Skip to main content
  • 392 Accesses

Abstract

In today’s modern and developing world, security and privacy are essential ingredients for ensuring data safety and the legitimate access of one’s information for most of the real-time applications they utilize, be it using smartphones, laptops, tablets, or electronic gadgets which are connected through the Internet thus making it an easy target to leverage the security of that device, resulting in enabling the attackers getting access to the sensitive and confidential data of the individual or organization. With the progression of technology at such a rapid pace, it may be frequent to conclude that drones will be delivering goods and merchandise, thus catering to the accessibility of mobile hotspots and ensuring the security & surveillance of smart cities. Considering the long-term utility of drones for smart cities, there also comes the threat of cyber-attacks like Deauthentication Attacks, GPS Spoofing, etc., which will lead to the disclosure of sensitive information. The smart devices consist of various embedded SoCs (System-On-Chip), which are integrated to sustain a large amount of user data by focusing primarily on avoiding the trade-off between the complexity of the machine learning implemented model and the available compatible edge devices (Hardware SoCs). Thus, it is essential to enhance the security of edge devices on a large scale, specifically from the perspective of smart cities. Several researchers have also proposed methodologies to improve and sustain the security of smart devices using optimized blockchain-based security frameworks using physical parameters like temperature, light, etc. This chapter defines an insight towards ensuring the security (focuses majorly on the Edge computing devices) of the smart devices, which are the prime source to enhance and maximize privacy, thus enabling the smart cities to be more secure from any cyberattack.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vattapparamban, E., Gven, A., Yurekli, K. A., & Uluaa, S. (2016). Drones for smart cities: Issues in cybersecurity, privacy, and public safety. In 2016 International Wireless Communications and Mobile Computing Conference (IWCMC) (pp. 216–221).

    Chapter  Google Scholar 

  2. Lin, J., Yu, W., Zhang, N., Yang, X., Zhang, H., & Zhao, W. (2017). A survey on internet of things: Architecture, enabling technologies, security and privacy, and applications. IEEE Internet of Things Journal, 4(5), 1125–1142.

    Article  Google Scholar 

  3. Zhang, Y., Zheng, D., & Deng, R. H. (2018). Security and privacy in smart health: Efficient policy-hiding attribute-based access control. IEEE Internet of Things Journal, 5(3), 2130–2145.

    Article  Google Scholar 

  4. Li, Y., Dai, W., Ming, Z., & Qiu, M. (2016). Privacy protection for preventing data over-collection in smart city. IEEE Transactions on Computers, 65(5), 1339–1350.

    Article  MathSciNet  Google Scholar 

  5. Gharaibeh, A., Salahuddin, M. A., Hussini, S. J., Khreishah, A., Khalil, I., Guizani, M., & Al-Fuqaha, A. (2017). Smart cities: A survey on data management, security, and enabling technologies. IEEE Communications Surveys Tutorials, 19(4), 2456–2501.

    Article  Google Scholar 

  6. Eckhoff, D., & Wagner, I. (2018). Privacy in the smart city applications, technologies, challenges, and solutions. IEEE Communications Surveys Tutorials, 20(1), 489–516.

    Article  Google Scholar 

  7. Shen, M., Tang, X., Zhu, L., Du, X., & Guizani, M. (2019). Privacy-preserving support vector machine training over blockchain-based encrypted iot data in smart cities. IEEE Internet of Things Journal, 6(5), 7702–7712.

    Article  Google Scholar 

  8. Rahman, M. A., Rashid, M. M., Hossain, M. S., Hassanain, E., Alhamid, M. F., & Guizani, M. (2019). Blockchain and iot-based cognitive edge framework for sharing economy services in a smart city. IEEE Access, 7, 18611–18621.

    Article  Google Scholar 

  9. Jose, A. C., & Malekian, R. (2017, July 1). Improving smart home security: Integrating logical sensing into smart home. IEEE Sensors Journal, 17(13), 4269–4286.

    Google Scholar 

  10. Biswas, K., & Muthukkumarasamy, V. (2016). Securing smart cities using blockchain technology. In 2016 IEEE 18th international conference on high performance computing and communications; IEEE 14th international conference on Smart City; IEEE 2nd International Conference on Data Science and Systems (HPCC/SmartCity/DSS) (pp. 1392–1393).

    Chapter  Google Scholar 

  11. Khan, P. W., Byun, Y.-C., & Park, N. (2020). A data verification system for CCTV surveillance cameras using blockchain technology in smart cities. Electronics, 9(3), 484.

    Article  Google Scholar 

  12. Khan, L. U., Yaqoob, I., Tran, N. H., Kazmi, S. M. A., Dang, T. N., & Hong, C. S. (2020). Edge-computing-enabled smart cities: A comprehensive survey. IEEE Internet of Things Journal, 7(10), 10200–10232.

    Article  Google Scholar 

  13. Tan, S., De, D., Song, W.-Z., Yang, J., & Das, S. K. (2017). Survey of security advances in smart grid: A data driven approach. IEEE Communications Surveys & Tutorials, 19(1), 397–422.

    Article  Google Scholar 

  14. Cui, L., Xie, G., Qu, Y., Gao, L., & Yang, Y. (2018). Security and privacy in smart cities: Challenges and opportunities. IEEE Access, 6, 46134–46145.

    Article  Google Scholar 

  15. Podder, P., Mondal, M. R. H., Bharati, S., & Paul, P. K. (2020, July). Review on the security threats of internet of things. International Journal of Computer Applications, 176, 37–45.

    Article  Google Scholar 

  16. Husamuddin, M., & Qayyum, M. (2017). Internet of things: A study on security and privacy threats. In 2017 2nd International Conference on Anti-Cyber Crimes (ICACC) (pp. 93–97).

    Chapter  Google Scholar 

  17. Toh, C. K. (2020, July). Security for smart cities. IET Smart Cities, 2(9), 95–104.

    Article  Google Scholar 

  18. https://www.kaggle.com/datasets/elikplim/forest-fires-data-set

  19. Mukhopadhyay, D., Iyer, R., Kadam, S., & Koli, R. (2019). Fpga deployable fire detection model for real-time video surveillance systems using convolutional neural networks. In 2019 Global Conference for Advancement in Technology (GCAT) (pp. 1–7).

    Google Scholar 

  20. Chollet, F. et al. (2015). Keras. https://keras.io

  21. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., & Zheng, X. (2015). TensorFlow: Large-scale machine learning on heterogeneous systems. Software available from tensorflow.org.

    Google Scholar 

  22. https://github.com/sosy-lab/cpu-energy-meter

  23. https://github.com/fenrus75/powertop

  24. https://github.com/opcm/pcm

  25. Moujahid, A., ElAraki Tantaoui, M., Hina, M. D., Soukane, A., Ortalda, A., ElKhadimi, A., & Ramdane-Cherif, A. (2018). Machine learning techniques in ADAS: A review. In 2018 International Conference on Advances in Computing and Communication Engineering (ICACCE) (pp. 235–242).

    Chapter  Google Scholar 

  26. Borrego-Carazo, J., Castells-Rufas, D., Biempica, E., & Carrabina, J. (2020). Resource-constrained machine learning for ADAS: A systematic review. IEEE Access, 8, 40573–40598.

    Article  Google Scholar 

  27. Yu, B., Hu, W., Xu, L., Tang, J., Liu, S., & Zhu, Y. (2020). Building the computing system for autonomous micromobility vehicles: Design constraints and architectural optimizations. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO) (pp. 1067–1081).

    Chapter  Google Scholar 

  28. Pansari, N., & Agarwal, A. (2020). A comparative study of analysis and investigation using digital forensics. International Journal of Linguistics and Computational Applications (IJLCA), 7(2), 16–20.

    Google Scholar 

  29. Pansari, N., & Kushwaha, D. (2018). Advancement in robust cyber attacks-an overview. International Journal of Research in Engineering, IT and Social Sciences, 8(Special Issue), 113–119.

    Google Scholar 

  30. Deng, Y., Zhang, T., Lou, G., Zheng, X., Jin, J., & Han, Q.-L. (2021). Deep learning-based autonomous driving systems: A survey of attacks and defenses. IEEE Transactions on Industrial Informatics, 17(12), 7897–7912.

    Article  Google Scholar 

  31. Pansari, N., & Kushwaha, D. (2019). Forensic analysis and investigation using digital forensics-an overview. International Journal of Advance Research, Ideas and Innovations in Technology, 5, 191.

    Google Scholar 

  32. Goodfellow, I. J., Shlens, J., & Szegedy, C. (2014). Explaining and harnessing adversarial examples. arXiv preprint arXiv, 1412.6572.

    Google Scholar 

  33. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al. (2019). Pytorch: An imperative style, high-performance deep learning library. Advances in Neural Information Processing Systems, 32, 8024–8035.

    Google Scholar 

  34. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). Imagenet: A large scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition (pp. 248–255).

    Chapter  Google Scholar 

  35. Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J., & Keutzer, K. (2016). Squeezenet: Alexnet-level accuracy with 50x fewer parameters and¡ 0.5 mb model size. arXiv preprint arXiv, 1602.07360.

    Google Scholar 

  36. Zhang, X., Zhou, X., Lin, M., & Sun, J. (2018). Shufflenet: An extremely efficient convolutional neural network for mobile devices. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 6848–6856).

    Google Scholar 

  37. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.-C. (2018). Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4510–4520).

    Google Scholar 

  38. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770–778).

    Google Scholar 

  39. Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4700–4708).

    Google Scholar 

  40. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In F. Pereira, C. Burges, L. Bottou, & K. Weinberger (Eds.), Advances in neural information processing systems (Vol. 25). Curran Associates, Inc..

    Google Scholar 

  41. Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv, 1409.1556.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pansari, N., Saiya, R. (2023). Reliability and Security of Edge Computing Devices for Smart Cities. In: Ahad, M.A., Casalino, G., Bhushan, B. (eds) Enabling Technologies for Effective Planning and Management in Sustainable Smart Cities. Springer, Cham. https://doi.org/10.1007/978-3-031-22922-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22922-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22921-3

  • Online ISBN: 978-3-031-22922-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics