Skip to main content

Mathematical Oncology to Integrate Multimodal Clinical and Liquid Biopsy Data for the Prediction of Survival

  • Chapter
  • First Online:
Circulating Tumor Cells

Part of the book series: Current Cancer Research ((CUCR))

  • 498 Accesses

Abstract

The complex multimodality in clinical and liquid biopsy data generated by multiparametric diagnostic and tumor profiling technologies presents an exciting opportunity for developing innovative predictive mathematical models by harnessing large datasets across studies and institutional data repositories. Further, comprehensive liquid biopsy analysis with single-cell profiling provides multiscale data on the morphology, genomics, and proteomics of circulating tumor cells (CTCs) and tumor microenvironment cells with deeper resolution on spatiotemporal tumor biology. However, clinical datasets are frequently sparse, inconsistent, and incomplete, due to the lack of standardization and interoperability across cancer centers and healthcare systems. In liquid biopsies where specimens are oftentimes samples of convenience, datasets are often of limited scale and lacking paired clinical data. Methods for integrating multimodal oncology data are paramount for building robust models for outcomes prediction. This chapter presents methodological challenges and advances in handling missingness and sparsity, integrating multidimensional clinical and multi-omic liquid biopsy data for improving the accuracy and robustness of machine and deep learning survival prediction models. We highlight the critical role that the convergence of artificial intelligence and liquid biopsies holds for the future of therapy response and survival prediction in precision oncology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Institute NC. Strategic Planning at NCI, <https://www.cancer.gov/about-nci/overview/strategic-planning#ui-id-2> (2019).

  2. Institute NC. Cancer Detection and Diagnosis Research, <https://www.cancer.gov/research/areas/diagnosis> (2020).

  3. Institute NC. Artificial Intelligence - Opportunities in Cancer Research, <https://www.cancer.gov/research/areas/diagnosis/artificial-intelligence> (2020).

  4. Hofman P, Heeke S, Alix-Panabières C et al. Liquid biopsy in the era of immuno-oncology: is it ready for prime-time use for cancer patients? Annals of oncology : official journal of the European Society for Medical Oncology 30, 1448–1459, doi:https://doi.org/10.1093/annonc/mdz196 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Benjamens S, Dhunnoo P & Meskó B. The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database. NPJ Digit Med 3, 118, doi:https://doi.org/10.1038/s41746-020-00324-0 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bera K, Schalper KA, Rimm DL et al. Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology. Nature reviews. Clinical oncology 16, 703–715, doi:https://doi.org/10.1038/s41571-019-0252-y (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mintz Y & Brodie R. Introduction to artificial intelligence in medicine. Minimally invasive therapy & allied technologies : MITAT : official journal of the Society for Minimally Invasive Therapy 28, 73–81, doi:https://doi.org/10.1080/13645706.2019.1575882 (2019).

    Article  Google Scholar 

  8. Amisha, Malik P, Pathania M et al. Overview of artificial intelligence in medicine. Journal of family medicine and primary care 8, 2328–2331, doi:https://doi.org/10.4103/jfmpc.jfmpc_440_19 (2019).

  9. Ramesh AN, Kambhampati C, Monson JR et al. Artificial intelligence in medicine. Annals of the Royal College of Surgeons of England 86, 334–338, doi:https://doi.org/10.1308/147870804290 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. TURING AM. I.—COMPUTING MACHINERY AND INTELLIGENCE. Mind LIX, 433-460, doi:https://doi.org/10.1093/mind/LIX.236.433 (1950).

  11. McCarthy J. in Philosophical Logic and Artificial Intelligence (ed Richmond H. Thomason) 161–190 (Springer Netherlands, 1989).

    Google Scholar 

  12. Newton PK, Mason J, Venkatappa N et al. Spatiotemporal progression of metastatic breast cancer: a Markov chain model highlighting the role of early metastatic sites. NPJ Breast Cancer 1, 15018, doi:https://doi.org/10.1038/npjbcancer.2015.18 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  13. In G, Mason J, Lin S et al. Development of metastatic brain disease involves progression through lung metastases in EGFR mutated non-small cell lung cancer. Convergent science physical oncology 3 (2017).

    Google Scholar 

  14. Fujii T, Mason J, Chen A et al. Prediction of Bone Metastasis in Inflammatory Breast Cancer Using a Markov Chain Model. Oncologist 24, 1322–1330, doi:https://doi.org/10.1634/theoncologist.2018-0713 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hasnain Z, Mason J, Gill K et al. Machine learning models for predicting post-cystectomy recurrence and survival in bladder cancer patients. PLoS One 14, e0210976, doi:https://doi.org/10.1371/journal.pone.0210976 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Spooner A, Chen E, Sowmya A et al. A comparison of machine learning methods for survival analysis of high-dimensional clinical data for dementia prediction. Sci Rep 10, 20410, doi:https://doi.org/10.1038/s41598-020-77220-w (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chi CL, Street WN & Wolberg WH. Application of artificial neural network-based survival analysis on two breast cancer datasets. AMIA Annu Symp Proc 2007, 130–134 (2007).

    PubMed  PubMed Central  Google Scholar 

  18. Zhu W, Xie L, Han J et al. The Application of Deep Learning in Cancer Prognosis Prediction. Cancers (Basel) 12, doi:https://doi.org/10.3390/cancers12030603 (2020).

  19. Institute NC. NCI Dictionaries: liquid biopsy, <https://www.cancer.gov/publications/dictionaries/cancer-terms/def/liquid-biopsy> (2021).

  20. Lianidou E & Pantel K. Liquid biopsies. Genes Chromosomes Cancer 58, 219–232, doi:https://doi.org/10.1002/gcc.22695 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Lim SB, Di Lee W, Vasudevan J et al. Liquid biopsy: one cell at a time. NPJ Precis Oncol 3, 23, doi:https://doi.org/10.1038/s41698-019-0095-0 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  22. De Rubis G, Rajeev Krishnan S & Bebawy M. Liquid Biopsies in Cancer Diagnosis, Monitoring, and Prognosis. Trends Pharmacol Sci 40, 172–186, doi:https://doi.org/10.1016/j.tips.2019.01.006 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Underwood JJ, Quadri RS, Kalva SP et al. Liquid Biopsy for Cancer: Review and Implications for the Radiologist. Radiology 294, 5–17, doi:https://doi.org/10.1148/radiol.2019182584 (2020).

    Article  PubMed  Google Scholar 

  24. Ignatiadis M, Sledge GW & Jeffrey SS. Liquid biopsy enters the clinic - implementation issues and future challenges. Nature reviews. Clinical oncology, doi:https://doi.org/10.1038/s41571-020-00457-x (2021).

  25. Todenhöfer T, Pantel K, Stenzl A et al. in Tumor Liquid Biopsies (eds Florence Schaffner, Jean-Louis Merlin, & Nikolas von Bubnoff) 3–24 (Springer International Publishing, 2020).

    Google Scholar 

  26. Dago AE, Stepansky A, Carlsson A et al. Rapid phenotypic and genomic change in response to therapeutic pressure in prostate cancer inferred by high content analysis of single circulating tumor cells. PLoS One 9, e101777, doi:https://doi.org/10.1371/journal.pone.0101777 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Welter L, Xu L, McKinley D et al. Treatment response and tumor evolution: lessons from an extended series of multianalyte liquid biopsies in a metastatic breast cancer patient. Cold Spring Harbor molecular case studies 6, doi:https://doi.org/10.1101/mcs.a005819 (2020).

  28. Spiliotaki M, Kallergi G, Nikolaou C et al. Dynamic changes of CTCs in patients with metastatic HR(+)/HER2(-) breast cancer receiving salvage treatment with everolimus/exemestane. Cancer Chemother Pharmacol 87, 277–287, doi:https://doi.org/10.1007/s00280-020-04227-5 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Bratulic S, Gatto F & Nielsen J. The Translational Status of Cancer Liquid Biopsies. Regenerative Engineering and Translational Medicine, doi:https://doi.org/10.1007/s40883-019-00141-2 (2019).

  30. Lee J, Hyeon DY & Hwang D. Single-cell multiomics: technologies and data analysis methods. Exp Mol Med 52, 1428–1442, doi:https://doi.org/10.1038/s12276-020-0420-2 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hodara E, Morrison G, Cunha A et al. Multiparametric liquid biopsy analysis in metastatic prostate cancer. JCI Insight 4, doi:https://doi.org/10.1172/jci.insight.125529 (2019).

  32. BloodPAC. Blood Profiling Atlas in Cancer, <https://www.bloodpac.org/> (2021).

  33. Grossman RL, Abel B, Angiuoli S et al. Collaborating to Compete: Blood Profiling Atlas in Cancer (BloodPAC) Consortium. Clin Pharmacol Ther 101, 589–592, doi:https://doi.org/10.1002/cpt.666 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Institute NC. Cancer Moonshot, <https://www.cancer.gov/research/key-initiatives/moonshot-cancer-initiative> (2021).

  35. Godsey JH, Silvestro A, Barrett JC et al. Generic Protocols for the Analytical Validation of Next-Generation Sequencing-Based ctDNA Assays: A Joint Consensus Recommendation of the BloodPAC’s Analytical Variables Working Group. Clin Chem 66, 1156–1166, doi:https://doi.org/10.1093/clinchem/hvaa164 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mahal BA, Chen YW, Muralidhar V et al. National sociodemographic disparities in the treatment of high-risk prostate cancer: Do academic cancer centers perform better than community cancer centers? Cancer 122, 3371–3377, doi:https://doi.org/10.1002/cncr.30205 (2016).

    Article  PubMed  Google Scholar 

  37. Zavala VA, Bracci PM, Carethers JM et al. Cancer health disparities in racial/ethnic minorities in the United States. Br J Cancer 124, 315–332, doi:https://doi.org/10.1038/s41416-020-01038-6 (2021).

    Article  PubMed  Google Scholar 

  38. Rodriguez-Alcalá ME, Qin H & Jeanetta S. The Role of Acculturation and Social Capital in Access to Health Care: A Meta-study on Hispanics in the US. J Community Health 44, 1224–1252, doi:https://doi.org/10.1007/s10900-019-00692-z (2019).

    Article  PubMed  Google Scholar 

  39. Graves KD, Huerta E, Cullen J et al. Perceived risk of breast cancer among Latinas attending community clinics: risk comprehension and relationship with mammography adherence. Cancer Causes Control 19, 1373–1382, doi:https://doi.org/10.1007/s10552-008-9209-7 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  40. HealthIT.gov. What is meaningful use?, <https://www.healthit.gov/faq/what-meaningful-use> (2013).

  41. Stankiewicz M. CMS rebrands Meaningful Use, reduces reporting measures, <https://www.fiercehealthcare.com/payer/cms-releases-ipps-ehr-meaningful-measure> (2018).

  42. Office HP. HHS Finalizes Historic Rules to Provide Patients More Control of Their Health Data, <https://www.hhs.gov/about/news/2020/03/09/hhs-finalizes-historic-rules-to-provide-patients-more-control-of-their-health-data.html> (2020).

  43. HealthIT.gov. Blue Button, <https://www.healthit.gov/topic/health-it-initiatives/blue-button> (2019).

  44. Administration UFaD. 21st Century Cures Act, <https://www.fda.gov/regulatory-information/selected-amendments-fdc-act/21st-century-cures-act> (2020).

  45. Reisman M. EHRs: The Challenge of Making Electronic Data Usable and Interoperable. P t 42, 572-575 (2017).

    PubMed  PubMed Central  Google Scholar 

  46. Sullivan T. Why EHR data interoperability is such a mess in 3 charts, <https://www.healthcareitnews.com/news/why-ehr-data-interoperability-such-mess-3-charts> (2018).

  47. Sui W, Ou M, Chen J et al. Comparison of immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) assessment for Her-2 status in breast cancer. World J Surg Oncol 7, 83, doi:https://doi.org/10.1186/1477-7819-7-83 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gill MK, Asefa T, Kaheil Y et al. Effect of missing data on performance of learning algorithms for hydrologic predictions: Implications to an imputation technique. Water Resources Research 43, doi:https://doi.org/10.1029/2006WR005298 (2007).

  49. Barakat MS, Field M, Ghose A et al. The effect of imputing missing clinical attribute values on training lung cancer survival prediction model performance. Health Inf Sci Syst 5, 16, doi:https://doi.org/10.1007/s13755-017-0039-4 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Jerez JM, Molina I, García-Laencina PJ et al. Missing data imputation using statistical and machine learning methods in a real breast cancer problem. Artif Intell Med 50, 105–115, doi:https://doi.org/10.1016/j.artmed.2010.05.002 (2010).

    Article  PubMed  Google Scholar 

  51. Musil CM, Warner CB, Yobas PK et al. A comparison of imputation techniques for handling missing data. West J Nurs Res 24, 815–829, doi:https://doi.org/10.1177/019394502762477004 (2002).

    Article  PubMed  Google Scholar 

  52. Richman MB, Trafalis TB & Adrianto I. in Artificial Intelligence Methods in the Environmental Sciences (eds Sue Ellen Haupt, Antonello Pasini, & Caren Marzban) 153–169 (Springer Netherlands, 2009).

    Google Scholar 

  53. Troyanskaya O, Cantor M, Sherlock G et al. Missing value estimation methods for DNA microarrays. Bioinformatics 17, 520–525, doi:https://doi.org/10.1093/bioinformatics/17.6.520 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Zhang Z. Multiple imputation with multivariate imputation by chained equation (MICE) package. Ann Transl Med 4, 30, doi:https://doi.org/10.3978/j.issn.2305-5839.2015.12.63 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Stekhoven DJ & Bühlmann P. MissForest--non-parametric missing value imputation for mixed-type data. Bioinformatics 28, 112–118, doi:https://doi.org/10.1093/bioinformatics/btr597 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Thiele JA, Pitule P, Hicks J et al. Single-Cell Analysis of Circulating Tumor Cells. Methods Mol Biol 1908, 243–264, doi:https://doi.org/10.1007/978-1-4939-9004-7_17 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Keomanee-Dizon K, Shishido SN & Kuhn P. in Tumor Liquid Biopsies (eds Florence Schaffner, Jean-Louis Merlin, & Nikolas von Bubnoff) 89–104 (Springer International Publishing, 2020).

    Google Scholar 

  58. Cho EH, Wendel M, Luttgen M et al. Characterization of circulating tumor cell aggregates identified in patients with epithelial tumors. Phys Biol 9, 016001, doi:https://doi.org/10.1088/1478-3975/9/1/016001 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Marrinucci D, Bethel K, Kolatkar A et al. Fluid biopsy in patients with metastatic prostate, pancreatic and breast cancers. Phys Biol 9, 016003, doi:https://doi.org/10.1088/1478-3975/9/1/016003 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Phillips KG, Kolatkar A, Rees KJ et al. Quantification of cellular volume and sub-cellular density fluctuations: comparison of normal peripheral blood cells and circulating tumor cells identified in a breast cancer patient. Front Oncol 2, 96, doi:https://doi.org/10.3389/fonc.2012.00096 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Lazar DC, Cho EH, Luttgen MS et al. Cytometric comparisons between circulating tumor cells from prostate cancer patients and the prostate-tumor-derived LNCaP cell line. Phys Biol 9, 016002, doi:https://doi.org/10.1088/1478-3975/9/1/016002 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Scher HI, Graf RP, Schreiber NA et al. Assessment of the Validity of Nuclear-Localized Androgen Receptor Splice Variant 7 in Circulating Tumor Cells as a Predictive Biomarker for Castration-Resistant Prostate Cancer. JAMA Oncol 4, 1179–1186, doi:https://doi.org/10.1001/jamaoncol.2018.1621 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Nieva J, Wendel M, Luttgen MS et al. High-definition imaging of circulating tumor cells and associated cellular events in non-small cell lung cancer patients: a longitudinal analysis. Phys Biol 9, 016004, doi:https://doi.org/10.1088/1478-3975/9/1/016004 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wendel M, Bazhenova L, Boshuizen R et al. Fluid biopsy for circulating tumor cell identification in patients with early-and late-stage non-small cell lung cancer: a glimpse into lung cancer biology. Phys Biol 9, 016005, doi:https://doi.org/10.1088/1478-3967/9/1/016005 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Shishido SN, Carlsson A, Nieva J et al. Circulating tumor cells as a response monitor in stage IV non-small cell lung cancer. J Transl Med 17, 294, doi:https://doi.org/10.1186/s12967-019-2035-8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Carlsson A, Nair VS, Luttgen MS et al. Circulating tumor microemboli diagnostics for patients with non-small-cell lung cancer. J Thorac Oncol 9, 1111–1119, doi:https://doi.org/10.1097/jto.0000000000000235 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kolenčík D, Shishido SN, Pitule P et al. Liquid Biopsy in Colorectal Carcinoma: Clinical Applications and Challenges. Cancers (Basel) 12, doi:https://doi.org/10.3390/cancers12061376 (2020).

  68. Ruiz C, Li J, Luttgen MS et al. Limited genomic heterogeneity of circulating melanoma cells in advanced stage patients. Phys Biol 12, 016008, doi:https://doi.org/10.1088/1478-3975/12/1/016008 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Polski A, Xu L, Prabakar RK et al. Cell-Free DNA Tumor Fraction in the Aqueous Humor Is Associated With Therapeutic Response in Retinoblastoma Patients. Transl Vis Sci Technol 9, 30, doi:https://doi.org/10.1167/tvst.9.10.30 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zhang L, Beasley S, Prigozhina NL et al. Detection and Characterization of Circulating Tumour Cells in Multiple Myeloma. J Circ Biomark 5, 10, doi:https://doi.org/10.5772/64124 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rodríguez-Lee M, Kolatkar A, McCormick M et al. Effect of Blood Collection Tube Type and Time to Processing on the Enumeration and High-Content Characterization of Circulating Tumor Cells Using the High-Definition Single-Cell Assay. Arch Pathol Lab Med 142, 198–207, doi:https://doi.org/10.5858/arpa.2016-0483-OA (2018).

    Article  PubMed  Google Scholar 

  72. Shishido SN, Welter L, Rodriguez-Lee M et al. Preanalytical Variables for the Genomic Assessment of the Cellular and Acellular Fractions of the Liquid Biopsy in a Cohort of Breast Cancer Patients. J Mol Diagn 22, 319–337, doi:https://doi.org/10.1016/j.jmoldx.2019.11.006 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Scher HI, Lu D, Schreiber NA et al. Association of AR-V7 on Circulating Tumor Cells as a Treatment-Specific Biomarker With Outcomes and Survival in Castration-Resistant Prostate Cancer. JAMA Oncol 2, 1441–1449, doi:https://doi.org/10.1001/jamaoncol.2016.1828 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Graf RP, Hullings M, Barnett ES et al. Clinical Utility of the Nuclear-localized AR-V7 Biomarker in Circulating Tumor Cells in Improving Physician Treatment Choice in Castration-resistant Prostate Cancer. Eur Urol 77, 170–177, doi:https://doi.org/10.1016/j.eururo.2019.08.020 (2020).

    Article  CAS  PubMed  Google Scholar 

  75. Armstrong AJ, Luo J, Nanus DM et al. Prospective Multicenter Study of Circulating Tumor Cell AR-V7 and Taxane Versus Hormonal Treatment Outcomes in Metastatic Castration-Resistant Prostate Cancer. JCO Precis Oncol 4, doi:https://doi.org/10.1200/po.20.00200 (2020).

  76. Armstrong AJ, Halabi S, Luo J et al. Prospective Multicenter Validation of Androgen Receptor Splice Variant 7 and Hormone Therapy Resistance in High-Risk Castration-Resistant Prostate Cancer: The PROPHECY Study. J Clin Oncol 37, 1120–1129, doi:https://doi.org/10.1200/jco.18.01731 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Brown LC, Lu C, Antonarakis ES et al. Androgen receptor variant-driven prostate cancer II: advances in clinical investigation. Prostate Cancer Prostatic Dis 23, 367–380, doi:https://doi.org/10.1038/s41391-020-0215-5 (2020).

  78. Gerdtsson AS, Setayesh SM, Malihi PD et al. Large Extracellular Vesicle Characterization and Association with Circulating Tumor Cells in Metastatic Castrate Resistant Prostate Cancer. Cancers (Basel) 13, doi:https://doi.org/10.3390/cancers13051056 (2021).

  79. Pau G, Fuchs F, Sklyar O et al. EBImage--an R package for image processing with applications to cellular phenotypes. Bioinformatics 26, 979–981, doi:https://doi.org/10.1093/bioinformatics/btq046 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Greene SB, Dago AE, Leitz LJ et al. Chromosomal Instability Estimation Based on Next Generation Sequencing and Single Cell Genome Wide Copy Number Variation Analysis. PLoS One 11, e0165089, doi:https://doi.org/10.1371/journal.pone.0165089 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Malihi PD, Graf RP, Rodriguez A et al. Single-Cell Circulating Tumor Cell Analysis Reveals Genomic Instability as a Distinctive Feature of Aggressive Prostate Cancer. Clin Cancer Res 26, 4143–4153, doi:https://doi.org/10.1158/1078-0432.Ccr-19-4100 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Giesen C, Wang HA, Schapiro D et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat Methods 11, 417–422, doi:https://doi.org/10.1038/nmeth.2869 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Gerdtsson E, Pore M, Thiele JA et al. Multiplex protein detection on circulating tumor cells from liquid biopsies using imaging mass cytometry. Convergent science physical oncology 4, doi:https://doi.org/10.1088/2057-1739/aaa013 (2018).

  84. Poreba M, Groborz KM, Rut W et al. Multiplexed Probing of Proteolytic Enzymes Using Mass Cytometry-Compatible Activity-Based Probes. J Am Chem Soc 142, 16704–16715, doi:https://doi.org/10.1021/jacs.0c06762 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Malihi PD, Morikado M, Welter L et al. Clonal diversity revealed by morphoproteomic and copy number profiles of single prostate cancer cells at diagnosis. Convergent science physical oncology 4, doi:https://doi.org/10.1088/2057-1739/aaa00b (2018).

  86. Liang M, Li Z, Chen T et al. Integrative Data Analysis of Multi-Platform Cancer Data with a Multimodal Deep Learning Approach. IEEE/ACM Trans Comput Biol Bioinform 12, 928–937, doi:https://doi.org/10.1109/tcbb.2014.2377729 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. Tan X, Su AT, Hajiabadi H et al. Applying Machine Learning for Integration of Multi-Modal Genomics Data and Imaging Data to Quantify Heterogeneity in Tumour Tissues. Methods Mol Biol 2190, 209–228, doi:https://doi.org/10.1007/978-1-0716-0826-5_10 (2021).

    Article  CAS  PubMed  Google Scholar 

  88. Ray B, Henaff M, Ma S et al. Information content and analysis methods for multi-modal high-throughput biomedical data. Sci Rep 4, 4411, doi:https://doi.org/10.1038/srep04411 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Johnson K, Howard GR, Morgan D et al. Integrating multimodal data sets into a mathematical framework to describe and predict therapeutic resistance in cancer. bioRxiv, 2020.2002.2011.943738, doi:10.1101/2020.02.11.943738 (2020).

    Google Scholar 

  90. Yan R, Ren F, Rao X et al. 460–469 (Springer International Publishing).

    Google Scholar 

  91. Sandfort V, Yan K, Pickhardt PJ et al. Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks. Sci Rep 9, 16884, doi:https://doi.org/10.1038/s41598-019-52737-x (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Goodfellow I, Pouget-Abadie J, Mirza M et al. Generative Adversarial Networks. ArXiv abs/1406.2661 (2014).

    Google Scholar 

  93. Crystal DT, Cuccolo NG, Ibrahim AMS et al. Photographic and Video Deepfakes Have Arrived: How Machine Learning May Influence Plastic Surgery. Plast Reconstr Surg 145, 1079–1086, doi:https://doi.org/10.1097/prs.0000000000006697 (2020).

    Article  CAS  PubMed  Google Scholar 

  94. Hwang Y, Ryu JY & Jeong SH. Effects of Disinformation Using Deepfake: The Protective Effect of Media Literacy Education. Cyberpsychol Behav Soc Netw 24, 188–193, doi:https://doi.org/10.1089/cyber.2020.0174 (2021).

    Article  PubMed  Google Scholar 

  95. Sample I. What are deepfakes – and how can you spot them?, <https://www.theguardian.com/technology/2020/jan/13/what-are-deepfakes-and-how-can-you-spot-them> (2020).

  96. Tschuchnig ME, Oostingh GJ & Gadermayr M. Generative Adversarial Networks in Digital Pathology: A Survey on Trends and Future Potential. Patterns (N Y) 1, 100089, doi:https://doi.org/10.1016/j.patter.2020.100089 (2020).

  97. Lafarge MW, Pluim JPW, Eppenhof KAJ et al. 83–91 (Springer International Publishing).

    Google Scholar 

  98. Luedtke A, Carone M, Simon N et al. Learning to learn from data: Using deep adversarial learning to construct optimal statistical procedures. Sci Adv 6, eaaw2140, doi:https://doi.org/10.1126/sciadv.aaw2140 (2020).

  99. Jeong B, Lee W, Kim DS et al. Copula-Based Approach to Synthetic Population Generation. PLoS One 11, e0159496, doi:https://doi.org/10.1371/journal.pone.0159496 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sun Y, Cuesta-Infante A & Veeramachaneni K. Learning Vine Copula Models for Synthetic Data Generation. Proceedings of the AAAI Conference on Artificial Intelligence 33, 5049–5057, doi:https://doi.org/10.1609/aaai.v33i01.33015049 (2019).

    Article  Google Scholar 

  101. Durante F, Fernández-Sánchez J & Sempi C. A topological proof of Sklar’s theorem. Applied Mathematics Letters 26, 945–948, doi:https://doi.org/10.1016/j.aml.2013.04.005 (2013).

  102. Wilson A & Ghahramani Z. in NIPS.

    Google Scholar 

  103. Benth F, Nunno GD & Schroers D.

    Google Scholar 

  104. Othus M & Li Y. A Gaussian Copula Model for Multivariate Survival Data. Stat Biosci 2, 154–179, doi:https://doi.org/10.1007/s12561-010-9026-x (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Murray JS, Dunson DB, Carin L et al. Bayesian Gaussian Copula Factor Models for Mixed Data. J Am Stat Assoc 108, 656–665, doi:https://doi.org/10.1080/01621459.2012.762328 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kamthe S, Assefa S & Deisenroth M. Copula Flows for Synthetic Data Generation. ArXiv abs/2101.00598 (2021).

    Google Scholar 

  107. Xu L & Veeramachaneni K. Synthesizing Tabular Data using Generative Adversarial Networks. ArXiv abs/1811.11264 (2018).

    Google Scholar 

  108. Patki N, Wedge R & Veeramachaneni K. in 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA). 399–410.

    Google Scholar 

  109. Halicek M, Ortega S, Fabelo H et al. Conditional generative adversarial network for synthesizing hyperspectral images of breast cancer cells from digitized histology. Proc SPIE Int Soc Opt Eng 11320, doi:https://doi.org/10.1117/12.2549994 (2020).

  110. Xu L, Skoularidou M, Cuesta-Infante A et al. in NeurIPS.

    Google Scholar 

  111. Clark TG, Bradburn MJ, Love SB et al. Survival analysis part I: basic concepts and first analyses. Br J Cancer 89, 232–238, doi:https://doi.org/10.1038/sj.bjc.6601118 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Dudley WN, Wickham R & Coombs N. An Introduction to Survival Statistics: Kaplan-Meier Analysis. J Adv Pract Oncol 7, 91–100, doi:https://doi.org/10.6004/jadpro.2016.7.1.8 (2016).

    Article  PubMed  Google Scholar 

  113. Goel MK, Khanna P & Kishore J. Understanding survival analysis: Kaplan-Meier estimate. Int J Ayurveda Res 1, 274–278, doi:https://doi.org/10.4103/0974-7788.76794 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Cox DR. in Breakthroughs in Statistics: Methodology and Distribution (eds Samuel Kotz & Norman L. Johnson) 527–541 (Springer New York, 1992).

    Google Scholar 

  115. Breiman L. Random Forests. Machine Learning 45, 5–32, doi:https://doi.org/10.1023/A:1010933404324 (2001).

    Article  Google Scholar 

  116. Wang H & Li G. A Selective Review on Random Survival Forests for High Dimensional Data. Quant Biosci 36, 85–96, doi:https://doi.org/10.22283/qbs.2017.36.2.85 (2017).

  117. Ishwaran H, Kogalur UB, Blackstone E et al. Random survival forests. The Annals of Applied Statistics 2, 841–860 (2008).

    Article  Google Scholar 

  118. Wongvibulsin S, Wu KC & Zeger SL. Clinical risk prediction with random forests for survival, longitudinal, and multivariate (RF-SLAM) data analysis. BMC Med Res Methodol 20, 1, doi:https://doi.org/10.1186/s12874-019-0863-0 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  119. ZhongXin D. in 2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC). 6816–6819.

    Google Scholar 

  120. Brard C, Le Teuff G, Le Deley MC et al. Bayesian survival analysis in clinical trials: What methods are used in practice? Clin Trials 14, 78–87, doi:https://doi.org/10.1177/1740774516673362 (2017).

    Article  PubMed  Google Scholar 

  121. Biard L, Bergeron A, Lévy V et al. Bayesian survival analysis for early detection of treatment effects in phase 3 clinical trials. Contemp Clin Trials Commun 21, 100709, doi:https://doi.org/10.1016/j.conctc.2021.100709 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Zupan B, Demsar J, Kattan MW et al. Machine learning for survival analysis: a case study on recurrence of prostate cancer. Artif Intell Med 20, 59–75, doi:https://doi.org/10.1016/s0933-3657(00)00053-1 (2000).

    Article  CAS  PubMed  Google Scholar 

  123. Wang P, Li Y & Reddy C. Machine Learning for Survival Analysis. ACM Computing Surveys (CSUR) 51, 1–36 (2017).

    Article  Google Scholar 

  124. Faraggi D & Simon R. A neural network model for survival data. Stat Med 14, 73–82, doi:https://doi.org/10.1002/sim.4780140108 (1995).

    Article  CAS  PubMed  Google Scholar 

  125. Katzman JL, Shaham U, Cloninger A et al. DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network. BMC Med Res Methodol 18, 24, doi:https://doi.org/10.1186/s12874-018-0482-1 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Roodnat JI, Mulder PG, Tielens ET et al. The Cox proportional hazards analysis in words: examples in the renal transplantation field. Transplantation 77, 483–488, doi:https://doi.org/10.1097/01.tp.0000110424.27977.a1 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Harrell FE, Jr., Califf RM, Pryor DB et al. Evaluating the yield of medical tests. Jama 247, 2543–2546 (1982).

    Article  PubMed  Google Scholar 

  128. Carlsson A, Kuhn P, Luttgen MS et al. Paired High-Content Analysis of Prostate Cancer Cells in Bone Marrow and Blood Characterizes Increased Androgen Receptor Expression in Tumor Cell Clusters. Clin Cancer Res 23, 1722–1732, doi:https://doi.org/10.1158/1078-0432.Ccr-16-1355 (2017).

    Article  CAS  PubMed  Google Scholar 

  129. Corn PG, Heath EI, Zurita A et al. Cabazitaxel plus carboplatin for the treatment of men with metastatic castration-resistant prostate cancers: a randomised, open-label, phase 1-2 trial. The Lancet. Oncology 20, 1432–1443, doi:https://doi.org/10.1016/s1470-2045(19)30408-5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kelly SP, Anderson WF, Rosenberg PS et al. Past, Current, and Future Incidence Rates and Burden of Metastatic Prostate Cancer in the United States. Eur Urol Focus 4, 121–127, doi:https://doi.org/10.1016/j.euf.2017.10.014 (2018).

    Article  PubMed  Google Scholar 

  131. Siegel RL, Miller KD & Jemal A. Cancer statistics, 2020. CA Cancer J Clin 70, 7–30, doi:https://doi.org/10.3322/caac.21590 (2020).

    Article  PubMed  Google Scholar 

  132. Alix-Panabières C. The future of liquid biopsy. Nature 579, S9, doi:https://doi.org/10.1038/d41586-020-00844-5 (2020).

    Article  CAS  PubMed  Google Scholar 

  133. Keating SM, Taylor DL, Plant AL et al. Opportunities and Challenges in Implementation of Multiparameter Single Cell Analysis Platforms for Clinical Translation. Clin Transl Sci 11, 267–276, doi:https://doi.org/10.1111/cts.12536 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Rockne RC, Hawkins-Daarud A, Swanson KR et al. The 2019 mathematical oncology roadmap. Phys Biol 16, 041005, doi:https://doi.org/10.1088/1478-3975/ab1a09 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Si Y & Roberts K. Patient Representation Transfer Learning from Clinical Notes based on Hierarchical Attention Network. AMIA Jt Summits Transl Sci Proc 2020, 597–606 (2020).

    PubMed  PubMed Central  Google Scholar 

  136. Kensert A, Harrison PJ & Spjuth O. Transfer Learning with Deep Convolutional Neural Networks for Classifying Cellular Morphological Changes. SLAS Discov 24, 466–475, doi:https://doi.org/10.1177/2472555218818756 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Estiri H, Vasey S & Murphy SN. Generative transfer learning for measuring plausibility of EHR diagnosis records. J Am Med Inform Assoc 28, 559–568, doi:https://doi.org/10.1093/jamia/ocaa215 (2021).

    Article  PubMed  Google Scholar 

  138. Wainrib G. Transfer Learning and the Rise of Collaborative AI, <https://owkin.com/collaborative-ai/transfer-learning/> (2021).

  139. Brisimi TS, Chen R, Mela T et al. Federated learning of predictive models from federated Electronic Health Records. Int J Med Inform 112, 59–67, doi:https://doi.org/10.1016/j.ijmedinf.2018.01.007 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Vaid A, Jaladanki SK, Xu J et al. Federated Learning of Electronic Health Records Improves Mortality Prediction in Patients Hospitalized with COVID-19. medRxiv, doi:https://doi.org/10.1101/2020.08.11.20172809 (2020).

  141. Ghosh A & Kandasamy D. Interpretable Artificial Intelligence: Why and When. AJR Am J Roentgenol 214, 1137–1138, doi:https://doi.org/10.2214/ajr.19.22145 (2020).

    Article  PubMed  Google Scholar 

  142. Hao J, Kim Y, Mallavarapu T et al. Interpretable deep neural network for cancer survival analysis by integrating genomic and clinical data. BMC Med Genomics 12, 189, doi:https://doi.org/10.1186/s12920-019-0624-2 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Gatenby RA, Silva AS, Gillies RJ et al. Adaptive therapy. Cancer Res 69, 4894–4903, doi:https://doi.org/10.1158/0008-5472.Can-08-3658 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. West J, You L, Zhang J et al. Towards Multidrug Adaptive Therapy. Cancer Res 80, 1578–1589, doi:https://doi.org/10.1158/0008-5472.Can-19-2669 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Hussey PS, Sorbero ME, Mehrotra A et al. Episode-based performance measurement and payment: making it a reality. Health Aff (Millwood) 28, 1406–1417, doi:https://doi.org/10.1377/hlthaff.28.5.1406 (2009).

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank all the patients who participated in this study. This work is supported fully or partially by the Adelson Medical Research Foundation Multiple Myeloma Research Program No. 04-7023433 (L.N., J.M., P.K.); Breast Cancer Research Foundation No. 20-089; Novartis Pharmaceuticals Corporation (L.N., J.M., P.K.); the USC Institute of Urology (J.M.); and NCI’s USC Norris Comprehensive Cancer Center (CORE) Support 5P30CA014089-40 (P.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Kuhn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ndacayisaba, L.J., Mason, J., Kuhn, P. (2023). Mathematical Oncology to Integrate Multimodal Clinical and Liquid Biopsy Data for the Prediction of Survival. In: Cote, R.J., Lianidou, E. (eds) Circulating Tumor Cells. Current Cancer Research. Springer, Cham. https://doi.org/10.1007/978-3-031-22903-9_7

Download citation

Publish with us

Policies and ethics