Skip to main content

Bioinorganic Chemistry

  • Chapter
  • First Online:
Principles of Inorganic Chemistry
  • 124 Accesses

Abstract

Bioinorganic chemistry is a huge area, and the coverage in this chapter is limited to selected examples of biologically active species in mammals. The essential and possibly essential elements are tabulated, along with their amounts. The biological functions of the main group elements are discussed, and the function of iodide and selenium in selenocysteine to produce thyroxine is described in detail. The biological functions of transition metals are discussed. Detailed examples are given for the function of Zn in carbonic anhydrase and peptidases, of cobalt in coenzyme B12, and of iron in hemoglobin and cytochrome P450s. The coverage of these topics includes references published through to mid-2021.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Bertini, I.; Gray, H. B.; Stiefel, E. I.; Valentine, J. S. Biological Inorganic Chemistry: Structure and Reactivity; University Science Books: Sausalito CA, 2007; Metzler-Nolte, N.; Schatzschneider, U. Bioinorganic Chemistry: A Practical Course; de Gruyter: New York, 2009; Ochiai, E. I. Bioinorganic Chemistry: A Survey; Academic Press: Waltham MA, 2010.

  2. 2.

    Chellan, P.; Sadler, P. J. Philos. Trans. R. Soc. A 2015, 373, #20140182.

  3. 3.

    Vincent, J. B. J. Nutr. 2017, 147, 2212; Ibid. Curr. Opin. Clin. Nutr. Metab. Care 2019, 22, 483.

  4. 4.

    Pham, T. H. N.; Aitken, J. B.; Levina, A.; Lay, P. A. Inorg. Chem. 2014, 53, 10685, and references therein.

  5. 5.

    Valea, A.; Georgescu, C. E. Hormones 2018, 17, 183; Godlewska, M.; Gawel, D.; Buckle, A. M.; Banga, J. P. Horm. Metab. Res. 2019, 51, 765.

  6. 6.

    Mondal, S.; Raja, K.; Schweizer, U.; Mugesh, G. Angew. Chem., Int. Ed. 2016, 55, 7606; Mondal, S.; Manna, D.; Raja, K.; Mugesh, G. ChemBioChem 2020, 21, 911.

  7. 7.

    Agarwal, V.; Miles, Z. D.; Winter, J. M.; Eustáquio, A. S.; El Gamal, A. A.; Moore, B. S. Chem. Rev. 2017, 117, 5619.

  8. 8.

    Reich, H. J.; Hondal, R. J. ACS Chem. Biol. 2016, 11, 821; Mousa, R.; Dardashti, R. N.; Metanis, N. Angew. Chem., Int. Ed. 2017, 56, 15818; Zeida, A.; Trujillo, M.; Ferrer-Sueta, G.; Denicola, A.; Estrin, D. A.; Radi, R. Chem. Rev. 2019, 119, 10829.

  9. 9.

    Janowski, R.; Scanu, S.; Niessing, D.; Madl, T. Acta Crystallogr. F 2016, 72, 743; Borchert, A.; Kalms, J.; Roth, S. R.; Rademacher, M.; Schmidt, A.; Holzhutter, H.-G.; Kuhn, H.; Scheerer, P.; Biochem. Biophys. Acta Mol. Cell Biol. Lipids 2018, 1863, 1095.

  10. 10.

    Orian, L.; Mauri, P.; Roveri, A.; Toppo, S.; Benazzi, L.; Bosello-Travain, V.; De Palma, A.; Maiorino, M.; Miotto, G.; Zaccarin, M.; Polimeno, A.; Flohé, L.; Ursini, F. Free Radical Biol. Med. 2015, 87, 1.

  11. 11.

    Krishnamurthy, V. M.; Kaufman, G. K.; Urbach, A. R.; Gitlin, I.; Gudiksen, K. L.; Weibel, D. B.; Whitesides, G. M. Chem. Rev. 2008, 108, 946; Supuran, C. T. Biochem. J. 2016, 473, 2023.

  12. 12.

    Combs, J. E.; Andring, J. T.; McKenna, R. Methods Enzymol. 2020, 634, 281.

  13. 13.

    Kim, J. K.; Lomelino, C. L.; Avvaru, B. S.; Mahon, B. P.; McKenna, R.; Park, S. Y.; Kim, C. U. IUCRJ 2018, 5, 93.

  14. 14.

    Silverman, D. N.; McKenna, R. Acc. Chem. Res. 2007, 40, 669, and references therein.

  15. 15.

    Pinard, M. A.; Kurian, J. J.; Aggarwal. M.; Agbandje-McKenna, M.; McKenna, R. Acta Crystallogr. F 2016, 72, 573; Kim, C. U.; Song, H.; Avvaru, B. S.; Gruner, S. M.; Park, S.; McKenna, R. Proc. Nat. Acad. Sci. 2016, 113, 5257.

  16. 16.

    Wang, X.; Conway, W.; Burns, R.; McCann, N.; Maeder, M. J. Phys. Chem A 2010, 114, 1734, and references therein.

  17. 17.

    Alterio, V.; Di Fiore, A.; D’Ambrosio, K.; Supuran, C. T.; De Simone, G. Chem. Rev. 2012, 112, 4421; Supuran, C. T. Expert Opin. Drug Discov. 2017, 12, 61; Jonsson, B.-H.; Liljas, A. Biophys. J. 2020, 119, 1275.

  18. 18.

    Vullo, D.; Bhatt, A.; Mahon, B. P.; McKenna, R.; Supuran, C. T. Bioorg. Med. Chem. 2016, 26, 401.

  19. 19.

    Kovalevsky, A.; Aggarawal, M.; Velazquez, H.; Cuneo, M. J.; Blakeley, M. P.; Weiss, K. L.; Smith, J. C.; Fisher, S. Z.; McKenna, R. Structure 2018, 26, 383.

  20. 20.

    Cerdà-Costa, N.; Gomis-Rüth, F. X. Protein Sci. 2014, 23, 123; Klein, T.; Eckhard, U.; Dufour, A.; Solis, N.; Overall, C. M. Chem. Rev. 2018, 118, 1137; Arolas, J. L.; Goulas, T.; Cuppari, A.; Gomis-Rüth, F. X. Chem. Rev. 2018, 118, 5581.

  21. 21.

    Kilshtain-Vardi, A.; Glick, M.; Greenblatt, H. M.; Goldblum, A.; Shoham, G. Acta Crystallogr. D 2003, 59, 323.

  22. 22.

    Szeto, M. W. Y.; Mujika, J. I.; Zurek, J.; Mulholland, A. J.; Harvey, J. N. J. Mol. Struct.: THEOCHEM 2009, 898, 106; Kilshtain, A. V.; Warshel, A. Proteins 2009, 77, 536; Wu, S.; Zhang, C.; Xu, D.; Guo, H. J. Phys. Chem. B 2010, 114, 9259; Bras, N. F.; Fernandes, P. A.; Ramos, M. J.; ACS Catal. 2014, 4, 2587; Feliciano, G. T.; Roque da Silva, A. J. J. Mol. Struct. 2015, 1091, 125; Mu, X.; Zhang, C.; Xu, D. J. Mol. Model. 2016, 22, #132; Valdez, C. E.; Morgenstern, A.; Eberhart, M. E.; Alexandrova, A. N. Phys. Chem. Chem. Phys. 2016, 18, 31744.

  23. 23.

    Wu, S.; Zhang, C.; Cao, R.; Xu, D.; Guo, H. J. Phys. Chem. B 2011, 115, 10360, and references therein.

  24. 24.

    Kimura, E; Shiota, T.; Koike, T.; Shiro, M.; Kodama, M. J. Am. Chem. Soc. 1990, 112, 5803; Kimura, E. Acc. Chem. Res. 2001, 34, 171.

  25. 25.

    Koike, T.; Kajitani, S.; Nakamura, I.; Kimura, E.; Shiro, M. J. Am. Chem. Soc. 1995, 117, 1210.

  26. 26.

    Parkin, G. Chem. Rev. 2004, 104, 699; Wieszczycka, K.; Staszak, K. Coord. Chem. Rev. 2017, 351, 160, and references therein.

  27. 27.

    Aoki, S.; Kimura, E. Chem. Rev. 2004, 104, 769.

  28. 28.

    Dolega, A. Coord. Chem. Rev. 2010, 254, 916.

  29. 29.

    Hodgkin, D. C.; Kamper, J.; Lindsey, J.; MacKay, M.; Pickworth, J.; Robertson, J. H.; Shoemaker, C. B.; White, J. G.; Prosen, R. J.; Trueblood, K. N. Proc. R. Soc. London, Ser A 1957, 242, 228; Stoeckli-Evans, H.; Edmond, E.; Hodgkin, D. C. J. Chem. Soc. Perkin II 1972, 605.

  30. 30.

    Riether, D.; Mulzer, J. Eur. J. Org. Chem. 2003, 30.

  31. 31.

    Gruber, K.; Puffer, B.; Kräutler, B. Chem. Soc. Rev. 2011, 40, 4346; Giedyk, M.; Goliszewska, K.; Gryko, D. Chem. Soc. Rev. 2015, 44, 3391.

  32. 32.

    Kieninger, C.; Deery, E.; Lawrence, A. D.; Podewitz, M.; Wurst, K.; Nemoto-Smith, E.; Widner, F. J.; Baker, J. A.; Jockusch, S.; Kreutz, C. R.; Liedl, K. R.; Gruber, K.; Warren, M. J.; Kräutler, B. Angew. Chem., Int. Ed. 2019, 58, 10756.

  33. 33.

    Jogl, G.; Wang, X.; Mason, S. A.; Kovalevsky, A.; Mustyakimov, M.; Fisher, Z.; Hoffman, C.; Kratky, C.; Langan, P. Acta Crystallogr. D 2011, 67, 584.

  34. 34.

    Ouyang, L.; Rulis, P.; Ching, W. Y.; Nardin, G.; Randaccio, L. Inorg. Chem. 2004, 43, 1235.

  35. 35.

    Jensen, K. P. J. Phys. Chem. B 2005, 109, 10505; Kumar, N.; Kozlowski, P. M. Coord. Chem. Rev. 2017, 333, 71, and references therein.

  36. 36.

    Kieninger, C.; Wurst, K.; Podewitz, M.; Stanley, M.; Deery, E.; Lawrence, A. D.; Liedl, K. R.; Warren, M. J.; Kräutler, B. Angew. Chem., Int. Ed. 2020, 59, 20129.

  37. 37.

    Moore, T. C.; Newmister, S. A.; Rayment, I.; Escalante-Semerena, J. C. Biochemistry 2012, 51, 9647.

  38. 38.

    Hay, B. P.; Finke, R. G. J. Am. Chem. Soc. 1986, 108, 4820.

  39. 39.

    Froese, D. S.; Kochan, G.; Muniz, J. R. C.; Wu, X.; Gileadi, C.; Ugochukwu, E.; Krysztofinska, E.; Gravel, R. A.; Oppermann, U.; Yue, W. W. J. Biol. Chem. 2010, 285, 38204.

  40. 40.

    Bucher, D.; Sandala, G. M.; Durbeej, B.; Radom, L.; Smith, D. M. J. Am. Chem. Soc. 2012, 134, 1591; Buckel, W.; Friedrich, P.; Golding, B. T. Angew. Chem., Int. Ed. 2012, 51, 9974; Brunk, E.; Kellett, W. F.; Richards, N. G. J.; Rothlisberger, U. Biochemistry 2014, 53, 3830; Jost, M.; Born, D. A.; Cracan, V.; Banerjee, R.; Drennan, C. L. J. Biol. Chem. 2015, 290, 26882.

  41. 41.

    Matthews, R. G.; Koutmos, M.; Datta, S. Curr. Opin. Struct. Biol. 2008, 18, 658.

  42. 42.

    Koutmos, M.; Pejchal, R.; Bomer, T. M.; Matthews, R. G.; Smith, J. L. Proc. Nat. Acad. Sci. 2008, 105, 3286, and references therein.

  43. 43.

    Kumar, M.; Kozlowski, P. M. Coord. Chem. Rev. 2017, 333, 71; Spataru, T. J. Organomet. Chem. 2021, 942, #121811.

  44. 44.

    Alfonso-Prieto, M.; Biarnés, X.; Kumar, M.; Rovira, C.; Kozlowski, P. M. J. Phys. Chem. B 2010, 114, 12965.

  45. 45.

    Kozlowski, P. M.; Kamachi, T.; Kumar, M.; Yoshizawa, K. J. Biol. Inorg. Chem. 2012, 17, 611.

  46. 46.

    Chen, S.-L.; Blomberg, M. R. A.; Siegbahn, P. E. M. J. Phys. Chem. B 2011, 115, 4066.

  47. 47.

    Kumar, N.; Kozlowski, P. M. J. Phys. Chem. B 2013, 117, 16044; Kumar, N.; Bucher, D.; Kozlowski, P. M. J. Phys. Chem. B 2019, 123, 2210.

  48. 48.

    Salinas, M.; Flores, E.; López-Garrigós, M.; Levia-Salinas, C. Int. J. Lab. Hem. 2018, 40, 83.

  49. 49.

    Zelder, F.; Zhou, K.; Sonnay, M. Dalton Trans. 2013, 42, 854; Zelder, F. Chem. Commun. 2015, 51, 14004.

  50. 50.

    Bridwell-Rabb, J.; Drennan, C. L. Curr. Opin. Chem. Biol. 2017, 37, 63.

  51. 51.

    Giedyk, M.; Goliszewska, K.; Gryko, D. Chem. Soc. Rev. 2015, 44, 3391.

  52. 52.

    Collman J. P.; Gagne, R. R.; Reed, C. A.; Halbert, T. R.; Lang, G.; Robinson, W. T. J. Am. Chem. Soc. 1975, 97, 1427, and references therein.

  53. 53.

    Jameson, G. B.; Rodley, G. A.; Robinson, W. T.; Gagne, R. R.; Reed, C. A.; Collman, J. P. Inorg. Chem. 1978, 17, 850.

  54. 54.

    Li, J.; Noll, B. C.; Oliver, A. G.; Schulz, C. E.; Scheidt, W. R. J. Am. Chem. Soc. 2013, 135, 15627.

  55. 55.

    Perutz, M. F. Nature 1970, 228, 726.

  56. 56.

    Henry, E. R.; Mozzarelli, A.; Viappiani, C.; Abbruzzetti, S.; Bettati, S.; Ronda, L.; Bruno, S.; Eaton, W. A. Biophys. J. 2015, 109, 1264, and references therein.

  57. 57.

    Hilser, V. J. Nature 2013, 498, 308, and references therein.

  58. 58.

    Yuan, Y.; Tam, M. F.; Simplaceanu, V.; Ho, C. Chem. Rev. 2015, 115, 1702; Shibayama, N.; Ohki, M.; Tame, J. R. H.; Park, S.-Y. J. Biol. Chem. 2017, 292, 18258; Shibayama, N. Biochem. Biophys. Acta Gen. Subj. 2020, 1864, #129335.

  59. 59.

    Lisi, G. P.; Loria, J. P. Chem. Rev. 2016, 116, 6323.

  60. 60.

    Park, S.-Y.; Yokoyama, T.; Shibayama, N.; Shiro, Y.; Tame, J. R. H. J. Mol. Biol. 2006, 360, 690.

  61. 61.

    Walker, V. E. J.; Castillo, N.; Matta, C. F.; Boyd, R. J. J. Phys. Chem. A 2010, 114, 10315.

  62. 62.

    Bren, K. L.; Eisenberg, R.; Gray, H. B. Proc. Nat. Acad. Sci. 2015, 112, 13123.

  63. 63.

    Radon, M.; Pierloot, K. J. Phys. Chem. A 2008, 112, 11824; Shaik, S.; Chen, H. J. Biol. Inorg. Chem. 2011, 16, 841.

  64. 64.

    Ribas-Ariño, J.; Novoa, J. J. Chem. Commun. 2007, 3160; Ali, M. E.; Sanyal, B.; Oppeneer, P. M. J. Phys. Chem. B 2012, 116, 5849; Kitagawa, Y.; Chen, Y.; Nakatani, N.; Nakayama, A.; Hasegawa, J. Phys. Chem. Chem. Phys. 2016, 18, 18137; Kepp, K. P. Coord. Chem. Rev. 2017, 344, 363.

  65. 65.

    Wilson, S. A.; Green, E.; Mathews, I. I.; Benfatto, M.; Hodgson, K. O.; Hedman, B.; Sarangi, R. Proc. Nat. Acad. Sci. 2013, 110, 16333.

  66. 66.

    Schuth, N.; Mebs, S.; Huwald, D.; Wrzolek, P.; Schwalbe, M.; Hemschemeier, A.; Haumann, M. Proc. Nat. Acad. Sci. 2017, 114, 8556.

  67. 67.

    Yan, J. J.; Kroll, T.; Baker, M. L.; Wilson, S. A.; Decréau, R.; Lundberg, M.; Sokaras, D.; Glatzel, P.; Hedman, B.; Hodgson, K. O.; Solomon, E. I. Proc. Nat. Acad. Sci. 2019, 116, 2854.

  68. 68.

    Kepp, K. P.; Dasmeh, P. J. Phys. Chem. B 2013, 117, 3755.

  69. 69.

    Dajnowicz, S.; Seaver, S.; Hanson, B. L.; Fisher, S. Z.; Langan, P.; Kovalevsky, A. Y.; Mueser, T. C. Acta Crystallogr. D 2016, 72, 892; Okonjo, K. O. Biophys. Chem. 2017, 226, 34.

  70. 70.

    Shadrina, M. S.; Peslherbe, G. H.; English, A. M. Biochemistry 2015, 54, 5279.

  71. 71.

    Bringas, M.; Petruk, A. A.; Estrin, D. A.; Capese, L.; Marti, M. A. Scientific Reports 2017, 7, #10926.

  72. 72.

    Huang, X.; Groves, J. T. Chem. Rev. 2018, 118, 2491; Mak, P. J.; Denisov, I. G. Biochim. Biophys. Acta, Proteins Proteomics 2018, 1866, 178; Gray, H. B.; Winkler, J. R. Acc. Chem. Res. 2018, 51, 1850.

  73. 73.

    Denisov, I. G.; Grinkova, Y. V.; Baylon, J. L.; Tajkhorshid, E.; Sligar, S. G. Biochemistry 2015, 54, 2227, and references therein.

  74. 74.

    Guengerich, F. P. ACS Catal. 2018, 8, 10964; Dubey, K. D.; Shaik, S. Acc. Chem. Res. 2019, 52, 389.

  75. 75.

    Sevrioukova, I. F.; Poulos, T. L. Dalton Trans. 2013, 42, 3116.

  76. 76.

    Krest, C. M.; Onderko, E. L.; Yosca, T. H.; Calixto, J. C.; Karp, R. F.; Livada, J.; Rittle, J.; Green, M. T. J. Biol. Chem. 2013, 288, 17074.

  77. 77.

    Moody, P. C. E.; Raven, E. L. Acc. Chem. Res. 2018, 51, 427.

  78. 78.

    Kwon, H.; Basran, J.; Pathak, C.; Hussain, M.; Freeman, S. L.; Fielding, A. J.; Bailey, A. J.; Stefanou, N.; Sparkes, H. A.; Tosha, T.; Yamashita, K.; Hirata, K.; Murakami, H.; Ueno, G.; Ago, H.; Tono, K.; Yamamoto, M.; Sawai, H.; Shiro, Y.; Sugimoto, H.; Raven, E. L.; Moody, P. C. E. Angew. Chem., Int. Ed. 2021, 60, 14578.

  79. 79.

    Conner, K. P.; Schimpf, A. M.; Cruce, A. A.; Mclean, K. J.; Munro, A. W.; Frank, D. J.; Krzyaniak, M. D.; Ortiz de Montellano, P.; Bowman, M. K.; Atkins, W. M. Biochemistry 2014, 53, 1428; Lockart, M. M.; Rodriguez, C. A.; Atkins, W. M.; Bowman, M. K. J. Inorg. Biochem. 2018, 183, 157.

  80. 80.

    Nagano, S.; Poulos, T. L. J. Biol. Chem. 2005, 280, 31659.

  81. 81.

    Sevrioukova, I. F.; Poulos, T. L. Proc. Nat. Acad. Sci. 2017, 114, 486.

  82. 82.

    Sevrioukova, I. F. private communication.

  83. 83.

    Poulos, T. L. Chem. Rev. 2014, 114, 3919; Sheng, Y. W.; Abreu, I. A.; Cabelli, D. E.; Maroney, M. J.; Miller, A. F.; Teixeira, M.; Valentine, J. S. Chem. Rev. 2014, 114, 3854; Alvarez-Paggi, D.; Hannibal, L.; Castro, M. A.; Oviedo-Rouco, S.; Demicheli, V.; Tórtora, V.; Tomasina, F.; Radi, R.; Murgida, D. H. Chem. Rev. 2017, 117, 13382.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert B. Jordan .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jordan, R.B. (2024). Bioinorganic Chemistry. In: Principles of Inorganic Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-031-22926-8_19

Download citation

Publish with us

Policies and ethics