Abstract
The complex multimodality in clinical and liquid biopsy data generated by multiparametric diagnostic and tumor profiling technologies presents an exciting opportunity for developing innovative predictive mathematical models by harnessing large datasets across studies and institutional data repositories. Further, comprehensive liquid biopsy analysis with single-cell profiling provides multiscale data on the morphology, genomics, and proteomics of circulating tumor cells (CTCs) and tumor microenvironment cells with deeper resolution on spatiotemporal tumor biology. However, clinical datasets are frequently sparse, inconsistent, and incomplete, due to the lack of standardization and interoperability across cancer centers and healthcare systems. In liquid biopsies where specimens are oftentimes samples of convenience, datasets are often of limited scale and lacking paired clinical data. Methods for integrating multimodal oncology data are paramount for building robust models for outcomes prediction. This chapter presents methodological challenges and advances in handling missingness and sparsity, integrating multidimensional clinical and multi-omic liquid biopsy data for improving the accuracy and robustness of machine and deep learning survival prediction models. We highlight the critical role that the convergence of artificial intelligence and liquid biopsies holds for the future of therapy response and survival prediction in precision oncology.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Institute NC. Strategic Planning at NCI, <https://www.cancer.gov/about-nci/overview/strategic-planning#ui-id-2> (2019).
Institute NC. Cancer Detection and Diagnosis Research, <https://www.cancer.gov/research/areas/diagnosis> (2020).
Institute NC. Artificial Intelligence - Opportunities in Cancer Research, <https://www.cancer.gov/research/areas/diagnosis/artificial-intelligence> (2020).
Hofman P, Heeke S, Alix-Panabières C et al. Liquid biopsy in the era of immuno-oncology: is it ready for prime-time use for cancer patients? Annals of oncology : official journal of the European Society for Medical Oncology 30, 1448–1459, doi:https://doi.org/10.1093/annonc/mdz196 (2019).
Benjamens S, Dhunnoo P & Meskó B. The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database. NPJ Digit Med 3, 118, doi:https://doi.org/10.1038/s41746-020-00324-0 (2020).
Bera K, Schalper KA, Rimm DL et al. Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology. Nature reviews. Clinical oncology 16, 703–715, doi:https://doi.org/10.1038/s41571-019-0252-y (2019).
Mintz Y & Brodie R. Introduction to artificial intelligence in medicine. Minimally invasive therapy & allied technologies : MITAT : official journal of the Society for Minimally Invasive Therapy 28, 73–81, doi:https://doi.org/10.1080/13645706.2019.1575882 (2019).
Amisha, Malik P, Pathania M et al. Overview of artificial intelligence in medicine. Journal of family medicine and primary care 8, 2328–2331, doi:https://doi.org/10.4103/jfmpc.jfmpc_440_19 (2019).
Ramesh AN, Kambhampati C, Monson JR et al. Artificial intelligence in medicine. Annals of the Royal College of Surgeons of England 86, 334–338, doi:https://doi.org/10.1308/147870804290 (2004).
TURING AM. I.—COMPUTING MACHINERY AND INTELLIGENCE. Mind LIX, 433-460, doi:https://doi.org/10.1093/mind/LIX.236.433 (1950).
McCarthy J. in Philosophical Logic and Artificial Intelligence (ed Richmond H. Thomason) 161–190 (Springer Netherlands, 1989).
Newton PK, Mason J, Venkatappa N et al. Spatiotemporal progression of metastatic breast cancer: a Markov chain model highlighting the role of early metastatic sites. NPJ Breast Cancer 1, 15018, doi:https://doi.org/10.1038/npjbcancer.2015.18 (2015).
In G, Mason J, Lin S et al. Development of metastatic brain disease involves progression through lung metastases in EGFR mutated non-small cell lung cancer. Convergent science physical oncology 3 (2017).
Fujii T, Mason J, Chen A et al. Prediction of Bone Metastasis in Inflammatory Breast Cancer Using a Markov Chain Model. Oncologist 24, 1322–1330, doi:https://doi.org/10.1634/theoncologist.2018-0713 (2019).
Hasnain Z, Mason J, Gill K et al. Machine learning models for predicting post-cystectomy recurrence and survival in bladder cancer patients. PLoS One 14, e0210976, doi:https://doi.org/10.1371/journal.pone.0210976 (2019).
Spooner A, Chen E, Sowmya A et al. A comparison of machine learning methods for survival analysis of high-dimensional clinical data for dementia prediction. Sci Rep 10, 20410, doi:https://doi.org/10.1038/s41598-020-77220-w (2020).
Chi CL, Street WN & Wolberg WH. Application of artificial neural network-based survival analysis on two breast cancer datasets. AMIA Annu Symp Proc 2007, 130–134 (2007).
Zhu W, Xie L, Han J et al. The Application of Deep Learning in Cancer Prognosis Prediction. Cancers (Basel) 12, doi:https://doi.org/10.3390/cancers12030603 (2020).
Institute NC. NCI Dictionaries: liquid biopsy, <https://www.cancer.gov/publications/dictionaries/cancer-terms/def/liquid-biopsy> (2021).
Lianidou E & Pantel K. Liquid biopsies. Genes Chromosomes Cancer 58, 219–232, doi:https://doi.org/10.1002/gcc.22695 (2019).
Lim SB, Di Lee W, Vasudevan J et al. Liquid biopsy: one cell at a time. NPJ Precis Oncol 3, 23, doi:https://doi.org/10.1038/s41698-019-0095-0 (2019).
De Rubis G, Rajeev Krishnan S & Bebawy M. Liquid Biopsies in Cancer Diagnosis, Monitoring, and Prognosis. Trends Pharmacol Sci 40, 172–186, doi:https://doi.org/10.1016/j.tips.2019.01.006 (2019).
Underwood JJ, Quadri RS, Kalva SP et al. Liquid Biopsy for Cancer: Review and Implications for the Radiologist. Radiology 294, 5–17, doi:https://doi.org/10.1148/radiol.2019182584 (2020).
Ignatiadis M, Sledge GW & Jeffrey SS. Liquid biopsy enters the clinic - implementation issues and future challenges. Nature reviews. Clinical oncology, doi:https://doi.org/10.1038/s41571-020-00457-x (2021).
Todenhöfer T, Pantel K, Stenzl A et al. in Tumor Liquid Biopsies (eds Florence Schaffner, Jean-Louis Merlin, & Nikolas von Bubnoff) 3–24 (Springer International Publishing, 2020).
Dago AE, Stepansky A, Carlsson A et al. Rapid phenotypic and genomic change in response to therapeutic pressure in prostate cancer inferred by high content analysis of single circulating tumor cells. PLoS One 9, e101777, doi:https://doi.org/10.1371/journal.pone.0101777 (2014).
Welter L, Xu L, McKinley D et al. Treatment response and tumor evolution: lessons from an extended series of multianalyte liquid biopsies in a metastatic breast cancer patient. Cold Spring Harbor molecular case studies 6, doi:https://doi.org/10.1101/mcs.a005819 (2020).
Spiliotaki M, Kallergi G, Nikolaou C et al. Dynamic changes of CTCs in patients with metastatic HR(+)/HER2(-) breast cancer receiving salvage treatment with everolimus/exemestane. Cancer Chemother Pharmacol 87, 277–287, doi:https://doi.org/10.1007/s00280-020-04227-5 (2021).
Bratulic S, Gatto F & Nielsen J. The Translational Status of Cancer Liquid Biopsies. Regenerative Engineering and Translational Medicine, doi:https://doi.org/10.1007/s40883-019-00141-2 (2019).
Lee J, Hyeon DY & Hwang D. Single-cell multiomics: technologies and data analysis methods. Exp Mol Med 52, 1428–1442, doi:https://doi.org/10.1038/s12276-020-0420-2 (2020).
Hodara E, Morrison G, Cunha A et al. Multiparametric liquid biopsy analysis in metastatic prostate cancer. JCI Insight 4, doi:https://doi.org/10.1172/jci.insight.125529 (2019).
BloodPAC. Blood Profiling Atlas in Cancer, <https://www.bloodpac.org/> (2021).
Grossman RL, Abel B, Angiuoli S et al. Collaborating to Compete: Blood Profiling Atlas in Cancer (BloodPAC) Consortium. Clin Pharmacol Ther 101, 589–592, doi:https://doi.org/10.1002/cpt.666 (2017).
Institute NC. Cancer Moonshot, <https://www.cancer.gov/research/key-initiatives/moonshot-cancer-initiative> (2021).
Godsey JH, Silvestro A, Barrett JC et al. Generic Protocols for the Analytical Validation of Next-Generation Sequencing-Based ctDNA Assays: A Joint Consensus Recommendation of the BloodPAC’s Analytical Variables Working Group. Clin Chem 66, 1156–1166, doi:https://doi.org/10.1093/clinchem/hvaa164 (2020).
Mahal BA, Chen YW, Muralidhar V et al. National sociodemographic disparities in the treatment of high-risk prostate cancer: Do academic cancer centers perform better than community cancer centers? Cancer 122, 3371–3377, doi:https://doi.org/10.1002/cncr.30205 (2016).
Zavala VA, Bracci PM, Carethers JM et al. Cancer health disparities in racial/ethnic minorities in the United States. Br J Cancer 124, 315–332, doi:https://doi.org/10.1038/s41416-020-01038-6 (2021).
Rodriguez-Alcalá ME, Qin H & Jeanetta S. The Role of Acculturation and Social Capital in Access to Health Care: A Meta-study on Hispanics in the US. J Community Health 44, 1224–1252, doi:https://doi.org/10.1007/s10900-019-00692-z (2019).
Graves KD, Huerta E, Cullen J et al. Perceived risk of breast cancer among Latinas attending community clinics: risk comprehension and relationship with mammography adherence. Cancer Causes Control 19, 1373–1382, doi:https://doi.org/10.1007/s10552-008-9209-7 (2008).
HealthIT.gov. What is meaningful use?, <https://www.healthit.gov/faq/what-meaningful-use> (2013).
Stankiewicz M. CMS rebrands Meaningful Use, reduces reporting measures, <https://www.fiercehealthcare.com/payer/cms-releases-ipps-ehr-meaningful-measure> (2018).
Office HP. HHS Finalizes Historic Rules to Provide Patients More Control of Their Health Data, <https://www.hhs.gov/about/news/2020/03/09/hhs-finalizes-historic-rules-to-provide-patients-more-control-of-their-health-data.html> (2020).
HealthIT.gov. Blue Button, <https://www.healthit.gov/topic/health-it-initiatives/blue-button> (2019).
Administration UFaD. 21st Century Cures Act, <https://www.fda.gov/regulatory-information/selected-amendments-fdc-act/21st-century-cures-act> (2020).
Reisman M. EHRs: The Challenge of Making Electronic Data Usable and Interoperable. P t 42, 572-575 (2017).
Sullivan T. Why EHR data interoperability is such a mess in 3 charts, <https://www.healthcareitnews.com/news/why-ehr-data-interoperability-such-mess-3-charts> (2018).
Sui W, Ou M, Chen J et al. Comparison of immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) assessment for Her-2 status in breast cancer. World J Surg Oncol 7, 83, doi:https://doi.org/10.1186/1477-7819-7-83 (2009).
Gill MK, Asefa T, Kaheil Y et al. Effect of missing data on performance of learning algorithms for hydrologic predictions: Implications to an imputation technique. Water Resources Research 43, doi:https://doi.org/10.1029/2006WR005298 (2007).
Barakat MS, Field M, Ghose A et al. The effect of imputing missing clinical attribute values on training lung cancer survival prediction model performance. Health Inf Sci Syst 5, 16, doi:https://doi.org/10.1007/s13755-017-0039-4 (2017).
Jerez JM, Molina I, García-Laencina PJ et al. Missing data imputation using statistical and machine learning methods in a real breast cancer problem. Artif Intell Med 50, 105–115, doi:https://doi.org/10.1016/j.artmed.2010.05.002 (2010).
Musil CM, Warner CB, Yobas PK et al. A comparison of imputation techniques for handling missing data. West J Nurs Res 24, 815–829, doi:https://doi.org/10.1177/019394502762477004 (2002).
Richman MB, Trafalis TB & Adrianto I. in Artificial Intelligence Methods in the Environmental Sciences (eds Sue Ellen Haupt, Antonello Pasini, & Caren Marzban) 153–169 (Springer Netherlands, 2009).
Troyanskaya O, Cantor M, Sherlock G et al. Missing value estimation methods for DNA microarrays. Bioinformatics 17, 520–525, doi:https://doi.org/10.1093/bioinformatics/17.6.520 (2001).
Zhang Z. Multiple imputation with multivariate imputation by chained equation (MICE) package. Ann Transl Med 4, 30, doi:https://doi.org/10.3978/j.issn.2305-5839.2015.12.63 (2016).
Stekhoven DJ & Bühlmann P. MissForest--non-parametric missing value imputation for mixed-type data. Bioinformatics 28, 112–118, doi:https://doi.org/10.1093/bioinformatics/btr597 (2012).
Thiele JA, Pitule P, Hicks J et al. Single-Cell Analysis of Circulating Tumor Cells. Methods Mol Biol 1908, 243–264, doi:https://doi.org/10.1007/978-1-4939-9004-7_17 (2019).
Keomanee-Dizon K, Shishido SN & Kuhn P. in Tumor Liquid Biopsies (eds Florence Schaffner, Jean-Louis Merlin, & Nikolas von Bubnoff) 89–104 (Springer International Publishing, 2020).
Cho EH, Wendel M, Luttgen M et al. Characterization of circulating tumor cell aggregates identified in patients with epithelial tumors. Phys Biol 9, 016001, doi:https://doi.org/10.1088/1478-3975/9/1/016001 (2012).
Marrinucci D, Bethel K, Kolatkar A et al. Fluid biopsy in patients with metastatic prostate, pancreatic and breast cancers. Phys Biol 9, 016003, doi:https://doi.org/10.1088/1478-3975/9/1/016003 (2012).
Phillips KG, Kolatkar A, Rees KJ et al. Quantification of cellular volume and sub-cellular density fluctuations: comparison of normal peripheral blood cells and circulating tumor cells identified in a breast cancer patient. Front Oncol 2, 96, doi:https://doi.org/10.3389/fonc.2012.00096 (2012).
Lazar DC, Cho EH, Luttgen MS et al. Cytometric comparisons between circulating tumor cells from prostate cancer patients and the prostate-tumor-derived LNCaP cell line. Phys Biol 9, 016002, doi:https://doi.org/10.1088/1478-3975/9/1/016002 (2012).
Scher HI, Graf RP, Schreiber NA et al. Assessment of the Validity of Nuclear-Localized Androgen Receptor Splice Variant 7 in Circulating Tumor Cells as a Predictive Biomarker for Castration-Resistant Prostate Cancer. JAMA Oncol 4, 1179–1186, doi:https://doi.org/10.1001/jamaoncol.2018.1621 (2018).
Nieva J, Wendel M, Luttgen MS et al. High-definition imaging of circulating tumor cells and associated cellular events in non-small cell lung cancer patients: a longitudinal analysis. Phys Biol 9, 016004, doi:https://doi.org/10.1088/1478-3975/9/1/016004 (2012).
Wendel M, Bazhenova L, Boshuizen R et al. Fluid biopsy for circulating tumor cell identification in patients with early-and late-stage non-small cell lung cancer: a glimpse into lung cancer biology. Phys Biol 9, 016005, doi:https://doi.org/10.1088/1478-3967/9/1/016005 (2012).
Shishido SN, Carlsson A, Nieva J et al. Circulating tumor cells as a response monitor in stage IV non-small cell lung cancer. J Transl Med 17, 294, doi:https://doi.org/10.1186/s12967-019-2035-8 (2019).
Carlsson A, Nair VS, Luttgen MS et al. Circulating tumor microemboli diagnostics for patients with non-small-cell lung cancer. J Thorac Oncol 9, 1111–1119, doi:https://doi.org/10.1097/jto.0000000000000235 (2014).
Kolenčík D, Shishido SN, Pitule P et al. Liquid Biopsy in Colorectal Carcinoma: Clinical Applications and Challenges. Cancers (Basel) 12, doi:https://doi.org/10.3390/cancers12061376 (2020).
Ruiz C, Li J, Luttgen MS et al. Limited genomic heterogeneity of circulating melanoma cells in advanced stage patients. Phys Biol 12, 016008, doi:https://doi.org/10.1088/1478-3975/12/1/016008 (2015).
Polski A, Xu L, Prabakar RK et al. Cell-Free DNA Tumor Fraction in the Aqueous Humor Is Associated With Therapeutic Response in Retinoblastoma Patients. Transl Vis Sci Technol 9, 30, doi:https://doi.org/10.1167/tvst.9.10.30 (2020).
Zhang L, Beasley S, Prigozhina NL et al. Detection and Characterization of Circulating Tumour Cells in Multiple Myeloma. J Circ Biomark 5, 10, doi:https://doi.org/10.5772/64124 (2016).
Rodríguez-Lee M, Kolatkar A, McCormick M et al. Effect of Blood Collection Tube Type and Time to Processing on the Enumeration and High-Content Characterization of Circulating Tumor Cells Using the High-Definition Single-Cell Assay. Arch Pathol Lab Med 142, 198–207, doi:https://doi.org/10.5858/arpa.2016-0483-OA (2018).
Shishido SN, Welter L, Rodriguez-Lee M et al. Preanalytical Variables for the Genomic Assessment of the Cellular and Acellular Fractions of the Liquid Biopsy in a Cohort of Breast Cancer Patients. J Mol Diagn 22, 319–337, doi:https://doi.org/10.1016/j.jmoldx.2019.11.006 (2020).
Scher HI, Lu D, Schreiber NA et al. Association of AR-V7 on Circulating Tumor Cells as a Treatment-Specific Biomarker With Outcomes and Survival in Castration-Resistant Prostate Cancer. JAMA Oncol 2, 1441–1449, doi:https://doi.org/10.1001/jamaoncol.2016.1828 (2016).
Graf RP, Hullings M, Barnett ES et al. Clinical Utility of the Nuclear-localized AR-V7 Biomarker in Circulating Tumor Cells in Improving Physician Treatment Choice in Castration-resistant Prostate Cancer. Eur Urol 77, 170–177, doi:https://doi.org/10.1016/j.eururo.2019.08.020 (2020).
Armstrong AJ, Luo J, Nanus DM et al. Prospective Multicenter Study of Circulating Tumor Cell AR-V7 and Taxane Versus Hormonal Treatment Outcomes in Metastatic Castration-Resistant Prostate Cancer. JCO Precis Oncol 4, doi:https://doi.org/10.1200/po.20.00200 (2020).
Armstrong AJ, Halabi S, Luo J et al. Prospective Multicenter Validation of Androgen Receptor Splice Variant 7 and Hormone Therapy Resistance in High-Risk Castration-Resistant Prostate Cancer: The PROPHECY Study. J Clin Oncol 37, 1120–1129, doi:https://doi.org/10.1200/jco.18.01731 (2019).
Brown LC, Lu C, Antonarakis ES et al. Androgen receptor variant-driven prostate cancer II: advances in clinical investigation. Prostate Cancer Prostatic Dis 23, 367–380, doi:https://doi.org/10.1038/s41391-020-0215-5 (2020).
Gerdtsson AS, Setayesh SM, Malihi PD et al. Large Extracellular Vesicle Characterization and Association with Circulating Tumor Cells in Metastatic Castrate Resistant Prostate Cancer. Cancers (Basel) 13, doi:https://doi.org/10.3390/cancers13051056 (2021).
Pau G, Fuchs F, Sklyar O et al. EBImage--an R package for image processing with applications to cellular phenotypes. Bioinformatics 26, 979–981, doi:https://doi.org/10.1093/bioinformatics/btq046 (2010).
Greene SB, Dago AE, Leitz LJ et al. Chromosomal Instability Estimation Based on Next Generation Sequencing and Single Cell Genome Wide Copy Number Variation Analysis. PLoS One 11, e0165089, doi:https://doi.org/10.1371/journal.pone.0165089 (2016).
Malihi PD, Graf RP, Rodriguez A et al. Single-Cell Circulating Tumor Cell Analysis Reveals Genomic Instability as a Distinctive Feature of Aggressive Prostate Cancer. Clin Cancer Res 26, 4143–4153, doi:https://doi.org/10.1158/1078-0432.Ccr-19-4100 (2020).
Giesen C, Wang HA, Schapiro D et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat Methods 11, 417–422, doi:https://doi.org/10.1038/nmeth.2869 (2014).
Gerdtsson E, Pore M, Thiele JA et al. Multiplex protein detection on circulating tumor cells from liquid biopsies using imaging mass cytometry. Convergent science physical oncology 4, doi:https://doi.org/10.1088/2057-1739/aaa013 (2018).
Poreba M, Groborz KM, Rut W et al. Multiplexed Probing of Proteolytic Enzymes Using Mass Cytometry-Compatible Activity-Based Probes. J Am Chem Soc 142, 16704–16715, doi:https://doi.org/10.1021/jacs.0c06762 (2020).
Malihi PD, Morikado M, Welter L et al. Clonal diversity revealed by morphoproteomic and copy number profiles of single prostate cancer cells at diagnosis. Convergent science physical oncology 4, doi:https://doi.org/10.1088/2057-1739/aaa00b (2018).
Liang M, Li Z, Chen T et al. Integrative Data Analysis of Multi-Platform Cancer Data with a Multimodal Deep Learning Approach. IEEE/ACM Trans Comput Biol Bioinform 12, 928–937, doi:https://doi.org/10.1109/tcbb.2014.2377729 (2015).
Tan X, Su AT, Hajiabadi H et al. Applying Machine Learning for Integration of Multi-Modal Genomics Data and Imaging Data to Quantify Heterogeneity in Tumour Tissues. Methods Mol Biol 2190, 209–228, doi:https://doi.org/10.1007/978-1-0716-0826-5_10 (2021).
Ray B, Henaff M, Ma S et al. Information content and analysis methods for multi-modal high-throughput biomedical data. Sci Rep 4, 4411, doi:https://doi.org/10.1038/srep04411 (2014).
Johnson K, Howard GR, Morgan D et al. Integrating multimodal data sets into a mathematical framework to describe and predict therapeutic resistance in cancer. bioRxiv, 2020.2002.2011.943738, doi:10.1101/2020.02.11.943738 (2020).
Yan R, Ren F, Rao X et al. 460–469 (Springer International Publishing).
Sandfort V, Yan K, Pickhardt PJ et al. Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks. Sci Rep 9, 16884, doi:https://doi.org/10.1038/s41598-019-52737-x (2019).
Goodfellow I, Pouget-Abadie J, Mirza M et al. Generative Adversarial Networks. ArXiv abs/1406.2661 (2014).
Crystal DT, Cuccolo NG, Ibrahim AMS et al. Photographic and Video Deepfakes Have Arrived: How Machine Learning May Influence Plastic Surgery. Plast Reconstr Surg 145, 1079–1086, doi:https://doi.org/10.1097/prs.0000000000006697 (2020).
Hwang Y, Ryu JY & Jeong SH. Effects of Disinformation Using Deepfake: The Protective Effect of Media Literacy Education. Cyberpsychol Behav Soc Netw 24, 188–193, doi:https://doi.org/10.1089/cyber.2020.0174 (2021).
Sample I. What are deepfakes – and how can you spot them?, <https://www.theguardian.com/technology/2020/jan/13/what-are-deepfakes-and-how-can-you-spot-them> (2020).
Tschuchnig ME, Oostingh GJ & Gadermayr M. Generative Adversarial Networks in Digital Pathology: A Survey on Trends and Future Potential. Patterns (N Y) 1, 100089, doi:https://doi.org/10.1016/j.patter.2020.100089 (2020).
Lafarge MW, Pluim JPW, Eppenhof KAJ et al. 83–91 (Springer International Publishing).
Luedtke A, Carone M, Simon N et al. Learning to learn from data: Using deep adversarial learning to construct optimal statistical procedures. Sci Adv 6, eaaw2140, doi:https://doi.org/10.1126/sciadv.aaw2140 (2020).
Jeong B, Lee W, Kim DS et al. Copula-Based Approach to Synthetic Population Generation. PLoS One 11, e0159496, doi:https://doi.org/10.1371/journal.pone.0159496 (2016).
Sun Y, Cuesta-Infante A & Veeramachaneni K. Learning Vine Copula Models for Synthetic Data Generation. Proceedings of the AAAI Conference on Artificial Intelligence 33, 5049–5057, doi:https://doi.org/10.1609/aaai.v33i01.33015049 (2019).
Durante F, Fernández-Sánchez J & Sempi C. A topological proof of Sklar’s theorem. Applied Mathematics Letters 26, 945–948, doi:https://doi.org/10.1016/j.aml.2013.04.005 (2013).
Wilson A & Ghahramani Z. in NIPS.
Benth F, Nunno GD & Schroers D.
Othus M & Li Y. A Gaussian Copula Model for Multivariate Survival Data. Stat Biosci 2, 154–179, doi:https://doi.org/10.1007/s12561-010-9026-x (2010).
Murray JS, Dunson DB, Carin L et al. Bayesian Gaussian Copula Factor Models for Mixed Data. J Am Stat Assoc 108, 656–665, doi:https://doi.org/10.1080/01621459.2012.762328 (2013).
Kamthe S, Assefa S & Deisenroth M. Copula Flows for Synthetic Data Generation. ArXiv abs/2101.00598 (2021).
Xu L & Veeramachaneni K. Synthesizing Tabular Data using Generative Adversarial Networks. ArXiv abs/1811.11264 (2018).
Patki N, Wedge R & Veeramachaneni K. in 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA). 399–410.
Halicek M, Ortega S, Fabelo H et al. Conditional generative adversarial network for synthesizing hyperspectral images of breast cancer cells from digitized histology. Proc SPIE Int Soc Opt Eng 11320, doi:https://doi.org/10.1117/12.2549994 (2020).
Xu L, Skoularidou M, Cuesta-Infante A et al. in NeurIPS.
Clark TG, Bradburn MJ, Love SB et al. Survival analysis part I: basic concepts and first analyses. Br J Cancer 89, 232–238, doi:https://doi.org/10.1038/sj.bjc.6601118 (2003).
Dudley WN, Wickham R & Coombs N. An Introduction to Survival Statistics: Kaplan-Meier Analysis. J Adv Pract Oncol 7, 91–100, doi:https://doi.org/10.6004/jadpro.2016.7.1.8 (2016).
Goel MK, Khanna P & Kishore J. Understanding survival analysis: Kaplan-Meier estimate. Int J Ayurveda Res 1, 274–278, doi:https://doi.org/10.4103/0974-7788.76794 (2010).
Cox DR. in Breakthroughs in Statistics: Methodology and Distribution (eds Samuel Kotz & Norman L. Johnson) 527–541 (Springer New York, 1992).
Breiman L. Random Forests. Machine Learning 45, 5–32, doi:https://doi.org/10.1023/A:1010933404324 (2001).
Wang H & Li G. A Selective Review on Random Survival Forests for High Dimensional Data. Quant Biosci 36, 85–96, doi:https://doi.org/10.22283/qbs.2017.36.2.85 (2017).
Ishwaran H, Kogalur UB, Blackstone E et al. Random survival forests. The Annals of Applied Statistics 2, 841–860 (2008).
Wongvibulsin S, Wu KC & Zeger SL. Clinical risk prediction with random forests for survival, longitudinal, and multivariate (RF-SLAM) data analysis. BMC Med Res Methodol 20, 1, doi:https://doi.org/10.1186/s12874-019-0863-0 (2019).
ZhongXin D. in 2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC). 6816–6819.
Brard C, Le Teuff G, Le Deley MC et al. Bayesian survival analysis in clinical trials: What methods are used in practice? Clin Trials 14, 78–87, doi:https://doi.org/10.1177/1740774516673362 (2017).
Biard L, Bergeron A, Lévy V et al. Bayesian survival analysis for early detection of treatment effects in phase 3 clinical trials. Contemp Clin Trials Commun 21, 100709, doi:https://doi.org/10.1016/j.conctc.2021.100709 (2021).
Zupan B, Demsar J, Kattan MW et al. Machine learning for survival analysis: a case study on recurrence of prostate cancer. Artif Intell Med 20, 59–75, doi:https://doi.org/10.1016/s0933-3657(00)00053-1 (2000).
Wang P, Li Y & Reddy C. Machine Learning for Survival Analysis. ACM Computing Surveys (CSUR) 51, 1–36 (2017).
Faraggi D & Simon R. A neural network model for survival data. Stat Med 14, 73–82, doi:https://doi.org/10.1002/sim.4780140108 (1995).
Katzman JL, Shaham U, Cloninger A et al. DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network. BMC Med Res Methodol 18, 24, doi:https://doi.org/10.1186/s12874-018-0482-1 (2018).
Roodnat JI, Mulder PG, Tielens ET et al. The Cox proportional hazards analysis in words: examples in the renal transplantation field. Transplantation 77, 483–488, doi:https://doi.org/10.1097/01.tp.0000110424.27977.a1 (2004).
Harrell FE, Jr., Califf RM, Pryor DB et al. Evaluating the yield of medical tests. Jama 247, 2543–2546 (1982).
Carlsson A, Kuhn P, Luttgen MS et al. Paired High-Content Analysis of Prostate Cancer Cells in Bone Marrow and Blood Characterizes Increased Androgen Receptor Expression in Tumor Cell Clusters. Clin Cancer Res 23, 1722–1732, doi:https://doi.org/10.1158/1078-0432.Ccr-16-1355 (2017).
Corn PG, Heath EI, Zurita A et al. Cabazitaxel plus carboplatin for the treatment of men with metastatic castration-resistant prostate cancers: a randomised, open-label, phase 1-2 trial. The Lancet. Oncology 20, 1432–1443, doi:https://doi.org/10.1016/s1470-2045(19)30408-5 (2019).
Kelly SP, Anderson WF, Rosenberg PS et al. Past, Current, and Future Incidence Rates and Burden of Metastatic Prostate Cancer in the United States. Eur Urol Focus 4, 121–127, doi:https://doi.org/10.1016/j.euf.2017.10.014 (2018).
Siegel RL, Miller KD & Jemal A. Cancer statistics, 2020. CA Cancer J Clin 70, 7–30, doi:https://doi.org/10.3322/caac.21590 (2020).
Alix-Panabières C. The future of liquid biopsy. Nature 579, S9, doi:https://doi.org/10.1038/d41586-020-00844-5 (2020).
Keating SM, Taylor DL, Plant AL et al. Opportunities and Challenges in Implementation of Multiparameter Single Cell Analysis Platforms for Clinical Translation. Clin Transl Sci 11, 267–276, doi:https://doi.org/10.1111/cts.12536 (2018).
Rockne RC, Hawkins-Daarud A, Swanson KR et al. The 2019 mathematical oncology roadmap. Phys Biol 16, 041005, doi:https://doi.org/10.1088/1478-3975/ab1a09 (2019).
Si Y & Roberts K. Patient Representation Transfer Learning from Clinical Notes based on Hierarchical Attention Network. AMIA Jt Summits Transl Sci Proc 2020, 597–606 (2020).
Kensert A, Harrison PJ & Spjuth O. Transfer Learning with Deep Convolutional Neural Networks for Classifying Cellular Morphological Changes. SLAS Discov 24, 466–475, doi:https://doi.org/10.1177/2472555218818756 (2019).
Estiri H, Vasey S & Murphy SN. Generative transfer learning for measuring plausibility of EHR diagnosis records. J Am Med Inform Assoc 28, 559–568, doi:https://doi.org/10.1093/jamia/ocaa215 (2021).
Wainrib G. Transfer Learning and the Rise of Collaborative AI, <https://owkin.com/collaborative-ai/transfer-learning/> (2021).
Brisimi TS, Chen R, Mela T et al. Federated learning of predictive models from federated Electronic Health Records. Int J Med Inform 112, 59–67, doi:https://doi.org/10.1016/j.ijmedinf.2018.01.007 (2018).
Vaid A, Jaladanki SK, Xu J et al. Federated Learning of Electronic Health Records Improves Mortality Prediction in Patients Hospitalized with COVID-19. medRxiv, doi:https://doi.org/10.1101/2020.08.11.20172809 (2020).
Ghosh A & Kandasamy D. Interpretable Artificial Intelligence: Why and When. AJR Am J Roentgenol 214, 1137–1138, doi:https://doi.org/10.2214/ajr.19.22145 (2020).
Hao J, Kim Y, Mallavarapu T et al. Interpretable deep neural network for cancer survival analysis by integrating genomic and clinical data. BMC Med Genomics 12, 189, doi:https://doi.org/10.1186/s12920-019-0624-2 (2019).
Gatenby RA, Silva AS, Gillies RJ et al. Adaptive therapy. Cancer Res 69, 4894–4903, doi:https://doi.org/10.1158/0008-5472.Can-08-3658 (2009).
West J, You L, Zhang J et al. Towards Multidrug Adaptive Therapy. Cancer Res 80, 1578–1589, doi:https://doi.org/10.1158/0008-5472.Can-19-2669 (2020).
Hussey PS, Sorbero ME, Mehrotra A et al. Episode-based performance measurement and payment: making it a reality. Health Aff (Millwood) 28, 1406–1417, doi:https://doi.org/10.1377/hlthaff.28.5.1406 (2009).
Acknowledgments
The authors would like to thank all the patients who participated in this study. This work is supported fully or partially by the Adelson Medical Research Foundation Multiple Myeloma Research Program No. 04-7023433 (L.N., J.M., P.K.); Breast Cancer Research Foundation No. 20-089; Novartis Pharmaceuticals Corporation (L.N., J.M., P.K.); the USC Institute of Urology (J.M.); and NCI’s USC Norris Comprehensive Cancer Center (CORE) Support 5P30CA014089-40 (P.K.).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Ndacayisaba, L.J., Mason, J., Kuhn, P. (2023). Mathematical Oncology to Integrate Multimodal Clinical and Liquid Biopsy Data for the Prediction of Survival. In: Cote, R.J., Lianidou, E. (eds) Circulating Tumor Cells. Current Cancer Research. Springer, Cham. https://doi.org/10.1007/978-3-031-22903-9_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-22903-9_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-22902-2
Online ISBN: 978-3-031-22903-9
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)