Skip to main content

Natural Language Processing (NLP) Based Innovations for Smart Healthcare Applications in Healthcare 4.0

  • Chapter
  • First Online:
Enabling Technologies for Effective Planning and Management in Sustainable Smart Cities

Abstract

Technology and computation have changed the backdrop of various aspects of our fast-paced lives. Healthcare is one such aspect that has been affected by this change and faces new challenges every day including the challenge of extracting relevant and valuable information from the enormous amount of data that is generated endlessly in this sector. Smart data analytics provides a solution to this problem through the use of Artificial Intelligence and Natural Language Processing (NLP). This paper elucidates the core concept of textual data analytics that is, NLP, its composition, and architecture. We also present the framework of Healthcare 4.0 and NLP’s role in it. Subsequently, we give an elaborated and concise overview of state-of-art NLP technologies that have been employed in various aspects of healthcare and medicine. This paper aims to highlight the role of NLP in smart healthcare and its potential to solve the rising challenges of today’s data-driven society.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Quasim, M. T., Khan, M. A., Algarni, F., & Alshahrani, M. M. (2021). Fundamentals of smart cities. In Smart cities: A data analytics perspective (pp. 3–16). Springer.

    Google Scholar 

  2. Bajaj, D., Bhushan, B., & Yadav, D. (2021). Healthcare 4.0: An insight of architecture, security requirements, pillars and applications. Biomedical Data Mining for Information Retrieval, 103–129. https://doi.org/10.1002/9781119711278.ch4

  3. Shenkar, O., Liang, G., & Shenkar, R. (2022). The last frontier of globalization: Trade and foreign direct investment in healthcare. Journal of International Business Studies, 53(2), 362–374.

    Article  Google Scholar 

  4. Aceto, G., Persico, V., & Pescapé, A. (2018). The role of information and communication technologies in healthcare: Taxonomies, perspectives, and challenges. Journal of Network and Computer Applications, 107, 125–154.

    Article  Google Scholar 

  5. Bahalul Haque, A. K. M., Bhushan, B., Nawar, A., Talha, K. R., & Ayesha, S. J. (2022). Attacks and countermeasures in IoT based smart healthcare applications. In V. E. Balas, V. K. Solanki, & R. Kumar (Eds.), Recent advances in Internet of Things and machine learning. Intelligent systems reference library (Vol. 215). Springer. https://doi.org/10.1007/978-3-030-90119-6_6

    Chapter  Google Scholar 

  6. Sharma, N., Kaushik, I., Bhushan, B., Gautam, S., & Khamparia, A. (2020). Applicability of WSN and biometric models in the field of healthcare. In Deep learning strategies for security enhancement in wireless sensor networks advances in information security, privacy, and ethics (pp. 304–329). https://doi.org/10.4018/978-1-7998-5068-7.ch016.

  7. Wen, A., Fu, S., Moon, S., El Wazir, M., Rosenbaum, A., Kaggal, V. C., et al. (2019). Desiderata for delivering NLP to accelerate healthcare AI advancement and a Mayo Clinic NLP-as-a-service implementation. NPJ Digital Medicine, 2(1), 1–7.

    Article  Google Scholar 

  8. Sheikhalishahi, S., Miotto, R., Dudley, J. T., Lavelli, A., Rinaldi, F., & Osmani, V. (2019). Natural language processing of clinical notes on chronic diseases: A systematic review. JMIR Medical Informatics, 7(2), e12239.

    Article  Google Scholar 

  9. Klang, E., Kummer, B. R., Dangayach, N. S., Zhong, A., Kia, M. A., Timsina, P., et al. (2021). Predicting adult neuroscience intensive care unit admission from emergency department triage using a retrospective, tabular-free text machine learning approach. Scientific Reports, 11(1), 1–9.

    Article  Google Scholar 

  10. Mahbub, M., Srinivasan, S., Danciu, I., Peluso, A., Begoli, E., Tamang, S., & Peterson, G. D. (2022). Unstructured clinical notes within the 24 hours since admission predict short, mid & long-term mortality in adult ICU patients. PLoS One, 17(1), e0262182.

    Article  Google Scholar 

  11. Abokhzam, A. A., Gupta, N. K., & Bose, D. K. (2021). Efficient diabetes mellitus prediction with grid based random forest classifier in association with natural language processing. International Journal of Speech Technology, 24(3), 601–614.

    Article  Google Scholar 

  12. Weissler, E. H., Zhang, J., Lippmann, S., Rusincovitch, S., Henao, R., & Jones, W. S. (2020). Use of natural language processing to improve identification of patients with peripheral artery disease. Circulation: Cardiovascular Interventions, 13(10), e009447.

    Google Scholar 

  13. Sohn, S., Wi, C. I., Wu, S. T., Liu, H., Ryu, E., Krusemark, E., et al. (2018). Ascertainment of asthma prognosis using natural language processing from electronic medical records. Journal of Allergy and Clinical Immunology, 141(6), 2292–2294.

    Article  Google Scholar 

  14. Hossain, M. T., Talukder, M. A. R., & Jahan, N. (2022). Depression prognosis using natural language processing and machine learning from social media status. International Journal of Electrical and Computer Engineering, 12(3), 2847.

    Google Scholar 

  15. Mahatpure, J., Motwani, M., & Shukla, P. K. (2019). An electronic prescription system powered by speech recognition, natural language processing and blockchain technology. International Journal of Science & Technology Research (IJSTR), 8(08), 1454–1462.

    Google Scholar 

  16. Dhanalakshmi, T. S., & Meleet, M. (2020, June). Predicting Clinical Re-admission using Discharge Summaries (PCRUDS). In 2020 5th International Conference on Communication and Electronics Systems (ICCES) (pp. 772–777). IEEE.

    Google Scholar 

  17. Muhlestein, W. E., Monsour, M. A., Friedman, G. N., Zinzuwadia, A., Zachariah, M. A., Coumans, J. V., et al. (2021). Predicting discharge disposition following meningioma resection using a multi-institutional natural language processing model. Neurosurgery, 88(4), 838–845.

    Article  Google Scholar 

  18. Bharti, U., Bajaj, D., Batra, H., Lalit, S., Lalit, S., & Gangwani, A. (2020, June). Medbot: Conversational artificial intelligence powered chatbot for delivering tele-health after covid-19. In 2020 5th International Conference on Communication and Electronics Systems (ICCES) (pp. 870–875). IEEE.

    Google Scholar 

  19. Laxmi, P., Gupta, D., Gopalapillai, R., Amudha, J., & Sharma, K. (2021). A Scalable multi-disease modeled CDSS based on Bayesian network approach for commonly occurring diseases with a NLP-based GUI. In Intelligent systems, technologies and applications (pp. 161–171). Springer.

    Google Scholar 

  20. Khurana, D., Koli, A., Khatter, K., & Singh, S. (2017). Natural language processing: State of the art, current trends and challenges. arXiv preprint arXiv:1708.05148.

    Google Scholar 

  21. Lavanya, P. M., & Sasikala, E. (2021, May). Deep learning techniques on text classification using Natural language processing (NLP) in social healthcare network: A comprehensive survey. In 2021 3rd International Conference on Signal Processing and Communication (ICPSC) (pp. 603–609). IEEE.

    Google Scholar 

  22. Liu, D., Li, Y., & Thomas, M. A. (2017, January). A roadmap for natural language processing research in information systems. In proceedings of the 50th Hawaii international conference on system sciences.

    Google Scholar 

  23. Lertvittayakumjorn, P. (2021). Explainable NLP for human-AI collaboration.

    Google Scholar 

  24. Adnan, K., & Akbar, R. (2019). An analytical study of information extraction from unstructured and multidimensional big data. Journal of Big Data, 6(1), 1–38.

    Article  Google Scholar 

  25. Fei, H., Ren, Y., Zhang, Y., Ji, D., & Liang, X. (2021). Enriching contextualized language model from knowledge graph for biomedical information extraction. Briefings in Bioinformatics, 22(3), bbaa110.

    Article  Google Scholar 

  26. Zirikly, A., Desmet, B., Newman-Griffis, D., Marfeo, E. E., McDonough, C., Goldman, H., & Chan, L. (2022). Information extraction framework for disability determination using a mental functioning use-case. JMIR Medical Informatics, 10(3), e32245.

    Article  Google Scholar 

  27. Liu, X., Chen, H., & Xia, W. (2022). Overview of named entity recognition. Journal of Contemporary Educational Research, 6(5), 65–68.

    Article  Google Scholar 

  28. Li, J., Sun, A., Han, J., & Li, C. (2020). A survey on deep learning for named entity recognition. IEEE Transactions on Knowledge and Data Engineering, 34(1), 50–70.

    Article  Google Scholar 

  29. Li, X., Zhang, H., & Zhou, X. H. (2020). Chinese clinical named entity recognition with variant neural structures based on BERT methods. Journal of Biomedical Informatics, 107, 103422.

    Article  Google Scholar 

  30. Weber, L., Sänger, M., Münchmeyer, J., Habibi, M., Leser, U., & Akbik, A. (2021). HunFlair: An easy-to-use tool for state-of-the-art biomedical named entity recognition. Bioinformatics, 37(17), 2792–2794.

    Article  Google Scholar 

  31. Hassan, A., & Mahmood, A. (2018). Convolutional recurrent deep learning model for sentence classification. Ieee Access, 6, 13949–13957.

    Article  Google Scholar 

  32. Guo, H., Mao, Y., & Zhang, R. (2019). Augmenting data with mixup for sentence classification: An empirical study. arXiv preprint arXiv:1905.08941.

    Google Scholar 

  33. Bagheri, A., Sammani, A., van der Heijden, P. G., Asselbergs, F. W., & Oberski, D. L. (2020). ETM: Enrichment by topic modeling for automated clinical sentence classification to detect patients’ disease history. Journal of Intelligent Information Systems, 55(2), 329–349.

    Article  Google Scholar 

  34. Audebert, N., Herold, C., Slimani, K., & Vidal, C. (2019, September). Multimodal deep networks for text and image-based document classification. In Joint European conference on machine learning and knowledge discovery in databases (pp. 427–443). Springer.

    Google Scholar 

  35. Behera, B., Kumaravelan, G., & Kumar, P. (2019, December). Performance evaluation of deep learning algorithms in biomedical document classification. In 2019 11th International Conference on Advanced Computing (ICoAC) (pp. 220–224). IEEE.

    Google Scholar 

  36. Nadif, M., & Role, F. (2021). Unsupervised and self-supervised deep learning approaches for biomedical text mining. Briefings in Bioinformatics, 22(2), 1592–1603.

    Article  Google Scholar 

  37. Yadav, D., Lalit, N., Kaushik, R., Singh, Y., Yadav, A. K., Bhadane, K. V., ... & Khan, B. (2022). Qualitative analysis of text summarization techniques and its applications in health domain. Computational Intelligence and Neuroscience, Article ID 3411881 (pp. 1-14).

    Google Scholar 

  38. Belwal, R. C., Rai, S., & Gupta, A. (2021). A new graph-based extractive text summarization using keywords or topic modeling. Journal of Ambient Intelligence and Humanized Computing, 12(10), 8975–8990.

    Article  Google Scholar 

  39. Belwal, R. C., Rai, S., & Gupta, A. (2021). Text summarization using topic-based vector space model and semantic measure. Information Processing & Management, 58(3), 102536.

    Article  Google Scholar 

  40. Soares, M. A. C., & Parreiras, F. S. (2020). A literature review on question answering techniques, paradigms and systems. Journal of King Saud University-Computer and Information Sciences, 32(6), 635–646.

    Article  Google Scholar 

  41. Yin, Z., Zhang, C., Goldberg, D. W., & Prasad, S. (2019, March). An NLP-based question answering framework for spatio-temporal analysis and visualization. In Proceedings of the 2019 2nd international conference on geoinformatics and data analysis (pp. 61–65).

    Google Scholar 

  42. Meichanetzidis, K., Toumi, A., de Felice, G., & Coecke, B. (2020). Grammar-aware question-answering on quantum computers. arXiv preprint arXiv:2012.03756.

    Google Scholar 

  43. Yang, S., Wang, Y., & Chu, X. (2020). A survey of deep learning techniques for neural machine translation. arXiv preprint arXiv:2002.07526.

    Google Scholar 

  44. Laskar, S. R., Dutta, A., Pakray, P., & Bandyopadhyay, S. (2019, December). Neural machine translation: English to Hindi. In 2019 IEEE conference on information and communication technology (pp. 1–6). IEEE.

    Google Scholar 

  45. Rahit, K. M., Nabil, R. H., & Huq, M. H. (2019, October). Machine translation from natural language to code using long-short term memory. In Proceedings of the future technologies conference (pp. 56–63). Springer.

    Google Scholar 

  46. Kumar, A., Krishnamurthi, R., Nayyar, A., Sharma, K., Grover, V., & Hossain, E. (2020). A novel smart healthcare design, simulation, and implementation using healthcare 4.0 processes. IEEE Access, 8, 118433–118471.

    Article  Google Scholar 

  47. Li, W., Chai, Y., Khan, F., Jan, S. R. U., Verma, S., Menon, V. G., & Li, X. (2021). A comprehensive survey on machine learning-based big data analytics for IoT-enabled smart healthcare system. Mobile Networks and Applications, 26(1), 234–252.

    Article  Google Scholar 

  48. Islam, M. S., Hasan, M. M., Wang, X., Germack, H. D., & Noor-E-Alam, M. (2018, May). A systematic review on healthcare analytics: Application and theoretical perspective of data mining. In Healthcare (Vol. 6, No. 2, p. 54). MDPI.

    Google Scholar 

  49. Fleuren, L. M., Klausch, T. L., Zwager, C. L., Schoonmade, L. J., Guo, T., Roggeveen, L. F., et al. (2020). Machine learning for the prediction of sepsis: A systematic review and meta-analysis of diagnostic test accuracy. Intensive Care Medicine, 46(3), 383–400.

    Article  Google Scholar 

  50. Thorsen-Meyer, H. C., Nielsen, A. B., Nielsen, A. P., Kaas-Hansen, B. S., Toft, P., Schierbeck, J., et al. (2020). Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: A retrospective study of high-frequency data in electronic patient records. The Lancet Digital Health, 2(4), e179–e191.

    Article  Google Scholar 

  51. Azari, A., Stefanović, Č., Popovski, P., & Cavdar, C. (2019). On the latency-energy performance of NB-IoT systems in providing wide-area IoT connectivity. IEEE Transactions on Green Communications and Networking, 4(1), 57–68.

    Article  Google Scholar 

  52. Khan, S. F. (2017, March). Health care monitoring system in Internet of Things (IoT) by using RFID. In 2017 6th International conference on industrial technology and management (ICITM) (pp. 198–204). IEEE.

    Google Scholar 

  53. Zhan, X., Long, H., Gou, F., Duan, X., Kong, G., & Wu, J. (2021). A convolutional neural network-based intelligent medical system with sensors for assistive diagnosis and decision-making in non-small cell lung cancer. Sensors, 21(23), 7996.

    Article  Google Scholar 

  54. Abdel-Basset, M., Manogaran, G., Gamal, A., & Chang, V. (2019). A novel intelligent medical decision support model based on soft computing and IoT. IEEE Internet of Things Journal, 7(5), 4160–4170.

    Article  Google Scholar 

  55. Velupillai, S., Mowery, D., South, B. R., Kvist, M., & Dalianis, H. (2015). Recent advances in clinical natural language processing in support of semantic analysis. Yearbook of Medical Informatics, 24(01), 183–193.

    Article  Google Scholar 

  56. Mittal, Y. K., Paul, V. K., Rostami, A., Riley, M., & Sawhney, A. (2020). Delay factors in construction of healthcare infrastructure projects: A comparison amongst developing countries. Asian Journal of Civil Engineering, 21(4), 649–661.

    Article  Google Scholar 

  57. CEOWORLD Magazine. (2021, April 27). Revealed: Countries with the best health care systems, 2021. https://ceoworld.biz/2021/04/27/revealed-countries-with-the-best-health-care-systems-2021/

  58. Collins, F. S., & Varmus, H. (2015). A new initiative on precision medicine. New England Journal of Medicine, 372(9), 793–795.

    Article  Google Scholar 

  59. Zhang, X., Kim, J., Patzer, R. E., Pitts, S. R., Patzer, A., & Schrager, J. D. (2017). Prediction of emergency department hospital admission based on natural language processing and neural networks. Methods of Information in Medicine, 56(05), 377–389.

    Article  Google Scholar 

  60. Sterling, N. W., Patzer, R. E., Di, M., & Schrager, J. D. (2019). Prediction of emergency department patient disposition based on natural language processing of triage notes. International Journal of Medical Informatics, 129, 184–188.

    Article  Google Scholar 

  61. Jin, M., Bahadori, M. T., Colak, A., Bhatia, P., Celikkaya, B., Bhakta, R., ... & Kass-hout, T. (2018). Improving hospital mortality prediction with medical named entities and multimodal learning. arXiv preprint arXiv:1811.12276.

    Google Scholar 

  62. Nawab, K., Ramsey, G., & Schreiber, R. (2020). Natural language processing to extract meaningful information from patient experience feedback. Applied Clinical Informatics, 11(02), 242–252.

    Article  Google Scholar 

  63. Bacchi, S., Gluck, S., Tan, Y., Chim, I., Cheng, J., Gilbert, T., et al. (2020). Prediction of general medical admission length of stay with natural language processing and deep learning: A pilot study. Internal and Emergency Medicine, 15(6), 989–995.

    Article  Google Scholar 

  64. Arnaud, É., Elbattah, M., Gignon, M., & Dequen, G. (2021, August). NLP-based prediction of medical specialties at hospital admission using triage notes. In 2021 IEEE 9th International Conference on Healthcare Informatics (ICHI) (pp. 548–553). IEEE.

    Google Scholar 

  65. Young, M., Holmes, N., Kishore, K., Marhoon, N., Amjad, S., Serpa-Neto, A., & Bellomo, R. (2022). Natural language processing diagnosed behavioral disturbance vs confusion assessment method for the intensive care unit: Prevalence, patient characteristics, overlap, and association with treatment and outcome. Intensive Care Medicine, 48(5), 559–569.

    Article  Google Scholar 

  66. Wadia, R., Shifman, M., Levin, F. L., Marenco, L., Brandt, C. A., Cheung, K. H., et al. (2017). A clinical decision support system for monitoring post-colonoscopy patient follow-up and scheduling. AMIA Summits on Translational Science Proceedings, 2017, 295.

    Google Scholar 

  67. Zikos, D., & DeLellis, N. (2018). CDSS-RM: A clinical decision support system reference model. BMC Medical Research Methodology, 18(1), 1–14.

    Article  Google Scholar 

  68. Shen, L., Wright, A., Lee, L. S., Jajoo, K., Nayor, J., & Landman, A. (2021). Clinical decision support system, using expert consensus-derived logic and natural language processing, decreased sedation-type order errors for patients undergoing endoscopy. Journal of the American Medical Informatics Association, 28(1), 95–103.

    Article  Google Scholar 

  69. Leite-Moreira, A., Mendes, A., Pedrosa, A., Rocha-Sousa, A., Azevedo, A., Amaral-Gomes, A., ... & Pimenta, T. (2022). An NLP solution to foster the use of information in electronic health records for efficiency in decision-making in hospital care. arXiv preprint arXiv:2202.12159.

    Google Scholar 

  70. Dino, F., Zandie, R., Abdollahi, H., Schoeder, S., & Mahoor, M. H. (2019, November). Delivering cognitive behavioral therapy using a conversational social robot. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 2089–2095). IEEE.

    Google Scholar 

  71. Chen, C. W., Tseng, S. P., Kuan, T. W., & Wang, J. F. (2020). Outpatient text classification using attention-based bidirectional LSTM for robot-assisted servicing in hospital. Information, 11(2), 106.

    Article  Google Scholar 

  72. Christopherjames, J. E., Saravanan, M., Thiyam, D. B., Sahib, M. Y. B., Ganapathi, M. V., & Milton, A. (2021, August). Natural language processing based human assistive health conversational agent for multi-users. In 2021 Second International Conference on Electronics and Sustainable Communication Systems (ICESC) (pp. 1414–1420). IEEE.

    Google Scholar 

  73. Hassan, A., Ali, M. D., Ahammed, R., Bourouis, S., & Khan, M. M. (2021). Development of NLP-integrated intelligent web system for E-mental health. In Computational and mathematical methods in medicine.

    Google Scholar 

  74. Sheikhalishahi, S., Miotto, R., Dudley, J. T., Lavelli, A., Rinaldi, F., & Osmani, V. (2019). Natural language processing of clinical notes on chronic diseases: Systematic review. JMIR Medical Informatics, 7(2), e12239.

    Article  Google Scholar 

  75. Jackson, R. G., Patel, R., Jayatilleke, N., Kolliakou, A., Ball, M., Gorrell, G., et al. (2017). Natural language processing to extract symptoms of severe mental illness from clinical text: The clinical record interactive search comprehensive data extraction (CRIS-CODE) project. BMJ Open, 7(1), e012012.

    Article  Google Scholar 

  76. Van Le, D., Montgomery, J., Kirkby, K. C., & Scanlan, J. (2018). Risk prediction using natural language processing of electronic mental health records in an inpatient forensic psychiatry setting. Journal of Biomedical Informatics, 86, 49–58.

    Article  Google Scholar 

  77. Mulyana, S., Hartati, S., & Wardoyo, R. (2019, October). A processing model using natural language processing (nlp) for narrative text of medical record for producing symptoms of mental disorders. In 2019 Fourth International Conference on Informatics and Computing (ICIC) (pp. 1–6). IEEE.

    Google Scholar 

  78. Mukhiya, S. K., Ahmed, U., Rabbi, F., Pun, K. I., & Lamo, Y. (2020, July). Adaptation of IDPT system based on patient-authored text data using NLP. In 2020 IEEE 33rd international symposium on Computer-Based Medical Systems (CBMS) (pp. 226–232). IEEE.

    Google Scholar 

  79. Ridgway, J. P., Uvin, A., Schmitt, J., Oliwa, T., Almirol, E., Devlin, S., & Schneider, J. (2021). Natural language processing of clinical notes to identify mental illness and substance use among people living with HIV: Retrospective cohort study. JMIR Medical Informatics, 9(3), e23456.

    Article  Google Scholar 

  80. Karunakaran, B., Misra, D., Marshall, K., Mathrawala, D., & Kethireddy, S. (2017, December). Closing the loop—Finding lung cancer patients using NLP. In 2017 IEEE international conference on big data (big data) (pp. 2452–2461). IEEE.

    Google Scholar 

  81. Si, Y., & Roberts, K. (2018). A frame-based NLP system for cancer-related information extraction. In AMIA annual symposium proceedings (Vol. 2018, p. 1524). American Medical Informatics Association.

    Google Scholar 

  82. Mowery, D. L., Kawamoto, K., Bradshaw, R., Kohlmann, W., Schiffman, J. D., Weir, C., et al. (2019). Determining onset for familial breast and colorectal cancer from family history comments in the electronic health record. AMIA Summits on Translational Science Proceedings, 2019, 173.

    Google Scholar 

  83. Alawad, M., Yoon, H. J., Gao, S., Mumphrey, B., Wu, X. C., Durbin, E. B., et al. (2020). Privacy-preserving deep learning NLP models for cancer registries. IEEE Transactions on Emerging Topics in Computing, 9(3), 1219–1230.

    Article  Google Scholar 

  84. Deshmukh, P. R., & Phalnikar, R. (2021). Information extraction for prognostic stage prediction from breast cancer medical records using NLP and ML. Medical & Biological Engineering & Computing, 59(9), 1751–1772.

    Article  Google Scholar 

  85. Yoon, H. J., Stanley, C., Christian, J. B., Klasky, H. B., Blanchard, A. E., Durbin, E. B., et al. (2022). Optimal vocabulary selection approaches for privacy-preserving deep NLP model training for information extraction and cancer epidemiology. Cancer Biomarkers, 33(2), 185–198.

    Article  Google Scholar 

  86. Patterson, O. V., Freiberg, M. S., Skanderson, M. J., Fodeh, S., Brandt, C. A., & DuVall, S. L. (2017). Unlocking echocardiogram measurements for heart disease research through natural language processing. BMC Cardiovascular Disorders, 17(1), 1–11.

    Article  Google Scholar 

  87. Afzal, N., Mallipeddi, V. P., Sohn, S., Liu, H., Chaudhry, R., Scott, C. G., et al. (2018). Natural language processing of clinical notes for identification of critical limb ischemia. International Journal of Medical Informatics, 111, 83–89.

    Article  Google Scholar 

  88. Thaiparnit, S., Kritsanasung, S., & Chumuang, N. (2019, July). A classification for patients with heart disease based on hoeffding tree. In 2019 16th International Joint Conference on Computer Science and Software Engineering (JCSSE) (pp. 352–357). IEEE.

    Google Scholar 

  89. Bagheri, A., Groenhof, T. K. J., Veldhuis, W. B., de Jong, P. A., Asselbergs, F. W., & Oberski, D. L. (2020). Multimodal learning for cardiovascular risk prediction using EHR data. arXiv preprint arXiv:2008.11979.

    Google Scholar 

  90. Sammani, A., Bagheri, A., van der Heijden, P. G., Te Riele, A. S., Baas, A. F., Oosters, C. A. J., et al. (2021). Automatic multilabel detection of ICD10 codes in Dutch cardiology discharge letters using neural networks. NPJ Digital Medicine, 4(1), 1–10.

    Article  Google Scholar 

  91. Zaman, S., Petri, C., Vimalesvaran, K., Howard, J., Bharath, A., Francis, D., et al. (2022). Automatic diagnosis labeling of cardiovascular MRI by using semisupervised natural language processing of text reports. Radiology. Artificial Intelligence, 4(1), e210085.

    Google Scholar 

  92. Weng, W. H., Wagholikar, K. B., McCray, A. T., Szolovits, P., & Chueh, H. C. (2017). Medical subdomain classification of clinical notes using a machine learning-based natural language processing approach. BMC Medical Informatics and Decision Making, 17(1), 1–13.

    Article  Google Scholar 

  93. Chen, T., Dredze, M., Weiner, J. P., Hernandez, L., Kimura, J., & Kharrazi, H. (2019). Extraction of geriatric syndromes from electronic health record clinical notes: Assessment of statistical natural language processing methods. JMIR Medical Informatics, 7(1), e13039.

    Article  Google Scholar 

  94. Liu, R., Greenstein, J. L., Sarma, S. V., & Winslow, R. L. (2019, July). Natural language processing of clinical notes for improved early prediction of septic shock in the ICU. In 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 6103–6108). IEEE.

    Google Scholar 

  95. Oliwa, T., Furner, B., Schmitt, J., Schneider, J., & Ridgway, J. P. (2021). Development of a predictive model for retention in HIV care using natural language processing of clinical notes. Journal of the American Medical Informatics Association, 28(1), 104–112.

    Article  Google Scholar 

  96. Chen, L., Gu, Y., Ji, X., Sun, Z., Li, H., Gao, Y., & Huang, Y. (2020). Extracting medications and associated adverse drug events using a natural language processing system combining knowledge base and deep learning. Journal of the American Medical Informatics Association, 27(1), 56–64.

    Article  Google Scholar 

  97. Wang, J., Abu-el-Rub, N., Gray, J., Pham, H. A., Zhou, Y., Manion, F. J., et al. (2021). COVID-19 SignSym: A fast adaptation of a general clinical NLP tool to identify and normalize COVID-19 signs and symptoms to OMOP common data model. Journal of the American Medical Informatics Association, 28(6), 1275–1283.

    Article  Google Scholar 

  98. Song, G., Chung, S. J., Seo, J. Y., Yang, S. Y., Jin, E. H., Chung, G. E., et al. (2022). Natural language processing for information extraction of gastric diseases and its application in large-scale clinical research. Journal of Clinical Medicine, 11(11), 2967.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tyagi, N., Bhushan, B. (2023). Natural Language Processing (NLP) Based Innovations for Smart Healthcare Applications in Healthcare 4.0. In: Ahad, M.A., Casalino, G., Bhushan, B. (eds) Enabling Technologies for Effective Planning and Management in Sustainable Smart Cities. Springer, Cham. https://doi.org/10.1007/978-3-031-22922-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22922-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22921-3

  • Online ISBN: 978-3-031-22922-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics