 283.

  26. 26.

    Roobottom, H. K.; Jenkins, H. D. B.; Passmore, J.; Glasser, L. J. Chem. Educ. 1999, 76, 1570.

  27. 27.

    Leal, J. P. J. Chem. Thermodyn. 2014, 73, 232.

  28. 28.

    Glasser, L. Inorg. Chem. 1995, 34, 4935.

  29. 29.

    Jenkins, H, D. B.; Roobottom, H. K. “Lattice Energies,” CRC Handbook of Chemistry and Physics, 95th Ed. (Internet Version 2015), W. M. Haynes, ed., CRC Press/Taylor and Francis, Boca Raton, FL.

  30. 30.

    Weaver, A.; Arnold, D. W.; Bradforth, S. E.; Neumark, D. M. J. Chem. Phys. 1991, 94, 1740.

  31. 31.

    Rienstra-Kiracofe, J. C.; Tschumper, G. S.; Schaefer, H. F., III Chem. Rev. 2002, 102, 231; “Electron Affinities” CRC Handbook of Chemistry and Physics, 95th Ed. (Internet Version 2015), W. M. Haynes, ed., CRC Press/Taylor and Francis, Boca Raton, FL.

  32. 32.

    Carter, A. J. Chem. Educ. 2000, 77, 1081.

  33. 33.

    Sergeev, A. V.; Kais, S. J. Quantum Chem. 2001, 82, 255; Jordan, K. D.; Voora, V. K.; Simons, J. Theor. Chem. Acc. 2014, 133, 1445.

  34. 34.

    Pearson, R. G. Inorg. Chem. 1991, 30, 2856.

  35. 35.

    Von Szentpály, L. J. Phys. Chem. A 2010, 114, 10891.

  36. 36.

    Cantor, S. J. Chem. Phys. 1973, 59, 5189; Ladd, M. F. C. J. Chem. Phys. 1975, 62, 4583.

  37. 37.

    Glasser, L.; Jenkins, H. D. B. J. Chem. Eng. Data 2011, 56, 874; Glasser, L. J. Solid State Chem. 2013, 206, 139.

  38. 38.

    “Crystallographic Data on Minerals,” CRC Handbook of Chemistry and Physics, 95th Ed. (Internet Version 2015), W. M. Haynes, ed., CRC Press/Taylor and Francis, Boca Raton, FL.

  39. 39.

    Glasser, L; Jenkins, H. B. D. Inorg. Chem. 2008, 47, 6195.

  40. 40.

    Glasser, L. Inorg. Chem. 2013, 52, 992, and references therein.

  41. 41.

    Both NaCl(s) and AgCl(s) have cubic lattices with M–Cl distances of 2.82 and 2.77 Å, respectively, and unit cell volumes of 179.4 Å3 and 170.6 Å3, respectively.

  42. 42.

    Marcus, Y. J. Chem. Soc. Faraday Trans. 1971, 87, 2995; Ibid. Biophysical Chem. 1994, 51, 111.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert B. Jordan .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jordan, R.B. (2024). Energy. In: Principles of Inorganic Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-031-22926-8_4

Download citation

Publish with us

Policies and ethics